
HAL Id: emse-00851924
https://hal-emse.ccsd.cnrs.fr/emse-00851924

Submitted on 16 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graphical Algorithm for Solving an Investment
Optimization Problem

Evgeny R. Gafarov, Alexandre Dolgui, Alexander Lazarev, Frank Werner

To cite this version:
Evgeny R. Gafarov, Alexandre Dolgui, Alexander Lazarev, Frank Werner. A Graphical Algorithm for
Solving an Investment Optimization Problem. Multidisciplinary International Conference on Schedul-
ing: Theory and Applications (MISTA 2013), Aug 2013, Ghent, Belgium. 27p. �emse-00851924�

https://hal-emse.ccsd.cnrs.fr/emse-00851924
https://hal.archives-ouvertes.fr

MISTA 2013 manuscript No.
(will be inserted by the editor)

A Graphical Algorithm for Solving an Investment
Optimization Problem

Evgeny R. Gafarov · Alexandre Dolgui ·
Alexander A. Lazarev · Frank Werner.

the date of receipt and acceptance should be inserted later

Abstract In this paper, a graphical algorithm (GrA) is presented for an investment

optimization problem. This algorithm is based on the same Bellman equations as the

best known dynamic programming algorithm (DPA) for the problem but the GrA has

several advantages in comparison with the DPA. Based on this GrA, a fully-polynomial

time approximation scheme is proposed having the best known running time. The idea

of the GrA presented can also be used to solve some similar scheduling or lot-sizing

problems in a more effective way.

1 Introduction

The Project Investment Problem can be formulated as follows. A set N of n potential

projects and an investment budget (amount) A > 0, A ∈ Z, are given. For each

project j, j = 1, . . . , n, a profit function fj(x), x ∈ [0, A], is given, where the value

fj(x
′) denotes the profit received if the amount x′ is invested into the project j. The

objective is to determine an amount xj ∈ [0, A], xj ∈ Z, for each project j ∈ N such

that
∑n
j:=1 xj ≤ A and the total profit

∑n
j:=1 fj(xj) is maximized.

E.R. Gafarov
Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997
Moscow, Russia
E-mail: axel73@mail.ru

A. Dolgui
Ecole Nationale Superieure des Mines, CNRS UMR6158, LIMOS, F-42023 Saint-Etienne,
France
E-mail: dolgui@emse.fr

A.A. Lazarev
Lomonosov Moscow State University, Higher School of Economics (National Research Univer-
sity), Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65,
117997 Moscow, Russia,
E-mail: jobmath@mail.ru

F. Werner
Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magde-
burg, Germany,
E-mail: frank.werner@ovgu.de

2

In this paper, we deal with piecewise linear functions fj(x). Suppose that the

interval [0, A] can be written as

[0, A] = [t0j , t
1
j]
⋃

(t1j , t
2
j]
⋃

. . .
⋃

(tk−1j , tkj]
⋃

. . .
⋃

(t
kj−1
j , t

kj
j]

such that the profit function has the form fj(x) = bkj + ukj (x− tk−1j), if x ∈ (tk−1j , tkj],

where k is the number of the interval, bjk is the value of the function at the beginning

of the interval, and ukj is the slope of the function. Without loss of generality, assume

that b1j ≤ b2j ≤ . . . ≤ b
kj
j and tkj ∈ Z, j ∈ N, k = 1, 2, . . . , kj , and that t

kj
j = A, j =

1, 2, . . . , n.

A special case of this problem is similar to the well-known bounded knapsack

problem:
maximize

∑n
j:=1 pjxj

s.t.
∑n
j:=1 wjxj ≤ A,

xj ∈ [0, bj], xj ∈ Z, j = 1, 2, . . . , n,

(1)

for which a dynamic programming algorithm (DPA) of time complexityO(nA) is known

[3].

The following problem is also similar to the problem under consideration:

minimize
∑n
j:=1 fj(xj)

s.t.
∑n
j:=1 xj ≥ A,

xj ∈ [0, A], xj ∈ Z, j = 1, 2, . . . , n,

(2)

where fj(xj) are piecewise linear as well. For this problem, a DPA with a running time

of O(
∑
kjA) [4] and a fully polynomial-time approximation scheme (FPTAS) with a

running time of O((
∑
kj)

3/ε) [5] are known.

