
HAL Id: emse-00871218
https://hal-emse.ccsd.cnrs.fr/emse-00871218v2

Submitted on 25 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electromagnetic fault injection: towards a fault model
on a 32-bit microcontroller

Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
Emmanuelle Encrenaz

To cite this version:
Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, Emmanuelle Encrenaz. Electro-
magnetic fault injection: towards a fault model on a 32-bit microcontroller. 10th workshop on Fault
Diagnosis and Tolerance in Cryptography - FDTC 2013, Aug 2013, Santa-Barbara, United States.
pp.77-88, �10.1109/FDTC.2013.9�. �emse-00871218v2�

https://hal-emse.ccsd.cnrs.fr/emse-00871218v2
https://hal.archives-ouvertes.fr

Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller

Nicolas Moro∗‡, Amine Dehbaoui†, Karine Heydemann‡, Bruno Robisson∗, Emmanuelle Encrenaz‡
∗Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Gardanne, France
Email: {nicolas.moro, bruno.robisson}@cea.fr

†École Nationale Supérieure des Mines de Saint-Étienne (ENSM.SE)
Gardanne, France

Email: amine.dehbaoui@mines-stetienne.fr
‡Laboratoire d’Informatique de Paris 6 (LIP6)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
Paris, France

Email: {nicolas.moro, karine.heydemann, emmanuelle.encrenaz}@lip6.fr

Abstract—Injection of transient faults as a way to attack
cryptographic implementations has been largely studied in
the last decade. Several attacks that use electromagnetic fault
injection against hardware or software architectures have
already been presented. On microcontrollers, electromagnetic
fault injection has mostly been seen as a way to skip assembly
instructions or subroutine calls. However, to the best of our
knowledge, no precise study about the impact of an electro-
magnetic glitch fault injection on a microcontroller has been
proposed yet. The aim of this paper is twofold: providing a
more in-depth study of the effects of electromagnetic glitch fault
injection on a state-of-the-art microcontroller and building an
associated register-transfer level fault model.

Keywords-microcontroller, timing fault, electromagnetic
glitch, fault attack, fault model

I. INTRODUCTION

Physical attacks aim at breaking cryptosystems by gaining
information from their implementation instead of using the-
oretical weaknesses. Those attack schemes were introduced
in the late 1990s. There are two main subclasses of physical
attacks: passive and active ones. In passive attacks, an
attacker uses the fact that some measurable data may leak
information about manipulated secret data such as cryp-
tographic keys. Physical quantities which can be used for
passive attacks include execution time [1], electromagnetic
radiations [2], power consumption [3] or light emissions [4].
In active attacks, an attacker modifies the circuit’s behaviour
in order to perform its attack scheme. Fault attacks are
a subset of active attacks in which an attacker injects a
transient fault in a circuit’s computation.

Faults attacks were introduced in 1997 by Boneh et al. [5].
They consist in modifying a circuit environment in order to

c© 2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistri-
bution to servers or lists, or reuse of any copyrighted component of this
work in other works.

change its behaviour or to induce faults into its computations
[6] [7] [8]. Many means are of common use to inject such
faults, especially laser shots [9] [10] [11], overclocking [12]
[13], chip underpowering [14] [15], temperature increase
[16] or electromagnetic glitches [10] [17].

There are three main subclasses of fault attacks: algo-
rithm modifications, safe error and differential fault analysis.
Algorithm modifications aim at skipping [18] or replacing
[13] some instructions executed by a microcontroller to
circumvent its security features. Safe-error attacks aim at
evaluating whether or not a fault injection has an impact
on the output [19]. Differential fault analysis (DFA) aims
at retrieving the keys used by an encryption algorithm by
comparing correct ciphertext and faulty ciphertexts (i.e. ci-
phertexts obtained from a faulted encryption). This technique
was first introduced for public key encryption algorithms [5],
and quicky extended to secret key algorithms [20].

From that time, many attack schemes have been proposed
to attack various encryption algorithms. They all rely on
an attacker’s fault model which defines the type of faults
the attacker can perform [21]. Thus, they require a high
accuracy in the fault injection process. If the faults are not
induced at the proper time in the algorithm, or affect the
wrong bits, the entire attack process fails. As a consequence,
the ability to precisely control the fault injection process is a
key element in carrying out any fault attack. Common fault
models include instruction skips [18], single bit faults or
single word faults [22].

In this work, we report the use of electromagnetic pulses
to induce faults into the computations of an up-to-date
microcontroller. We also report a study of the local effect
of electromagnetic pulses. Moreover, the underlying effects
behind common fault models are not always clearly under-
stood and may highly depend on the target architecture. As
a consequence, this work finally aims at defining a precise
fault model and providing an understanding of the faults an
electromagnetic glitch can induce on an embedded program.

The rest of this paper is organized as follows. Section II
introduces our fault injection experimental setup and details
the approach we use. Section III describes the influence of
some experimental parameters on injected faults. Section
IV details the effects of the injected faults on the program
flow and data flow. Finally, the resulting register-transfer
level fault model is presented in section V. Section VI gives
details about some related research papers.

II. APPROACH

This section starts by describing our experimental setup
choices in II-A. This experimental setup enables us to
provide the results presented in section III which show the
influence of the different experimental parameters. Then, we
detail the approach we use to precisely characterize the faults
we injected. This characterization method, which matches
experimental results obtained from the microcontroller with
simulation data, is detailed in II-B.

A. Experimental setup

1) Electromagnetic fault injection bench: The electro-
magnetic glitch fault injection platform shown in Fig. 1
is composed of a control computer, the target device, a
motorized stage, a pulse generator, and a magnetic antenna.
The target (described in II-A2) is mounted on the X Y
Z motorized stage. The computer controls both the pulse
generator (through a RS-232 link) and the target board
(through a USB link).

R
 S

-2
3
2

D
e
b
u
g
 v

ia
 U

S
B

Pulse

T
ri
g

g
e

r
s
ig

n
a

l

Pulse generator

Motorized
X Y Z stage

Control
computer

M
o

to
ri
z
e

d
 s

ta
g

e
 c

o
n

tr
o

l

Figure 1: Electromagnetic fault injection bench

The pulse generator is used to deliver voltage pulses to the
magnetic coil. It has a constant rise and fall transition time

of 2 ns. The amplitude range of the generated pulses extends
from −200 V to 200 V, their width extends from 10 ns to
200 ns. The magnetic antenna we use is composed of a few
turns with a diameter of 1 mm. We use it in order to disturb
a small part of the target device. This spatial accuracy is
possible thanks to a high accuracy X Y Z stage.

