
HAL Id: emse-00837514
https://hal-emse.ccsd.cnrs.fr/emse-00837514

Submitted on 24 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electromagnetic glitch on the AES round counter
Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre,

Assia Tria

To cite this version:
Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre, Assia Tria. Electromag-
netic glitch on the AES round counter. Fourth International Workshop on Constructive Side-Channel
Analysis and Secure Design - COSADE’2013, Mar 2013, Paris, France. pp 17-31, �10.1007/978-3-642-
40026-1�. �emse-00837514�

https://hal-emse.ccsd.cnrs.fr/emse-00837514
https://hal.archives-ouvertes.fr

Electromagnetic Glitch

on the AES Round Counter

Amine Dehbaoui1, Amir-Pasha Mirbaha2, Nicolas Moro1,
Jean-Max Dutertre2 and Assia Tria1

1 cea-leti

firstname.lastname@cea.fr

2 École nationale supérieure des Mines de Saint-Étienne
lastname@emse.fr

Département sas - Systèmes et Architectures Sécurisés
Centre Microélectronique de Provence-Georges Charpak

880 Avenue de Mimet, f-13541 Gardanne, France

Abstract. This article presents a Round Addition Analysis on a soft-
ware implementation of the Advanced Encryption Standard (aes) algo-
rithm. The round keys are computed on-the-fly during each encryption.
A non-invasive transient fault injection is achieved on the aes round
counter. The attack is performed by injecting a very short electromag-
netic glitch on a 32-bit microcontroller based on the arm Cortex-M3 pro-
cessor. Using this experimental setup, we are able to disrupt the round
counter increment at the end of the penultimate round and execute one
additional round. This faulty execution enables us to recover the en-
cryption key with only two pairs of corresponding correct and faulty
ciphertexts.

1 Introduction

A fault in a cryptographic system refers to an accidental or an intentional distur-
bance that causes the encryption process to deviate from its correct execution or
result. In this case, the cryptographic system may act abnormally or the result
of encryption (or decryption) may be incorrect, considered as faulty.

The first alert about the feasibility of using faults to break cryptosystems was
reported by D. Boneh et al. in [7]. A Fault Attack consists in using hardware
malfunction to infer secrets from the target’s faulty behavior or output. The
fault injection can be performed by various physical perturbation techniques,
as reported in [5]. The first structured method for exploiting the secrets from
faulty encryptions was presented as Differential Fault Analysis (dfa) in [6]. Since

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
642-40026-1 2

then, more analysis methods have been developed to reveal secrets from faulty
behavior or outputs.

Among different perturbation methods, creating strong electromagnetic (em)
disturbances on the top of a circuit is a practical way to induce faults. J.-J.
Quisquater and D. Samyde reported in [15] the possibility of an em fault injection
into the transistors and into the memory cells of a smart-card circuit. Afterwards,
other research, e.g. [17] and [9], reported further successful em fault attacks on
cryptosystems.

In this paper, we introduce a new round addition attack induced by Electro-
Magnetic Glitch (emg) injection on an up-to-date microcontroller running an
aes algorithm. The resulting erroneous ciphertexts are then processed in order
to retrieve the secret key. This process involves cryptanalysis and differentiation
techniques often used by the dfa.

This article is organized as follows: emg fault injection is briefly presented in
section 2. Then, the experimental setup, describing the targeted microcontroller
and the em attack bench, is presented in section 3. A quick reminder on the aes
is given in section 4. It is followed by the state-of-the-art of Round Modification

Analysis and the proposed Round Addition attack. The experiment outline and
the corresponding cryptanalysis are described in section 5. To conclude, our
findings are summarized in section 6 with further perspective.

2 Electromagnetic Glitch Injection Technique

Non-invasive fault injection techniques, such as emg, represent a serious threat
to the security of cryptographic circuits. They are sometimes considered as more
dangerous than semi-invasive or invasive techniques because they do not require
any chip decapsulation proficiency and equipment.