In this paper, we present an alternative solution algorithm with a running time

of O(
∑
kjA) and an FPTAS based on this solution algorithm with a running time of

O(
∑
kjn log log n/ε).

The remainder of the paper is as follows. In Section 2, we present the Bellman

equations to solve the problem under consideration. In Section 3, a graphical algorithm

(GrA) based on an idea from [1] is presented. In Section 4, an FPTAS based on this

GrA is derived.

2 Dynamic programming algorithm

In this section, we present a DPA for the problem considered. For any project j and

any state t ∈ [0, A], we define Fj(t) as the maximal profit incurred for the projects

1, 2, . . . , j, when the remaining budget available for the projects j + 1, j + 2, . . . , n is

equal to t. Thus, we have:

Fj(t) = max
∑j
h:=1 fh(xh)

s.t.
∑j
h:=1 xh ≤ A− t,

xh ≥ 0, xh ∈ Z, h = 1, 2, . . . , j.

(3)

We define Fj(t) = 0 for t /∈ [0, A]. Then we have the following recursive equations:

3

Fj(t) = maxx∈[0,A−t]{fj(x) + Fj−1(t+ x)}

= max
1≤k≤kj

max
x∈(tk−1

j ,tkj]
⋂
[0,A−t]

{bkj − u
k
j t
k−1
j + ukj · x+ Fj−1(t+ x)},

j = 1, 2, . . . , n.

(4)

Lemma 1 All functions Fj(t), j = 1, 2, . . . , n, are non-increasing on the interval

[0, A].

The proof of this lemma immediately follows from the definition of the functions Fj(t).

The running time of the DPA using such a type of Bellman equations is O(
∑
kjA)

if we use an idea from [4].

3 Graphical algorithm

In this section, we present a GrA which constructs the functions Fj(t), j = 1, 2, . . . , n,

in a more effective way in comparison with the DPA. Below we prove that the functions

Fj(t), j = 1, 2, . . . , n, constructed in the GrA are piecewise linear (see Lemma 4).

Any piecewise linear function ϕ(x) considered in this paper can be defined by three

sets of numbers: a set of break points I (at each break point, a new linear segment of

the piecewise linear function begins), a set of slopes U and a set of values of the function

at the beginning of the interval B. Let the notation I[k] denote the k-th element in

the ordered set I. The same notations will be used for the sets U and B as well. The

notation ϕ.I[k] denotes the k-th element of the set I of the function ϕ(x). Then, for

example, for x ∈ (tk−1j , tkj] = (fj .I[k − 1], fj .I[k]], we have

fj(x) = fj .B[k] + fj .U [k](x− fj .I[k − 1]).

Note that

ϕ.I[k] < ϕ.I[k + 1], k = 1, . . . , |ϕ.I| − 1 and kj = |fj .I|.

In each step j, j = 1, 2, . . . , n, of the subsequent algorithm, the temporary piecewise lin-

ear functions Ψ ij and Φij are constructed. Recall that the functions Fj(t), j = 1, 2, . . . , n,

constructed in the GrA are piecewise linear as well. For t ∈ Z, their values are equal

to the values of the functions Fj(t) considered in the DPA.

Let ϕ.I[−1] = 0 and ϕ.I[|ϕ.I|+ 1] = A. Remind that ϕ.I[|ϕ.I|] = A.

The points t ∈ ϕ.I and the other end points of the intervals with the piecewise linear

functions considered in this article will be called break points. To construct a function

in the GrA means to compute their sets I, U and B.