2) Target: The chosen target is an up-to-date 32-bit
microcontroller designed in a CMOS 130 nm technology.
It is based on the ARM Cortex-M3 processor [23]. Its
operating frequency is set to 56 MHz. This microcontroller
does not embed any cache memory.

Choice of target: The target we use is a state-of-the-
art microchip, based on a recent technology. ARM Cortex
processors are already very widespread for both mainstream
and secure microcontrollers. Although we did not choose a
smartcard version of the microcontroller, this target embeds
some basic security mechanisms against clock perturbations
and voltage glitches. Moreover, several interrupt vectors
have been defined which can handle some hardware faults
and can be used for a basic fault detection. Hence, we can
consider this target as reasonably secured against some of the
most common low-cost fault injection means. However, this
target does not embed any protective shield against reverse
engineering or electromagnetic injection. Since this research
aims at understanding the effects of fault injection on a
recent microcontroller, we do not work on a highly-secure
version of this microcontroller.

Instruction set: Cortex-M3 processors run the ARM
Thumb2 instruction set [24]. Thumb2 is actually the succes-
sor to both ARM and Thumb instruction sets, and contains
both 16-bit and 32-bit instructions.

Hardware interrupts: Several fault exceptions can
catch illegal memory accesses or illegal program be-
haviour. Those fault exceptions are Hard Fault, Bus
Fault, Usage Fault and Memory Management
Fault. Each of these exceptions can be triggered for several
subtypes of hardware faults. In the following experiments,
every exception handler function executes an infinite loop.

B. Experimental process

Working with a microcontroller in such a black-box ap-
proach requires to develop a specific experimental approach.
This approach aims at enabling us to deduce the effects of
faults by observing some internal data from the microcon-
troller. This observation must be done with a non-invasive
technique. Since a faults may have an impact on the program
flow and since we need to access some accurate data such as
registers or cycle count, the communication cannot be done
with a serial link. We use the JTAG-equivalent non-instrusive
SWD debug link to retrieve data from the microcontroller.
Besides, we also use the hardware exceptions defined in
II-A2 as a way to get some extra data about the injected
faults.

1) Microcontroller’s internal state observation: The ex-
perimental measurement process we use is the following:

• Reset the microcontroller
• Execute the target code
• Send a pulse to the injection antenna
• Interrupt the program execution
• Harvest the microcontroller’s internal data
The following paragraphs detail the important elements

of this experimental process.
Trigger window: In order to have a correct view of

the microcontroller’s internal data, we have created an as-
sembly subroutine containing some test instructions (which
will be detailed in section III). For our experiments, the
microcontroller sets a trigger signal for the electromagnetic
injection. With this technique, we can target the executed
program at the scale of a single instruction. By observing
the microcontroller’s clock during this trigger window, we
can focus the injection on a single clock cycle. Besides, the
pulse injection time is defined by reference to the beginning
of the trigger signal temporal window.

Watchpoint and program end: In this experimental
process, the program normally stops because of a breakpoint
set after the target code. This watchpoint is defined before
popping the stack at the end of the assembly subroutine and
after the trigger window. However, with our experimental
setup and target code, two other scenarios may happen
because of a fault: an unconditional jump and an infinite
loop due to the triggering of an exception. These two
scenarios modify the control flow, and the program may not
reach the defined breakpoint. Moreover, the unconditional
jump scenario makes the setting of breakpoints very hard.
To handle these issues, our control computer stops the
microcontroller after a fixed delay.

Internal data: With the SWD debug link, the internal
data we get from the microcontroller at a watchpoint for
our experiments are: the general-purpose registers (r0 to
r12), the stack pointer (r13), the link register (r14), the
program counter (r15), the program status register (xPSR),
some chosen variables in memory and the number of clock
cycles taken by our experiment. This number of clock cycles
is counted from the beginning of the target subroutine. The
xPSR register gives us information about the processor flags
and the exceptions that may have been triggered. Since we
only inject transient faults and since the watchpoint is set
several clock cycles after our attack, we can reasonably
assume that the debugging module embedded in the chip
is not corrupted when recovering the internal data from the
microcontroller.

However, some internal data such as the instruction regis-
ter cannot be accessed. When working at the scale of a single
instruction, we may need to determine which instruction has
been actually executed by the core. To get a list of suitable
instructions, we need to rely on an exhaustive instruction
simulation.

2) Fault model simulation: We propose to use simulation
to explain the effects of electromagnetic fault injection. Our
approach aims at comparing the experimental faulty outputs
with outputs from a fault model simulation. Thus, we can
validate the interpretation of these effects by comparing the
outputs with the internal data. This scheme is summarized
in Fig. 2.

A B

B’

Instruction

Experimental fault
(depends on the
experimental parameters)

Initial state Expected state

Exhaustive instruction simulation
(finds instructions which could
enable to reach B’ from A)

Fault injection

Figure 2: Our approach to characterize the injected faults

Simulations aim at finding output states which could be
compatible with the output states we observed. In order to
match simulations with measurements, we define a binary
relation between experimental output states and simulated
output states.

Definition. One instruction replacement can explain an
experimental measurement if the output states ([r0-r12],
xPSR) at the defined watchpoint are the same for the
measurement and the simulation

In the rest of this article, two classes of faults can be
distinguished: faults on the data flow and faults on the
program flow [22]. Faults that lead to the replacement of an
instruction by another one are faults on the program flow.
They may result in an algorithm modification, depending on
the context and the replaced instruction. On the contrary,
faults which only modify a piece of data without modifying
an instruction are faults on the data flow.

Nevertheless, this difference might not be clear for many
cases since both fault classes may lead to very similar visible
outputs. Thus, defining whether a resulting faulty output is a
consequence of a fault on the data flow or the control flow
is generally a tough task. Nevertheless, a single assembly
instruction can only output a very limited set of data. As
a consequence, it is possible to tell whether or not a faulty
output is the consequence of a fault on the control flow.
Thus, every faulty output which cannot be explained by an
instruction replacement is considered to come from a fault
on the data flow.