Choukri et al. showed in [8] the possibility of using power glitches to reduce
the number of rounds of an aes implementation. Kim et al. also used power
glitches in [11] to skip subroutine calls in a software rsa-crt implementation.
Similarly, Schmidt et al. [16] prevented a subroutine call in a square-and-multiply
rsa software implementation. More recently Balasch et. al [4] performed a study
of the clock glitch effects on a 8-bit avr microcontroller. They showed that
instructions can be replaced or skipped by injecting a clock glitch, and that the
effects of faults are deterministic and reproducible. More precisely, as the clock
period decreases, a larger number of the opcode’s bits are stuck at zero.

The efficiency of emg is mainly due to the inner properties of electromag-
netic waves. Their ability to propagate through different materials is the most
interesting one since it allows an attacker (without any preliminary preparation
of the chip) to induce a very short glitch in the power supply voltage. This short
glitch in the power supply voltage is the result of a coupling mechanism between
the coil antenna and the targeted chip’s Power Ground Network (pgn) [14,9].

In comparison with power glitch, emg technique allows the attacker to target
a small part of the internal pgn by choosing an accurate xyz stage and a small

antenna diameter. A study about the emg localized effect is presented in [9].
As reported by the authors, the propagation delays are increased through the
circuit’s logic when the emg is injected on top of the die surface. Thus, by the
violation of the circuit’s timing constraints, the operations are not accomplished
during the expected time and faults appear.

According to previous experiments in [9] on a basic 8-bit avrmicrocontroller,
an emg induces faults during the program execution. A careful analysis of the
faulty behavior, revealed that they were due to an instruction skip at the instant
of the emg injection. To the best of our knowledge, no emg fault injection has
been reported on an up-to-date 32-bit microcontroller. This fault model seems
to be very threatening, since the opponent may be able to skip or to prevent a
subroutine call, just by an emg injection.

3 Practical Electromagnetic Glitch Setup

As described in section 2, emg technique can be used to avoid the execution of
an instruction on a microcontroller. In this section, the emg injection setup used
to generate transient em pulses is described.

3.1 EMG Platform

The emg platform depicted in Figure 1 is composed of a control computer, the
target device, a motorized stage, a pulse generator, and a magnetic antenna.
The target (described in subsection 3.2) is mounted on the xyz motorized stage.
The computer controls both the pulse generator (through a rs-232 link) and
the target board (through a usb link).

The pulse generator is used to deliver voltage pulses to the magnetic coil. It
has a constant rise and fall transition time of 2ns. The amplitude range (respec-
tively the width) of the generated pulses extends from -200V to 200V (respec-
tively from 10ns to 200ns). We use a magnetic antenna composed of a few turns
with a diameter of 1mm in order to only disturb a small part of the targeted
device. This spatial accuracy is possible thanks to a high accuracy xyz stage.

3.2 Target

The chosen target is an up-to-date 32-bit microcontroller, designed in a cmos

130nm technology. It is based on the arm Cortex-M3 processor [2]. Its operating
frequency is set to 24MHz.

Choice of the Target : For our target, we were looking for a state-of-the-art
microchip, based on a recent technology. We chose an arm Cortex-based mi-
crocontroller because arm Cortex processors are already very widespread for
both reasons of the mainstream and their security. Nowadays, more and more
integrated circuit manufacturers propose arm Cortex based microcontrollers.

Although we did not choose a smart-card version of the microcontroller, our
target embeds some security mechanisms against clock perturbations, voltage
glitches and other kinds of hardware faults. Moreover, it enables the program-
mer to define some interrupts in order to handle some hardware exceptions
triggered by the core. Hence, we can consider our target as reasonably secured
against some of the most common low-cost fault injection means. However, there
is no widespread countermeasure against electromagnetic injection. Thus, we as-
sumed that it could be considered as an up-to-date realistic target to study the
embedded security mechanisms and to perform electromagnetic glitch injection.