Graphical algorithm

1. Let F0(t) = 0, i.e., F0.I := {A}, F0.U := {0}, F0.B := {0};
2. FOR j := 1 TO n DO

2.1. FOR k := 1 TO kj DO

2.1.1. Construct the temporary function

Ψkj (t) = fj .B[k]− fj .U [k] · fj .I[k − 1] + fj .U [k] · t+ Fj−1(t)

according to Procedure 2.1.1.;

4

2.1.2. Construct the temporary function

Φkj (t) = max
x∈(fj .I[k−1],fj .I[k]]

⋂
[0,A−t]

{Ψkj (t+ x)− fj .U [k] · t}

according to Procedure 2.1.2.;

2.1.3. IF k = 1 THEN F kj (t) := Φkj (t) ELSE F kj (t) := max{F k−1j (t), Φkj (t)}.
2.2. Fj(t) := F

kj
j (t). Modify the sets I, U,B of the function Fj(t) according to

Procedure 2.2.

3. The optimal objective function value is equal to Fn(0).

Procedure 2.1.1.

Given are k and j;

Ψkj .I = ∅, Ψkj .U = ∅ and Ψkj .B = ∅.
FOR i := 1 TO |Fj−1.I| DO

add the value Fj−1.I[i] to the set Ψkj .I;

add the value

fj .B[k]− fj .U [k] · fj .I[k − 1] + fj .U [k] · Fj−1.I[i] + Fj−1.B[i]

to the set Ψkj .B;

add the value fj .U [k] + Fj−1.U [i] to the set Ψkj .U ;

In Procedure 2.1.1., we shift the function Fj−1(t) up by the value fj .B[k] − fj .U [k] ·
fj .I[k − 1] and increase all slopes in its diagram by fj .U [k]. If all values t ∈ Fj−1.I
are integer, then all values from the set Ψ ij .I are integer as well. It is obvious that

Procedure 2.1.1. can be performed in O(|Fj−1.I|) time.

Before describing Procedure 2.1.2., we present Procedure FindMax in which the

maximum function ϕ(t) of two linear fragments ϕ1(t) and ϕ2(t) is constructed.

Procedure FindMax

1. Given are the functions ϕ1(t) = b1 + u1 · t and ϕ2(t) = b2 + u2 · t and an interval

(t′, t′′]. Let u1 ≤ u2;

2. IF t′′− t′ ≤ 1 THEN RETURN ϕ(t) = max{ϕ1(t′′), ϕ2(t′′)} defined on the interval

(t′, t′′];
3. Find the intersection point t∗ of ϕ1(t) and ϕ2(t);

4. IF t∗ does not exist OR t∗ /∈ (t′, t′′] THEN

IF b1+u1 ·t′ > b2+u2 ·t′ THEN RETURN ϕ(t) = ϕ1(t) defined on the interval

(t′, t′′];
ELSE RETURN ϕ(t) = ϕ2(t) defined on the interval (t′, t′′];

5. ELSE

IF t∗ ∈ Z THEN

ϕ(t) := ϕ1(t) on the interval (t′, t∗];
ϕ(t) := ϕ2(t) on the interval (t∗, t′′];
RETURN ϕ(t);

ELSE IF t∗ /∈ Z THEN

ϕ(t) := ϕ1(t) on the interval (t′, bt∗c];
ϕ(t) := b2 + u2 · bt∗c on the interval (bt∗c − 1, bt∗c];
ϕ(t) := ϕ2(t) on the interval (bt∗c, t′′];

5

RETURN ϕ(t);

If both points t′ and t′′ are integer, then ϕ.I contains only integer break points t. The

running time of Procedure FindMax is constant.

In Procedure 2.1.2., we do the following. When we shift s′ to the right, we shift the

interval T ′ = [tleft, tright] of the length fj .I[k]− fj .I[k− 1]. We have to use the values

Ψkj (x) for x ∈ T ′ to calculate Φkj (t) at the point t = s′. Since Ψkj (x) is piecewise linear,

it is only necessary to consider the values Ψkj (x) at the break points belonging to T ′

and at the end points of the interval T ′. So, if we shift s′ to the right by a small value

x ∈ [0, ε] such that all the break points remain the same, then the value Φkj (t) will be

changed according to the value ϕmax(x).