The Thumb2 instruction set is composed of both 16-bit
and 32-bit instructions. 16-bit instructions can be exhaus-
tively tested. 32-bit instruction start with the prefixes 11101
or 1111, which reduces the complexity of an exhaustive
test. Moreover, the 32-bit part of the instruction set is mostly
sparse, we can remove many branches in the search space.

It should be noted that this simulation is performed on the

t = 0.4 ns t = 1 ns t = 2 ns t = 3.6 ns

t = 16.8 ns t = 18.6 ns t = 19.2 ns t = 20 ns

Interrupt triggered

Fault on the output value

Crash of the microcontroller

No fault on the output value

Figure 3: Impact of the probe’s position

same binary as the one that is used for the fault injection
experiments. To perform this simulation, we developed a
specific program, based on the Keil UVSOCK library. Our
simulation program is able to control the Keil µVision
debugger during an execution on the Keil µVision simulator.
It emulates faults on the control flow by replacing on the fly
the target instruction.

Obviously, many instruction replacements may be able to
explain one single measurement. Nevertheless, being able to
simulate instruction replacement will enable us to explain
the effects we observed and then to define a fault model
more clearly. To sum up, an exhaustive simulation over the
instruction set is practical and can be performed in real
conditions. Moreover, it enables to distinguish faults on the
control flow from faults on the data flow.

III. EXPERIMENTAL STUDY OF THE INJECTION
PARAMETERS

In this section, we provide a study of the influence of
several experimental parameters on the final outputs. Since
metastability phenomena appear, we first start by describing
them in the following paragraph.

A. Metastability phenomena

Since electromagnetic glitch fault injection leads to timing
faults [17], we obtained some metastability phenomena. For
this experiment, the pulse’s voltage was set to 190 V, the
clock frequency was set to 56 MHz, the pulse’s injection
time was fixed to an arbitrary value, and the pulse width
was set to 10 ns. The probe position was found by a trial-
and-reset approach. The results for 10000 executions of
our experimental process are presented in Table I, every
observed output value is associated to its occurrence rate.

They show a metastability phenomenon for a single load
instruction from the Flash memory which correct loaded
value is 0x12345678 since several values appear for the
same fixed configuration of the experimental parameters.

Table I: Metastability phenomenon for a single load instruc-
tion

Loaded value Occurrence rate
1234 5678 (no fault) 60.1%
FFF4 5679 27.4%
FFFC 5679 12.3%
FFFC 567b 0.1%
FFFC 7679 0.1%

B. Study of the injection parameters
In the case of an electromagnetic fault injection on a

microcontroller, many experimental parameters can have an
influence on the final outputs. The main parameters we
can control in these experiments and which may have an
influence are detailed in Table II. For all the following ex-
periments except the one that studies the voltage’s influence,
the pulse voltage was set to 190 V. The pulse width was set
to 10 ns, which is shorter than the 17 ns clock period (for a
56 MHz clock frequency). In the following paragraphs, we
detail the separate influence of some of these parameters.

Table II: Experimental parameters

Electromagnetic - x-y-z position of the injection probe
injection parameters - Pulse injection time

- Pulse characteristics (width, voltage)
Microcontroller - Operating frequency
hardware parameters - Power supply
Microcontroller - Type of the executed instructions
software parameters - Program memory (RAM or Flash)

Memory manage fault
Bus fault

Usage fault

Result

0 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 2500 2625 2750 2875 3000 3125 3250 3375 3500 3625 3750 3875 4000

0xfe 0xfd 0xfb 0xf7 0xef 0xdf 0xbf 0x7f

Figure 4: Influence of the pulse’s injection time for an array sum whose expected result is 0xFF

1) Position of the injection probe over the package’s
surface: The X Y Z stage we use for our experiments
enables us to vary the injection probe’s position. Since
varying the Z position of the antenna leads to a similar
class of effects on the microcontroller than varying the
pulse’s voltage [25], we fix a position for Z and only study
the influence of the X Y position. In this experiment, we
change the X Y coordinates and the pulse’s injection time.
This experiment is performed at the scale of a single load
instruction which loads the value 0x12345678 from the
Flash memory into the register R8. This fault injection has
been performed over a 20 ns time interval, by steps of
200 ps. The probe browsed a 3 mm square over the circuit’s
die, by steps of 200 µm. Fig. 3 shows the results for this
experiment.

The experiment shows that there are four kinds of outputs,
depending on the probe position and the injection time : no
fault on the loaded value, a crash of the microcontroller,
the triggering of a Usage Fault exception, and a fault
on the value in R8. Very few faults on the register R0
were also observed. Except from R8 and R0, no other
register was faulted in this experiment. Moreover, those two
registers were never faulted together. Every faulty output
we observed on R8 has a higher Hamming weight than the
0x12345678 expected value. On Fig. 3, yellow areas led
to a small increase in this Hamming weight and red areas
led to a high increase. This experiment highlights the local
effect of electromagnetic fault injection on a microcontroller,
with different effects depending on the probe’s position.
Since very few probe positions can lead to a successful fault
injection, this spatial cartography also helps us to find some
suitable X Y Z configurations for the following experiments.

2) Injection time: This experiment has been performed
on the following test program for a fixed X Y Z position.
This program uses a loop to sum the elements of an array
that contains eight powers of two. array[i] contains 2i.
At the end of the computation, the result stored at the address
pointed by r0 contains 0xFF . This test program requires
about 3.5 µs to complete. We performed this fault injection
over this time interval, by steps of 200 ps.

1 a d d i t i o n l o o p :
2 l d r r4 , [r2 , r1 , l s l #2] ; r4 = array[i]
3 l d r r3 , [r0 , #0] ; r3 = result
4 add r3 , r4 ; r3 = r3 + r4

5 s t r r3 , [r0 , #0] ; result = r3
6 add r1 , r1 , #1 ; r1 = r1 + 1
7 cmp r1 , #8 ; r1 == 8 ?
8 b l t a d d i t i o n l o o p

This test program enables us to perform an electro-
magnetic fault injection on a sample made of different
instructions. The results for this experiment are shown in
Fig. 4. Three kinds of situations have been observed:

• BusFault or UsageFault hardware interrupts
• A fault on the output value
• A normal behaviour with no fault
Every fault we observed on the output value corresponds

to an execution in which only one power of two has not been
added. However, many faults could explain such results. That
is why the precise effect of electromagnetic fault injection
at the scale of a single instruction is studied precisely in
section IV.

