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1 Introduction

Container terminals offer transfer facilities to move containers from vessels to trucks, trains
and barges and vice versa. Incoming containers are not immediately loaded on an outgoing
vehicle, but stored in the yard for up to several days. The yard is divided into blocks with
several bays consisting of stacks and tiers. Figure 1 illustrates these terms. Terminals stack
containers to use their scare land efficiently. Only the topmost container of each stack can
be accessed directly. If another container has to be retrieved, containers above have to be
relocated. These unproductive moves cannot be avoided completely as little information about
future retrievals is known when a container is stored. But, poor yard management increases
the number of relocations and the time needed to retrieve containers. Thereby, it decreases
the overall productivity of the terminal.

The container (or block) relocation problem consists in minimizing the number of relocations
during the retrieval process. N containers have to be retrieved from a bay with W stacks and
H tiers in ascending order (from 1 to N). At each period t (t ∈ {1, . . . , N}), container n = t
has to be retrieved from a position (i, j) with i ∈ {1, . . . ,W} and j ∈ {1, . . . , H}. The retrieval
order is imposed by the stowage plan of vessels or the service order of trucks and does not match
the storage layout. Containers are relocated within the same bay as relocations between bays
are very time consuming. We and many other studies limit relocations to containers above the
target container.

The container relocation problem is shown to be NP-hard ([2]). Several heuristic solution
approaches (e.g., [1], [3], [4], [5]) and few exact solution approaches exist (e.g., [2], [5], [6], [7]).
We present a branch and price procedure to solve the problem exactly.
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FIG. 1: A single block divided into bays, stacks and tiers
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FIG. 2: Transformation of the bay by applying variable θs
1

2 Column generation

2.1 Master problem
Our master problem for the container relocation problem is a reformulation of the binary model
presented in [2]. They introduced the following binary variables: bijnt to indicate if container
n is at position (i, j) in period t, yijnt to indicate if container n is retrieved from position
(i, j) in period t, xijklnt to indicate if container n is relocated from position (i, j) to (k, l) in
period t. We introduce variables θs

t to indicate if a particular sequence of movements is applied
to retrieve container n = t and to relocate any containers stacked above. Binary parameters
ys

ijnt and xs
ijklnt indicate which retrieval and which relocations have to be executed for variable

θs
t . St counts the number of columns added to the master problem for period t. Figure 2
illustrates the way θs

1 represents retrievals and relocations and how it transforms the bay if
applied.

min
W∑

i=1

H∑
j=1

W∑
k=1

H∑
l=1

N−1∑
t=1

N∑
n=t+1

St∑
s=1

xs
ijklnt · θs

t

N∑
n=t

bijnt ≤ 1 ∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , N − 1 (1)

N∑
n=t

bijnt −
N∑

n=t

bij+1nt ≥ 0 ∀i = 1, . . . ,W, j = 1, . . . , H − 1, t = 1, . . . , N − 1 (2)

bijnt+1 = bijnt +
St∑

s=1

W∑
k=1

H∑
l=1

θs
t · xs

klijnt −
St∑

s=1

W∑
k=1

H∑
l=1

θs
t · xs

ijklnt

∀i = 1, . . . ,W, j = 1, . . . , H, n = t+ 1, . . . , N, t = 1, . . . , N − 2
(3)

bijtt −
St∑

s=1
θs

t · ys
ijtt = 0 ∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , N − 1 (4)

St∑
s=1

θs
t = 1 ∀t = 1, . . . , N − 1 (5)

j∑
k=1

biktt +
N∑

n=t+1
bijnt+1 ≤ 1 ∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , N − 2 (6)

The objective function minimizes the total number of relocations. Constraint (1) makes sure
that each position (i, j) is occupied by at most one container. Constraint (2) prevents gaps
within stacks. Constraint (3) links the bay layout at period t with the layout at period t+1 via
the executed relocations. Constraint (4) makes sure that container t is retrieved from the bay
in period t. Constraint (5) imposes that one move sequence is chosen per period. All θs

t and
bijnt are linear variables except for bijn1 with t = 1 which indicate the initial bay configuration.
Constraint (6) is a cut to enhance the quality of the model. It imposes that position (i, j) has
to be empty at period t+ 1 if container t is retrieved from a position (i, j′) with j′ ≤ j.



2.2 Pricing subproblem
The pricing subproblem determines variables that could reduce the value of the objective
function of the restricted master problem. Let γijnt be the dual variables of Constraint (3),
δijt of Constraint (4) and µt of Constraint (5). We are looking for variables θs

t with negative
reduced costs; thus satisfying Constraint (7).