Architecture Details : The microcontroller embeds 128kb of flash program mem-
ory and 8kb of ram. The core uses an armv7-mHarvard architecture and embeds
a 3-stage pipeline. It is able to run both Thumb and Thumb-2 risc instruction
sets from arm. Thumb-2 is an extension of the Thumb 16-bit instruction set
which contains 32-bit instructions. Our microcontroller embeds a Memory Pro-
tection Unit (mpu) which supports the arm xn (eXecute Never) technology.

Hardware Faults Interrupts : The microcontroller does not embed any Cyclic
Redundancy Check (crc) calculation or advanced mechanism to check code
integrity. However, it is able to detect several types of hardware faults. When
a specific type of hardware fault is detected, the processor raises its associated
interrupt. The standard software library enables the programmer to define the
security policy of those interrupts. In the default configuration, the interrupts
execute only an infinite loop. The available interrupts are presented in Table 1.

Pulse generator

On the fly debug

via USB

RS232

Target

Motorized

stage

Coil

antenna

Fig. 1. Electromagnetic glitch platform

Table 1. List of available hardware interrupts

Exception Description

Hard fault Error during exception processing
Has the highest priority

Bus fault Memory related fault
For an instruction or data memory transaction

Memory Triggered by the memory protection unit
Management Fault Possible access to a restricted memory area

Usage Fault Fault related to instruction execution
Undefined instruction, illegal unaligned access, etc.

Clock Security Error on the high speed external clock
System

Programmable The power supply is under a user-defined threshold
Voltage Detect

3.3 EMG Impact on the Microcontroller Power Supply

Before the logical effects of an emg can be investigated, the emg profile of the
target must be established. Figure 2 shows the target’s power supply during the
emg injection. This measurement was done using a differential probe with dc

filtering. As we can observe, for a 180V injected emg during 20ns, we obtained
a negative spike of less than 50ns width and 300mV amplitude. These voltage
variations may seem quite small especially in order to induce faults into the
device computations. However, because the power supply measurement was done
out of the core, a large part of the perturbation may have been filtered out.

4 Round Modification Analysis on AES: State-of-the-Art

4.1 Advanced Encryption Standard

The Advanced Encryption Standard, according to [12], is a symmetric block
cipher that processes data blocks of 128 bits, using cipher keys with lengths
of 128, 192, and 256 bits, respectively in 10, 12 or 14 rounds. For the sake of
simplicity, we consider in this paper only the 128-bit aes version: denoted aes

or aes-128.

aes has two separated processes: One for the KeyExpansion to derive round
keys from the secret key and another one for the DataEncryption. aes-128
performs the encryption process in 10 rounds, after a short initial round. A
round key is used during the computations of every round. Hereafter, we use the
“K” prefix plus the round number to refer to a round key (e.g. “K9” for the 9th

round key).

To encrypt a plaintext, namely M , the encryption process considers its 16
bytes as a matrix of 4× 4 bytes. Each round of the algorithm, except the initial
and the last ones, includes 4 transformations: First, the value of each matrix

element, i.e. one byte value, is exchanged with the corresponding value in a sub-
stitution table (SubBytes or SB). Secondly, a rotational operation on the matrix
rows is executed (ShiftRows or SR). In the third step, the algorithm applies a lin-
ear transformation to each element and combines it with other values of the same
column using a different coefficient of 1, 2 or 3 for each element (MixColumns or
MC) in GF(28). The fourth operation is a bitwise xor (AddRoundKey or ARK) is
performed between the value of each element and the corresponding byte of the
round key (RoundKey or KRC). Before the first round, an ARK is applied to M

and K (i.e. Round 0). The MC transformation is omitted in the last round.