3) Pulse characteristics: In the following paragraphs, we
study the separate influence of the pulse parameters. For
these paragraphs, a fixed position was set for the injection
probe. This position had been found thanks to the spatial
cartography presented in III-B1.

Pulse width: The pulse width does have an influence
on the outputs. According to Faraday’s law of induction, the
electromotive force induced in a loop (e.g. inside the power
grid) corresponds to the time-derivative of the magnetic flux
transmitted by the injection antenna. This magnetic flux is
proportional to the current sent into the injection solenoid.
Thus, the electromagnetic glitch that is transmitted to the
circuit depends on the current’s variations. We also observed
that sending longer pulses reduces the stress applied to the
circuit.

Pulse voltage: To evaluate the influence of the pulse
voltage, the test program has been set to a single LDR as-
sembly instruction. LDR R_o,[R_i,#offset] loads the
value pointed by R_i with offset #offset into the register
R_o. For the test instruction, the register R_i pointed to a
Flash memory address. To perform an analysis of the impact
of the pulse’s voltage, we needed to fix a suitable configura-
tion for the other parameters. Those other parameters were
set to some fixed values: we chose a configuration in which
a fault occurs on the loaded value. For this experiment,
the tested instruction was LDR R4,[PC,#44]. The inital
value of R4 was 0x0 and PC+44 was a Flash memory
address which contained 0x12345678. Since metastability

170 175 180 185 190

0

5

10

15

20

Pulse amplitude (V)

H
am

m
in

g
di

st
an

ce
w

ith
0
x
1
2
3
4
5
6
7
8

LDR R4 , 0x12345678

Figure 5: Hamming distance with 0x12345678 versus
pulse’s voltage

phenomena appear, for this experiment we take into account
the faulty output with the highest occurrence rate. Table III
shows the value in R4 for different values of the pulse
voltage. According to those results, increasing the pulse
voltage increases the Hamming weight of the loaded value.
This pattern is highlighted by Fig. 5, which shows the
Hamming distance with the 0x12345678 expected value
versus the pulse’s voltage. The same kind of trend has been
obtained for different values for the probe position and
the injection time. However, it seems that only instructions
which loads a value from the Flash memory can lead to this
kind of set at 1 fault. Indeed, we did not manage to inject
similar faults in case of a data transfer from the SRAM
memory.

Table III: Influence of the pulse’s voltage

Pulse voltage Loaded value Occurrence rate
170 V 1234 5678 (no fault) 100%
172 V 1234 5678 (no fault) 100%
174 V 9234 5678 73%
176 V FE34 5678 30%
178 V FFF4 5678 53%
180 V FFFD 5678 50%
182 V FFFF 7F78 46%
184 V FFFF FFFB 40%
186 V FFFF FFFF 100%
188 V FFFF FFFF 100%
190 V FFFF FFFF 100%

4) Type of the executed instructions: Our experiments
highlighted a significant trend: we managed to inject faults
on different types of instructions such as branch instruc-
tions, ALU instructions or load-store instructions. However,
load instructions from the Flash memory were significantly
easier to fault. The microcontroller we use has a Harvard

architecture. Every instruction fetch uses the instruction
bus. Moreover, load instructions also use the data bus in
the decode pipeline phase. As a consequence, section IV
provides a more detailed study of the consequences of this
fault injection in two cases: one case to highlight a fault on
the instruction bus, another one to highlight a fault on the
data bus. On the one hand, we study the effects on a generic
single instruction. On the other hand, we study the specific
case of a load instruction from the Flash memory.

IV. EXPERIMENTS ON THE DATA AND INSTRUCTION BUS

The two following subsections detail the results we ob-
tained when trying to inject faults into the control flow or
the data flow of the target program. In order to minimize the
side effects which may happen when studying a big number
of assembly instructions, the following results have been
obtained for two classes of test applications. To highlight
faults on the control flow, we use a sequence of NOP
instructions [26]. Since NOP instructions have no effect, a
faulty output will be easier to notice and to explain. To
highlight faults on the data flow, the test application we use
is a single LDR instruction which loads data from memory
into a register. The initial values at the beginning of our
target function are detailed in Table IV. Those beginning
values are the same for the two following experiments. The
comparison between the initial values, the output ones and
the expected ones helps us to have a better understanding of
possible instruction replacements effects.

Table IV: Initial values at the beginning of the execution

Piece of data Value
r0 A memory address in RAM
r1 to r4 0x1 to 0x4
r5 and r6 Not relevant
r7 0x100
r8 to r12 0x00
Address pointed by r0 0x00

A. Faults on the program flow

Faults on the program flow can be observed through
instruction replacement faults thanks to the simulation. How-
ever, studying instruction replacement with two possible
instruction sizes is a very tough task. Since every fetch from
the code memory is 32-bit wide, we need to consider several
instruction replacement scenarios. With this approach, we
can simulate the replacement of a 16-bit or 32-bit instruction
by another 16-bit or 32-bit instruction. However, two 16-
bit instructions might be replaced by two different 16-bit
instructions. Similarly, a 32-bit instruction might be replaced
by two 16-bit instructions. Those two cases would imply
performing an almost-exhaustive search over 32 bits, which
is not practical in our case. Though, we could partially
bypass this problem by recording the number of clock
cycles in our experiments. However, guessing the number of

executed instructions from the clock cycle count is not an
easy task because of the complex instruction set. Observing
this clock cycle count could theoretically enable us to
exclude some replacement scenarios in further experiments.
To highlight the possibility to inject faults on the program
flow, the following experiment targeted a NOP sled. Since
different position probes and different injection times lead
to different results, the following results have been found for
different experimental configurations of these parameters.

1) Hardware exceptions: Our fault injection some-
times led to an exception triggering. However, only
Usage Fault exceptions were observed. More precisely,
the No coprocessor exception and the Undefined
instruction exception where the only subclasses of
Usage Fault which could be observed. Both of these
exceptions happen in the case of an invalid opcode. A
possible explanation would be that a fault has been injected
during the fetch or decode pipeline phases.