So, in cycle [2.1.2.5], we shift s′ to the right. In steps [2.1.2.6]-[2.1.2.8], we look for

the first and the last break point belonging to the current interval T ′. For these two

break points found and the best found break point with an index s ∈ {v, v+ 1, . . . , w}
(step [2.1.2.14]), we construct the functions ϕleft(x), ϕright(x), ϕinner(x) and their

maximum function ϕmax(x) (see steps [2.1.2.15]-[2.1.2.18]) according to which the

value Φkj (t) is changed when we shift s′ to the right by a small value x ∈ [0, ε]. In steps

[2.1.2.19]-[2.1.2.23], we construct the function Φkj (t) based on the function ϕmax(x).

Procedure 2.1.2.

2.1.2.1. Given are k, j and Ψkj (t);

2.1.2.2. Φkj .I := ∅, Φkj .U := ∅ and Φkj .B := ∅;
2.1.2.3. s′ := 0, tleft := s′ + fj .I[k − 1], tright := min{s′ + fj .I[k], A};
2.1.2.4. Let T ′ = {Ψkj .I[v], Ψkj .I[v + 1], . . . , Ψkj .I[w]} be the maximal subset of Ψkj .I,

where tleft < Ψkj .I[v] < . . . < Ψkj .I[w] < tright,

Let T := {tleft}
⋃
T ′
⋃
{tright};

2.1.2.5. WHILE s′ ≤ A DO

2.1.2.6. IF T ′ = ∅ THEN let

w + 1 = argmaxi=1,2,...,|Ψk
j .I|
{Ψkj .I[i]|Ψkj .I[i] > tright}

and v = argmaxi=1,2,...,|Ψk
j .I|
{Ψkj .I[i]|Ψkj .I[i] > tleft};

2.1.2.7. IF w + 1 is not defined THEN let w + 1 = |Ψkj .I|;
2.1.2.8. IF v is not defined THEN let v = |Ψkj .I|;
2.1.2.9. IF tleft < A THEN εleft := Ψkj .I[v]− tleft ELSE εleft := A− s′;
2.1.2.10. IF tright < A THEN εright := Ψkj .I[w + 1]− tright ELSE εright := +∞;

2.1.2.11. ε := min{εleft, εright};
2.1.2.12. IF tleft < A THEN

bleft := Ψkj .B[v] + Ψkj .U [v] · (tleft − Ψkj .I[v − 1])− fj .U [k] · s′

ELSE bleft := 0;

2.1.2.13. IF tright < A THEN

bright := Ψkj .B[w + 1] + Ψkj .U [w + 1] · (tright − Ψkj .I[w])− fj .U [k] · s′

ELSE bright := 0;

2.1.2.14. IF T ′ = ∅ THEN binner := 0 ELSE

binner := max
s=v,v+1,...,w

{Ψkj .B[s] +Ψkj .U [s] · (Ψkj .I[s]−Ψkj .I[s−1])}− fj .U [k] · s′;

6

2.1.2.15. Denote function

ϕleft(x) := bleft − (fj .U [k]− Ψkj .U [v]) · x.

IF tleft = A THEN ϕleft(x) := 0;

2.1.2.16. Denote function

ϕright(x) := bright − (fj .U [k]− Ψkj .U [w + 1]) · x.

IF tright = A THEN ϕright(x) := 0;

2.1.2.17. Denote function

ϕinner(x) := binner − fj .U [k] · x.

IF T ′ = ∅ THEN ϕinner(x) := 0;

2.1.2.18. Construct the piecewise linear function

ϕmax(x) := max
x∈[0,ε]

{ϕleft(x), ϕright(x), ϕinner(x)}

according to Procedure FindMax;

2.1.2.19. add the values from ϕmax.I increased by s′ to the set Φkj .I;

2.1.2.20. add the values from ϕmax.B to the set Φkj .B;

2.1.2.21. add the values from ϕmax.U to the set Φkj .U ;

2.1.2.22. IF ε = εleft THEN exclude Ψkj .I[v] from the set T and v := v + 1;

2.1.2.23. IF ε = εright THEN include Ψkj .I[w + 1] to the set T and w := w + 1;

2.1.2.24. s′ := s′ + ε.