The aes algorithm takes the key K and performs a KeyExpansion routine
to generate a key schedule. The KeyExpansion generates a total of Rmax round
keys. KeyScheduling (KS) is a set of linear and non-linear transformations that
calculates a new round key from the previous one. The initial round key, K0, is
equal to K. Each of the following round keys (i.e. K1, K1. . .KRmax

) is derived
from the previous one.

Algorithm 1 shows an aes DataEncryption implementation which has many
similarities with the official aes specifications [12]. In this algorithm 1, C is an
intermediate variable used to memorize the aes state throughout the encryption
process. The round counter, hereafter RC, is used as an index to select the corre-
sponding round key during each ARK transformation. Moreover, RC is compared

Fig. 2. emg impact on the microcontroller power supply during aes execution

to the total round number reference, Rmax, to end the iterative loop preceding
the final round.

Algorithm 1 An aes DataEncryption implementation with on-the-fly
keyscheduling.

C ←M

KRC ← K

C ← C ⊕KRC

for RC = 1 step 1 to Rmax − 1 do

C ← SB(C)
C ← SR(C)
C ← MC(C)
KRC ← KS(KRC , RC)
C ← C ⊕KRC

end for

C ← SB(C)
C ← SR(C)
KRC ← KS(KRC , RC)
C ← C ⊕KRC

According to the algorithm purposes and the circuit resources, various op-
tions for KeyExpansion implementation are possible. The KeyExpansion may
be executed only one time after a circuit reset or at the beginning of algorithm
execution. Thus, the calculated round keys must be stored in the memory for any
further encryption. The opposite solution is to calculate the round keys on-the-
fly for each encryption. The proposed aes implementation, shown as algorithm
1 calculates each round key on-the-fly at its corresponding round.

A significant part of aes algorithm strength against cryptanalysis is based on
its repeated rounds. Any modification in the number of aes rounds may reduce
the cipher’s security [10]. This kind of attacks was previously reported in some
research experiments. We refer the readers to the next subsection.

4.2 Previous Round Modification Analysis Attacks

In 2005, H. Choukri and M. Tunstall reported in [8] the shortening of the aes

execution to only one round (after the initial round) by fault injection and thus
finding the key. [10] illustrated that it is also possible to increase or to alter the
aes rounds by fault injection and then to discover the key.

Round Modification Analysis principle is based on decreasing or increasing
the number of rounds or altering their execution in an algorithm in order to
facilitate subsequent cryptanalysis [10]. For instance, let’s consider an attack
that makes a jump, after executing a few instructions or the first round at
the beginning of algorithm, to its end. The remaining encryption processes are
thus skipped. Therefore, the final ciphertext is the product of fewer algorithm

processes that may reveal the key more easily. Besides, an attack that adds or
removes only one or two rounds of a normal encryption may permit a differential
analysis by using unmodified encryptions as the reference.

Notation: In the following, we use the “R” prefix plus the round number to
refer to the transformations involved in an aes round. Hence, R0-R1-R2-R3-R4-
R5-R6-R7-R8-R9-R10, or shortly R0. . .R10, represents the rounds of a complete
(i.e. unmodified) aes. “Mi” represents the aes intermediate state at the end of
round i. We use Rm=j to express that, due to a fault, a round composed of the
ARK ◦ MC ◦ SR ◦ SB transformations (where “m” stands for middle round) is using
an incorrect round key of index j. Note that j may be higher than the number of
rounds. Rf=j has the same meaning for a round without the MC transformation
(“f” stands for final round).

Here, we present briefly the state-of-the-art of previous Round Modification
Attacks on aes:

H. Choukri and M. Tunstall’s Attack They showed in [8] that a transient
glitch on the power supply of a microcontroller may change the RC value of
an iterative cipher. If the opponent changes the RC of an aes program at the
beginning of algorithm execution to its final value, the ciphertext will be the
product of a single executed round (plus the initial round): R0-Rm or R0-Rf

(according to the notation introduced in section 4.1).