2) Memory address: In the initial state before the target
instruction, r0 points to a memory address in SRAM. The
value of r0 has been observed at this address instead of the
expected value. For this particular case, instruction replace-
ment simulation showed that the only possible instruction
replacement is STR r0,[r0,#0], which stores the value
of r0 at the address pointed by r0 without any offset.
Moreover, the value 0x100 has also been observed for
another configuration. It turns out that 0x100 is also the
value in r7.

3) Other faults: We also obtained faults on the general-
purpose register r7 and the program counter r15. These
faults can also be explained by at least one assembly
instruction replacement.

4) Summary: Obviously, the previous paragraphs do not
aim at providing a complete list of the possible faults.
Because of the huge number of possible configurations
for the injection parameters, computing fault occurrence
percentages would not be relevant. Nevertheless, these para-
graphs highlight the fact that very few fault patterns were
observed. We never got any fault on r1-r6 and r8-r14.
In an informal way, faults on r7 and r15 (pc) appeared
much more often than faults on the memory address pointed
by r0. Most of the 16-bit instructions can only manipulate
the registers r0 to r7. For example, a MOVS r7, #FF
operation is assembled into a 16-bit instruction, while a
MOVS r8, #FF is assembled into a 32-bit instruction. In a
16-bit instruction, r7 is encoded by a 111 binary sequence.
The fact that registers r0-r6 are encoded with a smaller
number of 1 in their encoding slot might explain this higher
fault occurrence rate on the r7 register. Similarly, branch
instructions have many 1 in their slot. As a conclusion for
this set of experiments, every faulty result we observed has
at least one instruction replacement which can explain it.
The first intuition of a set at 1 fault model we saw for data
fetches leads us to a more detailed analysis of the pipeline

stages in section V.

B. Faults on the data flow

For this experiment, we targeted a single LDR
r4,[PC,#44] instruction. The inital value of R4 was 0x0
and PC+44 was a Flash memory address which contained
0x12345678 (this experiment used the same configuration
as the one we had defined in III-B3). We obtained several
faulty outputs such as 0xFE345678 or 0xFFF45678. We
consider that every fault which cannot be explained by an
instruction replacement is a fault on the data flow. In this
experiment, the target LDR r4,[PC,#44] is a 16-bit in-
struction, followed by a 16-bit NOP instruction. The Thumb2
instruction set can only output a limited set of constants
in a single data-processing instruction [24]. Thus, some of
the faulty output values we observe, such as 0xFFF45678,
could theoretically only be loaded with a single load from
indirect register. Since the whole memory does not contain
any FFF4 pattern, a single load instruction could not explain
this result. We performed an exhaustive search over the
16-bit and 32-bit instructions. No single instruction can
lead to a result of 0xFFF45678. However, fault injection
might have had an impact on two 16-bit instructions. To
handle this issue, we performed another experiment, in
which the target instruction was a LDR r8,[PC,#44],
with 0x12345678 stored at the address PC+44. Using r8
instead of r4 makes this instruction be assembled as a 32-bit
instruction. Except the stack manipulation instructions, no
16-bit instruction can write a value into registers between
r8 and r12. For this new configuration, we were able
to obtain several faulty values, such as 0xFFF45679 or
0xFFFC5679. With an exhaustive simulation, we can now
guarantee that no single instruction can lead to such a result.
Since a part of the faulty value is similar to the expected
one, we can assume this fault injection had an impact on
the data flow.

C. Analysis at a lower abstraction level

Underpowering a circuit or overclocking it leads to the
same kind of timing violation faults [15], but knowing which
among the clock tree or the power grid has been faulted is
a tough task. To the best of our knowledge, recent research
papers such as [27] claimed that the coupling between the
injection probe and the circuit lies mainly in the power
distribution network. According to the experiments from
the previous section, electromagnetic glitch fault injection
seems to enable us to perform attacks whose effect is
equivalent to voltage or clock glitches, with a local effect
that enables us to target either the instruction bus or the data
bus. The following section deeply studies the bus transfers
and provides an explanation for the faults we observed at a
register-transfer level.

Clock
Electromagnetic Glitch

HADDRI 0x06 0x0A 0x0E 0x12

HRDATAI 2 nop 2 nop

0x00 NOP - BF00 EXECUTE

0x02 NOP - BF00 DECODE EXECUTE

0x04 NOP - BF00 DECODE EXECUTE

0x06 NOP - BF00 FETCH DECODE EXECUTE

0x08 NOP - BF00 FETCH DECODE

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

Figure 6: Bus transfers on the AHB bus for instruction memory

V. REGISTER-TRANSFER LEVEL FAULT MODEL

The results presented in section IV lead us to the basics
of a definition of a fault model at the assembly level. By
using this fault injection technique, an attacker can inject
faults in two ways: modify the instruction to be executed or
modify a data value in the case of a load instruction.

Our experiments also highlight another trend: we only
managed to inject faults on data and instruction transfers
from the Flash memory. The Flash memory has a slower
reponse time than the SRAM memory. The fetch pipeline
phase always requires a transfer from the instruction mem-
ory [23]. The operand fetch operation is performed during
the decode phase. For load instructions, the decode phase
requires a transfer from the data memory.

The microcontroller we use is based on a modified Har-
vard architecture, with separate buses for instruction and
data. The buses are 32-bit wide and use the AMBA AHB-
Lite structure [28]. Since electromagnetic glitch injection
creates timing faults [17], we propose an explanation of
the experimental faults we obtained based on a bus transfer
analysis.

A. Instruction fetches

Fetching a piece of data or an instruction from the
memory (either SRAM or Flash) requires at least two
clock cycles. Fig 6 shows a chronogram of the AHB bus
tranfers when executing the target program. In this case,
the target program is a NOP sled. Since instruction fetches
are 32-bit wide, two 16-bit NOP instructions are fetched
at each execution of the fetch pipeline stage. In the case
of instruction which do not require an operand fetch, the
decode and execute pipeline stages require at most half a
clock cycle. The fetch stage requires one clock cycle during
which the instruction address is written on the HADDRI bus.
It also requires an extra clock cycle in which 32 bits from

the instruction memory are written on the HRDATAI bus
[28]. In the event of a transfer from the SRAM memory, the
values are written on the HRDATAI bus at the beginning of
this extra clock cycle. Since the Flash memory has a longer
response time, this value is written on the bus at the end of
this clock cycle for a Flash transfer. In this situation, since
electromagnetic fault injection leads to timing faults [17],
the critical path appears to be this HRDATAI bus transfer.