2.1.2.25. tleft := s′ + fj .I[k − 1], tright := min{s′ + fj .I[k], A};
2.1.2.26. Modify the function Φkj according to Procedure 2.2.

Lemma 2 Procedure 2.1.2. has a running time of O(|Fj−1.I|).

Proof. Step [2.1.2.14] has to be performed with the use of a simple data structure. Let

{q1, q2, . . . , qr} be a maximal subset of T ′ having the following properties:

q1 < q2 < . . . < qr;

there is no j ∈ T ′ such that qi ≤ j < qi+1 and

Ψ ij .B[j] ≥ Ψ ij .B[qi+1], i = 1, . . . , r − 1.

We can keep track of the set {q1, q2, . . . , qr} by storing its elements in increasing

order in a Queue Stack, i.e., a list with the property that elements at the beginning

can only be deleted while at the end, elements can be deleted and added [2]. This data

structure can easily be implemented such that each deletion and each addition requires

a constant time. So, step [2.1.2.14] can be performed in constant time.

Each of the steps [2.1.2.6]–[2.1.2.25] can be performed in constant time. The loop

[2.1.2.5.] can be performed in O(|Ψkj .I|) time, where |Ψkj .I| = |Fj−1(t).I|, since each

time a break point from |Ψkj .I| is added or deleted. So, the lemma is true. �
We remind that in the DPA, the functional equations (4) are considered. In fact,

in Procedure 2.1.1., we construct the function

bkj − u
k
j t
k−1
j + ukj · (t+ x) + Fj−1(t+ x)

7

and in Procedure 2.1.2., we construct the function

Φkj (t) = max
x∈(tk−1

j ,tkj]
⋂
[0,A−t]

{bkj − u
k
j t
k−1
j + ukj · (t+ x)− ukj · t+ Fj−1(t+ x)}.

Unlike the DPA, to construct Φkj (t) in the GrA, we do not consider all integer points

x ∈ (tk−1j , tkj]
⋂

[0, A−t], but only the break points from the interval, since only they in-

fluence the values of Φkj (t) (and in addition tleft, tright). Step [2.1.3.] can be performed

according to Procedure FindMax as well, i.e., to construct Fj(t) := max{Fj(t), Φij(t)},
their linear fragments have to be compared in each interval, organized by their break

points. It is easy to see that we do the same operation with the integer points t as in

the DPA. So, the values Fj(t), t ∈ Z, are the same for the GrA and the DPA, and we

can state the following:

Lemma 3 The values Fj(t), j = 1, 2, . . . , n, at the points t ∈ [0, A]
⋂
Z are equal to

the values of the functions Fj(t) considered in the DPA.

Procedure 2.2.

Given is Fj(t);

FOR k := 1 TO |Fj .I| − 1 DO

IF Fj .U [k] = Fj .U [k + 1] AND Fj .U [k] · (Fj .U [k] − Fj .U [k − 1]) + Fj .B[k] =

Fj .B[k + 1] THEN

Fj .B[k + 1] := Fj .B[k];

Delete the kth elements from Fj .B, Fj .U and Fj .I;

So, in Procedure 2.2., we combine two adjoining linear fragments that are in the same

line. That means that, if we have two adjacent linear fragments which are described

by the values (slopes) Fj .U [k], Fj .U [k + 1] and Fj .B[k], Fj .B[k + 1], where

Fj .U [k] · (Fj .U [k]− Fj .U [k − 1]) + Fj .B[k] = Fj .B[k + 1],

(i.e., these fragments are on the same line), then, to reduce the number of intervals

|Fj .I| and thus the running time of the algorithm, we can join these two intervals into

one interval.

Lemma 4 All functions F ij (t), j = 1, 2, . . . , n, i = 1, 2, . . . , kj , are piecewise linear

on the interval [0, A] with integer break points.