Thus, the cryptanalysis of this very short encryption process does not cor-
respond anymore to the complexity of a correct aes execution that includes 10
rounds. [8] introduced a cryptanalysis technique that makes it possible to re-
trieve the secret key. This technique obtains eq. 1 by xoring two faulty outputs,
Da and Db (Ma and M b being the corresponding plaintexts):

MC−1(Da
⊕Db) = SB(Ma

⊕K)⊕ SB(M b
⊕K) (1)

For every key byte, Eq. 1 yields two different hypotheses. Finally, an exhaus-
tive search over the 216 possible keys is made to retrieve the secret key. Note that
this cryptanalysis does not require any knowledge of the correct encryptions for
Ma and M b.

J.H. Park et al.’s Attack They reported in [13] a laser fault injection on an
atmega128 8-bit microcontroller which embeds an aes. The algorithm imple-
mentation is compliant with the algorithm structure proposed in [12].

They described a successful attack that consists in jumping from R1 to R10.
The faulty execution path is R0-R1-R10. Therefore, an additional round is exe-
cuted in comparison to [8] that includes only R0-Rm (or R0-Rf).

The associated cryptanalysis requires data from ten different reduced encryp-
tions. Calculations involve four steps of exhaustive search of 240, 232, 224, and
232 steps respectively. This takes approximately ten hours on a pc.

K.S. Bae et al.’s Attack They presented in [3] a successful attack by elimi-
nating the aes penultimate round. The encryption includes R0. . .R8-R10. This
attack is done by laser fault injection on an atmega128 8-bit microcontroller
which embeds an aes. The key is revealed using two pairs of corresponding
faulty and correct ciphertexts and then an exhaustive search between the two
candidates for each key byte. Therefore, the cryptanalysis needs finding a key
between 216 values which has a computational complexity similar to the attack
reported by H. Choukri and M. Tunstall.

J.M. Dutertre et al.’s Attack They showed in [10] three laser fault injection
attacks, targeting either the round counter or the total round number reference
of an aes. The first attack reduces the aes penultimate round and executes a
9-round aes. The second attack is based on the alteration of the round index
during the penultimate and the final rounds. It changes the round key values in
AddRoundKey but does not change the total number of executed rounds. There-
fore, the encryption uses corrupted keys at the penultimate and at the final
rounds. The key is revealed by using a differential analysis over three pairs of
corresponding faulty and correct ciphertexts.

In their third experiment, they reported a Round Addition attack by target-
ing the total round number reference. The encryption performs R0. . .R9-Rm=10-
Rf=11. It uses the correct K10 for the 10th intermediate round. Nevertheless, the
final AddRoundKey is performed using a block of unknown values as Kf=11. The
attack is exploited by using three pairs of corresponding faulty and correct ci-
phertexts through a differential analysis.

These attacks are reported successful on a 8-bit 0.35 µm riscmicrocontroller.
[10] proposed to expand the category of “Round Reduction” in the Fault Attacks
into “Round Modification Analysis” which covers a larger domain of algorithm
modification attacks, by including the “Round Addition” and the “Round Al-
teration”.

4.3 Our Proposed Round Addition Attack

In the third Dutertre et al.’s attack, reported in [10], injecting a fault equal to
0x01 into Rmax, at anytime before the end of R9, lengthens the intermediate
rounds by one round. Therefore a total of 11 rounds is executed. This attack
was performed by a surgical laser fault injection to an algorithm almost similar
to algorithm 1 (but with pre-calculated round keys). In our research, presented
in this paper, we examined the feasibility of a similar Round Addition attack on
the aes by an em glitch.

To meet this requirement, a solution may be an emg attack on the RC

incrementation instruction at the end of R9. Therefore, the RC incrementation
instruction may be skipped, due to the emg effect on the mcu. Thus, RC value
remains 9 and another intermediate round, denoted R′

9, is executed.