Table V: Binary encoding of NOP and STR r0,[r0,#0]

Mnemonic Inst. Binary instruction Hamming w.
NOP BF00 10111111 00000000 7
STR r0,[r0,#0] 6000 01100000 00000000 2

We now consider the result presented in IV-A, in which
a NOP is replaced by a STR r0,[r0,#0]. The binary
encodings for the NOP and STR r0,[r0,#0] instructions
are presented in Table V. As seen for an attack which
targets the value loaded by a load instruction, it seems
that the higher the stress we apply, the higher the fetched
word’s Hamming weight is. However, the situation seems
different for instruction fetches. The fault models seems
more complex than the set at 1 model we had seen for data
fetches.

The bus precharge values are not specified in the AHB bus
intellectual property. They are chosen by the circuit’s manu-
facturer. For the microcontroller we use, the HRDATAI bus
does not seem to be precharged at 1, since a NOP instruction
with a Hamming weight of 7 has been replaced by another
instruction whose Hamming weight is 2. Moreover, since
there must be some skew on this bus, some metastability
phenomena (as presented in III-A) also appear. Considering
this single example, a possible precharge value would be 0,
or the microcontroller might use a more complex precharge
strategy. For the moment, we are not able to infer more
details about a possible HRDATAI bus precharge.

Clock
HADDR PC+44

HRDATA Data

0x00 NOP - BF00 EXECUTE

0x02 LDR R4, [PC #44] - 4C04 DECODE EXECUTE

0x04 NOP - BF00 DECODE

0x06 NOP - BF00 FETCH

0x08 NOP - BF00 FETCH

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

(a) Without electromagnetic perturbation

Clock
Electromagnetic Glitch

HADDR PC+44

HRDATA
0x00 NOP - BF00 EXECUTE

0x02 LDR R4, [PC #44] - 4C04 DECODE EXECUTE

0x04 NOP - BF00 DECODE

0x06 NOP - BF00 FETCH

0x08 NOP - BF00 FETCH

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

(b) With an electromagnetic glitch fault injection

Figure 7: Bus transfers on the AHB bus for data memory

To sum up, in the case of a bus transfer from the Flash
memory, the critical path that is faulted by an electromag-
netic fault injection seems to be the HRDATAI bus transfer.
Thus, this fault injection can target any instruction fetch
from the Flash memory, which potentially makes this attack
scenario very harmful.

B. Data fetches

The situation for data fetches is very similar to the one we
describe for instruction fetches. Since electromagnetic fault
injection has a local effect, it is possible to find a probe
position where we only inject faults on the data bus and
do not reach the instruction bus. For this attack scenario,
the critical path seems to be the HRDATA bus transfer. Fig.
7a shows data bus transfers in the case of a single LDR
instruction (similar to the previous experiments) without
fault injection. Fig. 7b shows the same bus transfers in the
case of a fault injection.

Metastability phenomena also appear for this fault injec-
tion, but the global trend corresponds to a set at 1 fault
model. This value depends on the microcontroller’s bus
precharge strategy, which is specific to each implementation.
This trend enables us to define a more precise fault model
for data fetches, in which the attacker can bring the loaded
value closer to the value of the bus precharge.

VI. RELATED WORKS

This section outlines some research papers that are related
to the study we presented in this paper. These papers
are grouped into three subcategories: electromagnetic fault
injection techniques, fault models on microcontrollers and
proposed contermeasures against a given fault model.

1) Electromagnetic fault injection: In [17], Dehbaoui
et al. do a practical fault injection on a software imple-
mentation of the AES algorithm by using electromagnetic
glitches. In [25], Carlier performs a study of the effects of
electromagnetic fault injection on two microcontrollers at

an electric level. His work mostly explains the influence of
several parameters related to the coil. He also studies the
influence of the injection time. However, his study does not
focus on the faults that were produced.

2) Fault models on microcontrollers: In [29], Barenghi
et al. study the effects on low-voltage fault attacks on
an ARM9 microprocessor. They describe several effects
on loads from memory or on instruction replacement. In
[13], Balasch et al. present a black-box approach which
is quite similar to the one proposed in this paper. They
use clock glitches as a fault injection mean and perform
their experiment on a 8-bit microcontroller. We also use
the same kind of in-depth analysis. However, their study
is performed on a very different architecture with a dif-
ferent bus precharge configuration. We also automated the
instruction replacement search by performing an exhaustive
instruction replacement simulation over the instruction set.
In [26], Spruyt proposes an approach whose aim is to
define a generic method on how to build a fault model for
microcontrollers. His situation is also quite similar to the
one presented in this paper. Since having access to some
internal data on a real microcontroller may be hard, he
proposes a way to obtain information about the induced
faults by analyzing the faulty outputs of different groups of
instructions. Several articles have been published in which
the authors assume an attacker can skip or replace an
instruction by another one [18] [30]. For example, in [31],
Berzati et al. suppose an attacker can replace an addition
instruction by an exclusive or instruction.

3) Countermeasures: Several countermeasures schemes
have been defined to protect embedded processor architec-
tures against specific fault models. All those countermeasure
schemes might be reinforced by studies similar to the one
presented in this paper, which could provide a more precise
knowledge about the fault model. At a hardware level, [32]
proposes to use integrity checks to ensure that no instruc-
tion replacement took place. Nevertheless, many counter-
measures to protect assembly code without modifying the
microcontroller’s architecture have been defined. In [21],
Barenghi et al. propose three countermeasure schemes based
on instruction duplication, instruction triplication and parity
checking. Their countermeasures enable different levels of
fault detection and correction against instruction skips or
some instruction modifications. In [33], Medwed et al.
propose a generic approach based on the use of specific
algebraic structures named AN+B codes. Their approach
enables to protect both the control and data flow. An
application to an AES implementation has also been detailed
in [34].