Proof. It is obvious that function F0(t) is piecewise linear on the interval [0, A]. In Pro-

cedure 2.1.1., all break points from the set Ψ i1.I are integer as well (see the comments

after Procedure 2.1.1.). Since all points from f1.I are integer, we have ε ∈ Z and as a

consequence, s′ ∈ Z. According to the Procedure FindMax, all points ϕmax.I consid-

ered in Procedure 2.1.2. are integer. So, all break points from Φi1.I, i = 1, 2, . . . , k1, are

integer as well. Thus, the break points of the function F i1(t) := max{F i−11 (t), Φi1(t)} are

integer, if we use Procedure FindMax to compute the function max{F i−11 (t), Φi1(t)}.
Analogously, we can prove that all break points of F i2(t), i = 1, 2, . . . , k2 are integer,

etc.

Thus, it is obvious that all functions F ij (t), j = 1, 2, . . . , n, i = 1, 2, . . . , kj , con-

structed in the GrA are piecewise linear. �

8

Theorem 1 The GrA finds an optimal solution of the problem in

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)
time.

Proof. Analogously to the proof of Lemma 4, after each step [2.1.3.] of the GrA,

the function F ij (t), j = 1, 2, . . . , n, i = 1, 2, . . . , kj , has only integer break points

from the interval [0, A]. Each function Φij .I, j = 1, 2, . . . , n, i = 1, 2, . . . , kj , has only

integer break points from [0, A] as well. So, to perform step [2.1.3.], we need to perform

Procedure FindMax on no more than A + 1 intervals. Thus, the running time of step

[2.1.3.] is O(A). According to Lemmas 1 and 2, the running time of steps [2.1.1.] and

[2.1.2.] is O(F ij .I), where F ij .I ≤ A. The running time of step [2.2.] is O(F ij .I) as well.

Analogously to the comments after the DPA, it is easy to show that F ij (t), j =

1, 2, . . . , n, is a non-increasing function in t. Thus,

F ij .B[k] ≥ F ij .B[k + 1], j = 1, 2, . . . , n, k = 1, 2, . . . , |F ij .I| − 1.

Then, according to Procedure 2.2., there are no more than 2 · F ij .B[0] different values

in the set F ij .I, where F ij .B[0] is the maximal value in the set F ij .B.

Thus, the running time of the GrA is

O

(∑
kj min{A, max

j=1,2,...,n, i=1,2,...,kj
{|F ij .B|}}

)
.

It is easy to show that this running time can be rewritten as

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)
.

�
In [9], we illustrate the idea of the GrA by means of a numerical example in more

detail.

4 An FPTAS based on the GrA

In this section, a fully polynomial-time approximation scheme (FPTAS) is derived

based on the GrA presented in Section 3.

Let LB = max
j=1,...,n

fj(A) be a lower bound and UB = n · LB be an upper bound

on the optimal objective function value.

The idea of the FPTAS is as follows. Let δ = εLB
n . To reduce the time complexity

of the GrA, we have to diminish the number of columns |Fj .B| considered, which

corresponds to the number of different objective function values b ∈ Fj .B, b ≤ UB. If

we do not consider the original values b ∈ Fj .B but the values b which are rounded

up or down to the nearest multiple of δ values b, there are no more than UB
δ = n2

ε
different values b. Then we will be able to approximate the function Fj(t) into a similar

function with no more than 2n
2

ε break points. Furthermore, for such a modified table

representing a function F j(t), we will have

|Fj(t)− Fj(t)| < δ ≤ εF (π∗)
n

.

9

If we do the rounding and modification after each step [2.2.], the cumulative error will

be no more than nδ ≤ εF (π∗), and the total running time of the n runs of the step

[2.2.] will be

O

(
n2
∑
kj

ε

)
,

i.e., an FPTAS is obtained.

In [7], a technique was proposed to improve the complexity of an approximation

algorithm for optimization problems. This technique can be described as follows. If

there exists an FPTAS for a problem with a running time bounded by a polynomial

P (L, 1ε ,
UB
LB), where L is the length of the problem instance and UB, LB are known

upper and lower bounds, and the value UB
LB is not bounded by a constant, then the

technique enables us to find in P (L, log log UB
LB) time values UB0 and LB0 such that

LB0 ≤ F ∗ ≤ UB0 < 3LB0,

i.e., UB0
LB0

is bounded by the constant 3. By using such values UB0 and LB0, the running

time of the FPTAS will be reduced to P (L, 1ε), where P is the same polynomial. So,

by using this technique, we can improve the FPTAS to have a running time of

O

(
n ·
∑
kj

ε
(1 + log logn)

)
.