In an aes implementation, similar to the Algorithm 1, each round key is
calculated on-the-fly at its corresponding round. The KeyScheduling process is
a function of the previous round key and the current index of the RC. Therefore,
for the redundant R′

m=9, a new round key (i.e. K ′

9) is derived from the previous
one, i.e. K9. In the same way, another invalid key value is derived from K ′

9 for
the Rf=10, denoted as K ′

10.

Finally, the encryption sequence may be: R0-R1. . .R9-R
′

9-R
′

10, including a
total of 11 executed rounds. In this case, the success of the attack requires a
differential cryptanalysis distinct from the technique reported in [10].

In the aes algorithm, each middle round is composed of the ARK◦MC◦SR◦SB
transformations. The final round does not include the MixColumns transforma-
tion. For the ease of writing the equations, we denote the final round transfor-
mations before the ARK by the FinalRound or the FR operation, described in Eq.
2:

FR[Mi+1] = SR ◦ SB[Mi] (2)

We also denote the middle round transformations before the ARK by the MiddleRound
or the MR operation, described in eq. 3:

MR[Mi+1] = MC ◦ SR ◦ SB[Mi] (3)

The cryptanalysis of our proposed attack scheme requires only two pairs of
correct and faulty ciphertexts (Ca,Da), (Cb,Db). Considering two pairs of cor-
responding faulty and correct encryptions, we have:

Ca = FR[Ma
9]⊕K10 (4)

Cb = FR[M b
9]⊕K10 (5)

Da = FR[MR[Ma
9]⊕K ′

9]⊕K ′

10 (6)

Db = FR[MR[M b
9]⊕K ′

9]⊕K ′

10 (7)

By combining Eq. 4 and 5, and with an extra MC operation, we get :

MR[Ma
9]⊕ MR[M b

9] = MC[Ca
⊕ Cb] (8)

In a similar way, by combining Eq. 6 and 7, we get Eq. 9 where K ′

9 is removed:

FR−1[Da
⊕K ′

10]⊕ FR−1[Db
⊕K ′

10] = MR[Ma
9]⊕ MR[M b

9] (9)

Then by combining Eq. 8 and 9 we obtain :

FR−1[Da
⊕K ′

10]⊕ FR−1[Db
⊕K ′

10] = MC[Ca
⊕ Cb] (10)

Since Ca, Cb, Da and Db are known values, Eq. 10 can be resolved by per-
forming an exhaustive search over each of K ′

10 byte. This exhaustive search leads
to 2 hypotheses for each of K ′

10 bytes. K ′

10 and K ′

9 are calculated using a cor-
rect, but redundant sequence of KeyScheduling. So, a second exhaustive search
among 216 whole-key hypotheses is necessary in order to obtain a unique value
for each byte of K ′

10. Therefore, K
′

9 and consequently K are recovered by simply
putting K ′

10 through the inverse of KeyScheduling.

5 Experimental Results

In this section we describe a practical emg injection into the instruction corre-
sponding to the aes round counter incrementation. It results in the execution
of a second 9th round denoted R′

9 (as described in the previous section).

5.1 Experimental Outline

A software version of the aes algorithm has been implemented on the microcon-
troller. This version provides aes subroutines with an “on-the-fly” KeyScheduling.
The encryption process is written in C code. Its structure is given in Algorithm
1. We compile this source code using Keil mdk-arm toolchain.

To monitor our microcontroller and our injection bench, we used a com-
puter application. This application communicates with our microcontroller by
using a Serial Wire Debug (swd) interface. This interface is a non-intrusive 2-
pin alternative jtag debug interface [1]. The experimental process used for our
experiments is described in algorithm 2.

The position of the probe on the top of the circuit’s surface, influences the
fault occurrence rate. We define the probe position by using a simple trial and
error empirical method.