VII. CONCLUSION

We have presented a detailed study about the effects of an
electromagnetic glitch fault injection on a state-of-the-art mi-
crocontroller. However, working with a real microcontroller

in a black-box approach creates several constraints when
trying to build a practical experimental process. Because
of the lack of details about the microcontroller’s design
and architecture, we have proposed this top-down approach
which aims at building a suitable lower-level explanation for
the faults we observed at an assembly level. Moreover, we
also lack information about the bus precharge strategy on
the microcontroller we use. Future experiments will try to
use more advanced debug techniques in order to get more
accurate information about the executed instructions.

Finally, we do not claim this register-transfer level hy-
pothesis is the only reason why faults appear at an assembly
level. This paper aims at providing a first understanding of
the faults an electromagnetic glitch fault injection can induce
on an embedded program. And the lower-level model we
propose could explain all the previous experimental results
we obtained. Furthermore, this fault model looks very simi-
lar to the ones which can be found in previous works about
clock or voltage glitches. Hence, electromagnetic glitches
seem to induce timing constraints violations on the bus
transfers from the Flash memory. Thus, on a standard circuit,
electromagnetic fault injection could enable an attacker to
bypass some countermeasures against traditional timing fault
injection means such as clock or voltage glitches.

These experiments confirm the fact that an attacker could
change an instruction into another one and change the value
of a piece of data loaded from the Flash memory. But they
also provide a more accurate fault model, in which some
instructions or registers seem to be more vulnerable than
others. On this architecture, faults on the data flow lead
to an increased Hamming weight on the loaded piece of
data. This behaviour highly depends on the microcontroller’s
bus precharge strategy. These observations can lead to the
definition of an assembly-level fault model, and enable to
build more specific and accurate countermeasures. These
ideas will be studied more precisely in future works.

REFERENCES

[1] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” Advances in Cryp-
tology - CRYPTO’96, pp. 104–113, 1996. [Online]. Available:
http://www.springerlink.com/index/4el17cvre3gxt4gd.pdf

[2] D. Agrawal, B. Archambeault, J. R. Rao, P. Rohatgi, and
Y. Heights, “The EM Side-Channel(s),” in Cryptographic
Hardware and Embedded Systems - CHES 2002, ser. Lecture
Notes in Computer Science, B. S. Kaliski, c. K. Koç,
and C. Paar, Eds., vol. 2523. Berlin, Heidelberg: Springer
Berlin Heidelberg, Feb. 2003, pp. 29–45. [Online]. Available:
http://www.springerlink.com/index/10.1007/3-540-36400-5

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Proceedings of the 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, 1999, pp. 1–
10. [Online]. Available: http://www.springerlink.com/index/
kx35ub53vtrkh2nx.pdf

http://www.springerlink.com/index/4el17cvre3gxt4gd.pdf
http://www.springerlink.com/index/10.1007/3-540-36400-5
http://www.springerlink.com/index/kx35ub53vtrkh2nx.pdf
http://www.springerlink.com/index/kx35ub53vtrkh2nx.pdf

[4] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P.
Seifert, “Simple Photonic Emission Analysis of AES Photonic
Side Channel Analysis for the Rest of Us,” Cryptographic
Hardware and Embedded Systems - CHES 2012, pp. 41–57,
2012.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the
Importance of Checking Cryptographic Protocols for Faults,”
Proceedings of the 16th annual international conference
on Theory and application of cryptographic techniques,
vol. 1233, pp. 37–51, 1997. [Online]. Available: http:
//citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764

[6] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The Sorcerer’s Apprentice Guide to Fault
Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp.
370–382, Feb. 2006. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506

[7] D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede, “Hardware
Designer’s Guide to Fault Attacks,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 258754,
pp. 1–1, 2013. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=6425517http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6425517

[8] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
Injection Attacks on Cryptographic Devices: Theory, Practice,
and Countermeasures,” Proceedings of the IEEE, vol. 100,
no. 11, pp. 3056–3076, Nov. 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6178001

[9] S. P. Skorobogatov and R. J. Anderson, “Optical Fault
Induction Attacks,” Cryptographic Hardware and Embedded
Systems - CHES 2002, vol. 2523, no. August, pp. 2–
12, 2003. [Online]. Available: http://www.springerlink.com/
index/dmjmf1pt7lr1c962.pdf

[10] J.-M. Schmidt and M. Hutter, “Optical and EM
Fault-Attacks on CRT-based RSA: Concrete Results,”
in Proceedings of the 15th Austrian Workhop on
Microelectronics - Austrochip 2007, Graz, Austria, 2007.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.121.5741&rep=rep1&type=pdf

[11] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette,
and M. Renaudin, “Glitch and Laser Fault Attacks onto
a Secure AES Implementation on a SRAM-Based FPGA,”
Journal of Cryptology, vol. 24, no. 2, pp. 247–268,
Oct. 2010. [Online]. Available: http://www.springerlink.com/
index/10.1007/s00145-010-9083-9

[12] M. Agoyan, J.-m. Dutertre, A.-p. Mirbaha, D. Naccache, A.-l.
Ribotta, and A. Tria, “How to Flip a Bit?” in On-Line Testing
Symposium (IOLTS), 2010 IEEE 16th International. IEEE,
2010, pp. 235–239.

[13] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An In-
depth and Black-box Characterization of the Effects of
Clock Glitches on 8-bit MCUs,” in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography.
IEEE, Sep. 2011, pp. 105–114. [Online]. Available: http:
//www.cosic.esat.kuleuven.be/publications/article-2059.pdf

[14] J. J. A. Fournier, S. Moore, H. Li, R. Mullins, and G. Taylor,
“Security Evaluation of Asynchronous Circuits,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2003,
2003, pp. 137–151.