A detailed description of an FPTAS based on a GrA for some single machine

scheduling problems was presented in [6]. In the following table these GrA and FPTAS

are summarized.

Table 1: Time complexity of the GrA and FPTAS based on the GrA

Problem Time complexity of the GrA Time complexity

of the FPTAS

Time com-

plexity of

the classi-

cal DPA

1||
∑
wjUj O(min{2n, n ·

min{dmax, Fopt}})
- O(ndmax)

1|dj = d′j +A|
∑
Uj O(n2) - O(n

∑
pj)

1||
∑
GTj O(min{2n, n · {dmax, nF ∗}}) O(n2 log log n +

n2

ε)

O(ndmax)

1||
∑
Tj special case

B − 1

O(min{2n, n ·min{dmax, F ∗}}) O(n2/ε) O(ndmax)

1||
∑
Tj special case

B − 1G

O(min{n2 ·min{dmax, F ∗}}) O(n3/ε) O(n2dmax)

1|dj = d|
∑
wjTj O(min{n2 ·min{d, F ∗}}) O(n3/ε) O(n2dmax)

1(no-

idle)||max
∑
wjTj

O(min{2n, n ·
min{dmax, F ∗,

∑
wj}})

O(n2 log log n +
n2

ε)

O(ndmax)

1(no-

idle)||max
∑
Tj

O(n2) - O(ndmax)

10

5 Concluding Remarks

In this paper, we used a graphical approach to improve a known pseudo-polynomial

algorithm for the Investment Optimization Problem and to derive a FPTAS with the

best known running time.

The graphical approach can be applied to problems, where a pseudo-polynomial

algorithm exists and Boolean variables are used in the sense that yes/no decisions

have to be made. However, for the knapsack problem, the graphical algorithm mostly

reduces substantially the number of states to be considered but the time complexity of

the algorithm remains pseudo-polynomial. For example, for the single machine problem

of maximizing total tardiness, the complexity of the graphical algorithm is O(n2),

while the complexity of the dynamic programming algorithm is O(n
∑
pj). Thus, the

graphical approach is not only of a practical but also of a theoretical importance.

References

1. A.A. Lazarev and F. Werner, A Graphical Realization of the Dynamic Programming
Method for Solving NP-hard Problems. Computers & Mathematics with Applications.
Vol. 58, No. 4, 2009, 619 – 631.

2. A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-
Wesley, London, 1983.

3. H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer-Verlag, Berlin,
2004.

4. D.X. Shaw and A. P. M. Wagelmans, An Algorithm for Single-Item Capacitated Eco-
nomic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs,
Management Science, Vol. 44, No. 6, 1998, 831–838.

5. S. Kameshwaran and Y. Narahari, Nonconvex Piecewise Linear Knapsack Problems, Eu-
ropean Journal of Operational Research, 192, 2009, 56–68.

6. E.R. Gafarov, A. Dolgui and F. Werner F.: Dynamic Programming Approach to Design
FPTAS for Single Machine Scheduling Problems, Research Report LIMOS UMR CNRS
6158, 2012.

7. S. Chubanov, M.Y. Kovalyov and E. Pesch, An FPTAS for a Single-Item Capacitated
Economic Lot-Sizing Problem with Monotone Cost Structure, Math. Program., Ser. A
106, 2006, 453 – 466.

8. K. Schmelev, X. Delorme, A. Dolgui, F. Grimaud and M.Y. Kovalev: Lot-Sizing on a
Single Machine, ILP Models (submitted in May 2012).

9. E.R. Gafarov, A.A. Lazarev, A. Dolgui and F. Werner, An Improved Graphical Approach
for an Investment Optimization Problem: Algorithm and a Numerical Example, Preprint
02/13, FMA, Otto-von-Guericke-Universität Magdeburg, 2013, 20 pages.