Algorithm 2 Experimental process

Set the relative position of the antenna on top of the surface of the package
Define a time interval [tmin;tmax] to inject the emg

Initialize the pulse generator
Define a time step ∆t

Initialize a random fixed key and plaintext
for t = tmin step ∆t to tmax do

microcontroller reset()
launch AES()
send pulse with delay(t)
sleep(100ms)
microcontroller stop()
results = microcontroller get status()
print and store(results)

end for

The microcontroller get status() function at the end of the aes com-
putation displays the registers’ values, the 16-byte ciphertext’s value and the
interrupt status flags.

For our experiments, we used a 100ps ∆t resolution. The sleep (100ms) en-
ables us to be sure that the encryption will be finished when the microcontroller
is stopped. After 100ms, we know that the microcontroller is in one of the fol-
lowing states :

– Running the infinite loop at the end of the aes computation
– Running the infinite loop of an interrupt (as detailed in section 3.2)
– Crashed

5.2 Results

Our aim was to disrupt the instruction that increments the round counter. Thus,
we targeted a 500ns time interval between the 9th and the 10th rounds of the aes
computation. For each encryption, we changed the pulse injection time. During
the experiment, the emg injection time spanned the entire time interval, from
the beginning to the end, by steps of 100ps.

For each of these time steps, 100 encryptions of the same key and plaintext
were carried out. The different types of emg impacts in this experiment are
reported in Fig. 3. Due to the large number of samples we got, we decided to
plot a 5ns interval. We chose a time interval during which the aes round counter
was faulted.

At the beginning of the experimental process, we performed a first calibration
step. This first execution enabled us to get the normal internal register and
output values without any emg injection. In Fig. 3-a, we got a fault when the
output value was different from the one from our calibration execution. The y-
axis of Fig. 3-a represents the values of internal registers (r0-r12, sp, lr, pc,
xpsr) and the final value of the round counter (rc=10). On this figure, green
squares represent faults on the internal registers while red squares represent
faults on the round counter.

Some of the faulted values mentioned on the graph are actually artifacts of
our experiments, due to our experimental process. In the case that an interrupt
subroutine is called, many registers are changed in the new stack frame. Thus,
their values are different from the calibration execution. However, this is not
directly due to emg injection and cannot really be considered as a fault.

According to this timing cartography, our fault injection technique based on
emg injection close to a circuit enables to easily target the aes round counter in-
crementation instruction. More precisely we observed that the aes round counter
has been faulted for different injection times, but in a very small time interval
[17.2ns -18.8ns]. We also observed that, in the event that no interrupt is raised,
the internal cpu register r3 was the only corrupted value.

Figure 3-b reports the fault occurrence rate as a function of time. As we can
observe, a curve that seems to look like a gaussian curve is obtained. This curve is

centered around the interval in which the aes round counter was corrupted. The
gaussian peak’s center corresponds to the interval’s center. For a time interval,
the fault occurrence rate is equal to 100%.

Fig. 3. Timing cartography of the emg effect on the microcontroller

Figure 3-c reports the timing interval where the microcontroller was able to
detect the emg and then raises its associated interrupt. In our case, the “Bus
fault” exception was the only one triggered during our experiment. This ex-
ception indicates that a fault for an instruction or data memory transaction is
detected. As we can observe, the interrupts were localized in [16.9ns -17.8ns].
Considering the time interval [17.9ns -18.8ns], we were able to perform the pro-
posed attack without being detected by the microcontroller.

As we lack information about the microcontroller’s design, it is very tough for
us to precisely know the impact of the emg inside the microcontroller. However,
at a macroscopic level, we are able to sort the impacts into :

– Nothing happens
– A fault is produced and an interrupt is raised: [16.9ns -17.8ns]
– A fault is produced, no interrupt is raised, an assembly instruction is skipped:

[17.9ns -18.8ns]

6 Conclusion

In this paper we presented a new Round Addition attack on a software imple-
mentation of the Advanced Encryption Standard (aes) algorithm. The proposed
attack consists in targeting the round counter RC in order to induce the exe-
cution of a second penultimate round. The fault is induced at the end of the
penultimate round during the incrementation of RC. emg injection enables us
to get effects that are equivalent, at a macroscopic level, to an instruction skip
with a high occurrence rate and without triggering hardware interrupts. The
proposed attack is achieved by skipping the counter increment instruction. As a
result the faulty aes executes 11 rounds and enables us to recover the encryption
key with only two pairs of corresponding correct and faulty ciphertexts.