[15] L. Zussa, J.-m. Dutertre, J. Clédière, B. Robisson, and
A. Tria, “Investigation of timing constraints violation as
a fault injection means,” in 27th Conference on Design
of Circuits and Integrated Systems (DCIS), Avignon,
France, 2012. [Online]. Available: http://hal-emse.ccsd.cnrs.
fr/emse-00742652/

[16] S. Skorobogatov, “Local Heating Attacks on Flash Memory
Devices,” in IEEE International Workshop on Hardware-
Oriented Security and Trust, 2009 - HOST’09. IEEE,
2009, pp. 1—-6. [Online]. Available: http://www.cl.cam.ac.
uk/∼sps32/host2009-flash heat.pdf

[17] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria,
“Electromagnetic Transient Faults Injection on a Hardware
and a Software Implementations of AES,” 2012 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp.
7–15, Sep. 2012. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6305224

[18] J.-M. Schmidt and C. Herbst, “A Practical Fault Attack
on Square and Multiply,” in 2008 5th Workshop
on Fault Diagnosis and Tolerance in Cryptography,
L. Breveglieri, S. Gueron, I. Koren, D. Naccache,
and J. P. Seifert, Eds. IEEE, Aug. 2008, pp. 53–58.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4599557

[19] S. Yen and M. Joye, “Checking before output may not be
enough against fault-based cryptanalysis,” Computers, IEEE
Transactions on, vol. 49, no. September 1996, pp. 967–970,
2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=869328

[20] E. Biham and A. Shamir, “Differential Fault Analysis
of Secret Key Cryptosystems,” in Proceedings of
the 17th Annual International Cryptology Conference,
no. September 1996, Santa Barbara, California, USA,
1997. [Online]. Available: http://info.psu.edu.sa/psu/cis/
abuelyaman/Research/DFA-Secret-Key.pdf

[21] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and
F. Regazzoni, “Countermeasures against fault attacks on
software implemented AES,” in Proceedings of the 5th
Workshop on Embedded Systems Security - WESS ’10. New
York, New York, USA: ACM Press, 2010, pp. 1–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1873555

[22] I. Verbauwhede, D. Karaklajic, and J.-M. Schmidt,
“The Fault Attack Jungle - A Classification Model to
Guide You,” in 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, Sep. 2011, pp. 3–8.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6076462

[23] J. Yiu, The Definitive Guide To The ARM Cortex-M3. Else-
vier Science, 2009.

[24] ARM, “ARM Architecture Reference Manual - Thumb-2
Supplement,” 2005.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178001
http://www.springerlink.com/index/dmjmf1pt7lr1c962.pdf
http://www.springerlink.com/index/dmjmf1pt7lr1c962.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.5741&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.5741&rep=rep1&type=pdf
http://www.springerlink.com/index/10.1007/s00145-010-9083-9
http://www.springerlink.com/index/10.1007/s00145-010-9083-9
http://www.cosic.esat.kuleuven.be/publications/article-2059.pdf
http://www.cosic.esat.kuleuven.be/publications/article-2059.pdf
http://hal-emse.ccsd.cnrs.fr/emse-00742652/
http://hal-emse.ccsd.cnrs.fr/emse-00742652/
http://www.cl.cam.ac.uk/~sps32/host2009-flash_heat.pdf
http://www.cl.cam.ac.uk/~sps32/host2009-flash_heat.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305224
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305224
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599557
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=869328
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=869328
http://info.psu.edu.sa/psu/cis/abuelyaman/Research/DFA-Secret-Key.pdf
http://info.psu.edu.sa/psu/cis/abuelyaman/Research/DFA-Secret-Key.pdf
http://dl.acm.org/citation.cfm?id=1873555
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076462

[25] S. Carlier, “Electro Magnetic Fault Injection,” University
of Amsterdam, Amsterdam, Tech. Rep., 2012. [Online].
Available: http://staff.science.uva.nl/∼delaat/rp/2011-2012/
p19/report.pdf

[26] A. Spruyt, “Building fault models for microcontrollers,”
University of Amsterdam, Amsterdam, Tech. Rep.,
2012. [Online]. Available: http://staff.science.uva.nl/∼delaat/
rp/2011-2012/p61/report.pdf

[27] F. Poucheret, L. Chusseau, B. Robisson, and P. Maurine, “Lo-
cal electromagnetic coupling with CMOS integrated circuits,”
in 2011 8th Workshop on Electromagnetic Compatibility of
Integrated Circuits. IEEE, 2011, pp. 137–141.

[28] ARM, “AMBA 3 AHB-Lite Protocol,” 2006.

[29] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi,
“Low Voltage Fault Attacks on the RSA Cryptosystem,”
in 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, Sep. 2009, pp. 23–31.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5412860

[30] J.-M. Schmidt and M. Medwed, “A Fault Attack on
ECDSA,” in 2009 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, Sep. 2009, pp.
93–99. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5412852

[31] A. Berzati, C. Canovas-Dumas, and L. Goubin, “Fault
analysis of Rabbit: toward a secret key leakage,” Progress
in Cryptology - INDOCRYPT 2009, pp. 72–87, 2009.
[Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-10628-6 5

[32] M. H. Nguyen, B. Robisson, M. Agoyan, and N. Drach,
“Low-cost recovery for the code integrity protection in
secure embedded processors,” in 2011 IEEE International
Symposium on Hardware-Oriented Security and Trust. IEEE,
Jun. 2011, pp. 99–104. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004

[33] M. Medwed and J.-M. Schmidt, “A Generic Fault
Countermeasure Providing Data and Program Flow
Integrity,” in 2008 5th Workshop on Fault Diagnosis
and Tolerance in Cryptography. IEEE, Aug. 2008, pp.
68–73. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4599559

[34] M. Medwed, “A Continuous Fault Countermeasure for
AES Providing a Constant Error Detection Rate,” in
2010 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, Aug. 2010, pp. 66–71.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5577364

http://staff.science.uva.nl/~delaat/rp/2011-2012/p19/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p19/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p61/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p61/report.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412860
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412860
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412852
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412852
http://link.springer.com/chapter/10.1007/978-3-642-10628-6_5
http://link.springer.com/chapter/10.1007/978-3-642-10628-6_5
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599559
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599559
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577364
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577364

	Introduction
	Approach
	Experimental setup
	Electromagnetic fault injection bench
	Target

	Experimental process
	Microcontroller's internal state observation
	Fault model simulation

	Experimental study of the injection parameters
	Metastability phenomena
	Study of the injection parameters
	Position of the injection probe over the package's surface
	Injection time
	Pulse characteristics
	Type of the executed instructions

	Experiments on the data and instruction bus
	Faults on the program flow
	Hardware exceptions
	Memory address
	Other faults
	Summary

	Faults on the data flow
	Analysis at a lower abstraction level

	Register-transfer level fault model
	Instruction fetches
	Data fetches

	Related works
	Electromagnetic fault injection
	Fault models on microcontrollers
	Countermeasures

	Conclusion
	References