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=t+1

xs
ijklnt · (1 + γijnt − γklnt) +

W∑
i=1

H∑
j=1

ys
ijtt · δijt − µt < 0 (7)

We use enumeration to create all feasible variables for each period t. To be feasible, a
variable has to meet several criteria. In period t, only container n = t may be retrieved and
only containers stacked above may be relocated. Containers cannot be relocated to the stack
from which they are picked up. If two or more containers have to be relocated, the LIFO order
has to be respected: if container n is stacked below container n′ before the relocation, n cannot
be stacked below container n′ after the relocation. The initial bay layout limits the positions
where containers can be found in subsequent periods. We use this information to reduce the
number of enumerated variables. We enumerate only variables where containers are picked up
from positions that they may occupy, put into positions that may be free and not suspended
(not above an empty position).

2.3 Bounding mechanisms
Let Rt

max denote the maximum number of relocations at period t. We present two upper bounds
on Rt

max to sift out variables that cannot be found in an optimal solution. These bounds do not
only reduce the number of variables to enumerate at period t, but also the attainable layouts
and the variables to enumerate in subsequent periods. We use column generation within an
iterative approach to speed up the subproblem. Let zt describe the minimum number of
relocations needed to retrieve containers 1 to t. Knowing zt for all t = 1, . . . , N − 1 makes it
possible to compute a tight Rt

max and to introduce an optimality criterion.

Bound 1 based on lower and upper bounds on the number of relocations The
heuristic presented in [2] provides an upper bound UB on the number of relocations needed to
retrieve all N containers. The lower bound LBt+ defines the minimum number of relocations
that occur in periods t+1 to N−1. LBt+ depends on the number of containers placed above the
target container and on the number of additional relocations caused by relocating containers
to stacks containing containers with higher priorities. Rt

max,1 is defined by Constraint (8).

Rt
max,1 = UB −

⌈
zt−1

⌉
− LBt+ − 1 ∀t = 1, . . . , N − 1 (8)

Bound 2 based on values of dual variables of the restricted master problem The
potential gain of a variable has to outweigh its cost (the number of relocations) since only
variables with negative reduced costs are added to the master problem. Constraint (9) limits
Rt

max,2 with regard to the maximum gain that may be reached at period t. We use the in-
formation about attainable layouts to improve the quality of the bound. Dual variables that
correspond to movements of containers from or to positions that are not attainable are ignored.
But, the bound does not consider interactions among different containers like LIFO and might
therefore overestimate Rt

max,2.

Rt
max,2 =

⌈
N∑

n=t+1

(
−min

ij
γijnt + max

kl
γklnt

)
−min

ij
δijt + µt

⌉
− 1 ∀t = 1, . . . , N − 1 (9)



Optimality criterion Constraint (10) checks if the heuristic solution UB is optimal. This
is the case if the upper bound equals the lower bound.

UB =
⌈
zt⌉+ LBt+ ∃t = 1, . . . , N − 1 (10)

3 Branch and price
Column generation may obtain non-integer solutions where containers are split and occupy
several positions within the bay. Two different situations may occur: a container is put into
different stacks or a container is put into different tiers of the same stack. We We defined
branching strategies for both cases: 1) If the container is split between two stacks i and
i′, we create two nodes that forbid relocations to i and i′, respectively. One node prevents
relocations to stack i and to the first dW/2e stacks without stacks i and i′. The other one
prevents relocations to stack i′ and the remaining stacks. 2) If the container is split between
two tiers j and j′ of the same stack i, we create two nodes that forbid relocations to (i, j) and
(i, j′), respectively. The first nodes prevents relocations to tiers 1, ...,min(j, j′) of stack i. The
other one prevents relocations to tiers min(j, j′) + 1, ..., J of stack i. We chose to branch on
the fractional bijnt at the earliest period t and closest to 0.5.

4 Computational results
We applied our column generation approach on commonly used instances from [3]. To evaluate
the performance of branch and price, we also solve a modified version of the binary program-
ming model presented in [2] with Cplex. Results show that column generation provides tighter
lower bounds on the minimum number of relocations than the linear relaxation of the bi-
nary model (avg. gap of 1% vs. avg. gap of 10%). Despite the used bounding mechanisms,
the enumeration subproblem is impractical for bigger instances as too many columns have to
be generated. Our objective is to implement a more performing subproblem to improve the
method.
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