Future works: According to our experimental results and at a macroscopic level,
this instruction skip fault model was used to describe an attack model. However,
the faults induced by emg injection are probably more complex than an instruc-
tion skip and our fault model can be completed by using future experimental
results. For further studies, we will also try to improve the way we choose our
probe position.

Acknowledgment

This work was funded by the emaiseci Project (anr-10-segi-0012).

References

1. ARM. arm debug interface v5.
2. ARM. Documentation about cortex-m3 processors.
3. K.S. Bae, S.J. Moon, D.H. Choi, Y.J. Choi, D. Choi, and J.C. Ha. Differential

fault analysis on aes by round reduction. In Proceedings of ICCIT’2011, pages
607–612. ieee, 2011.

4. Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth and
black-box characterization of the effects of clock glitches on 8-bit mcus. In Pro-

ceedings of FDTC’2011, pages 105 –114, 2011.
5. A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injection attacks on

cryptographic devices: Theory, practice, and countermeasures. Proceedings of the

IEEE, 2012.
6. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.

In Proceedings of CRYPTO’1997, volume 1294 of lncs, pages 513–525. Springer-
Verlag, 1997.

7. Dan Boneh, Richard DeMillo, and Richard Lipton. On the importance of checking
cryptographic protocols for faults. In Proceedings of EuroCrypt 1997, volume 1233
of lncs, pages 37–51. Springer-Verlag, 1997.

8. Hamid Choukri and Michael Tunstall. Round reduction using faults. Proceedings

of FDTC’2005, pages 13–24, 2005.
9. A. Dehbaoui, J.M. Dutertre, B. Robisson, and A. Tria. Electromagnetic transient

faults injection on a hardware and a software implementations of aes. In Proceed-

ings of FDTC’2012, pages 7–15. IEEE, 2012.
10. J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria, and

T. Vaschalde. Fault round modification analysis of the advanced encryption stan-
dard. In Proceedings of HOST’2012. IEEE, 2012.

11. Chong Kim and Jean-Jacques Quisquater. Fault attacks for crt based rsa: New
attacks, new results, and new countermeasures. In Proceedings of WISTP’2007,
volume 4462 of LNCS, pages 215–228. Springer Berlin / Heidelberg, 2007.

12. NIST. Announcing the Advanced Encryption Standard (aes). Federal Information
Processing Standards Publication, n. 197, November 26, 2001.

13. JeaHoon Park, SangJae Moon, DooHo Choi, YouSung Kung, and JaeCheol Ha.
Differential fault analysis for round-reduced aes by fault injection. etri Journal,
33(3):434–442, 2011.

14. F. Poucheret, K. Tobich, M. Lisart, B. Robisson, L. Chusseau, and P. Maurine.
Local and direct em injection of power into cmos integrated circuits. In Proceedings

of FDTC’2011. IEEE, 2011.
15. Jean-Jacques Quisquater and David Samyde. Eddy current for Magnetic Analysis

with Active Sensor. In Proceedings of Esmart’2002, 2002.
16. J-M Schmidt and C Herbst. A practical fault attack on square and multiply. In

Proceedings of FDTC’2008, pages 53–58, 2008.
17. Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks on crt-based

rsa: Concrete results. In Proceedings of Austrochip’2007, pages 61–67. Verlag der
Technischen Universität, 2007.

	Electromagnetic Glitch on the AES Round Counter

