
HAL Id: emse-00880909
https://hal-emse.ccsd.cnrs.fr/emse-00880909

Submitted on 2 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Chance Constrained Programming Model for Stochastic
Profit-Oriented Disassembly Line Balancing in the

Presence of Hazardous Parts
Mohand Lounes Bentaha, Olga Battaïa, Alexandre Dolgui

To cite this version:
Mohand Lounes Bentaha, Olga Battaïa, Alexandre Dolgui. Chance Constrained Programming Model
for Stochastic Profit-Oriented Disassembly Line Balancing in the Presence of Hazardous Parts. 20th
Advances in Production Management Systems (APMS), Sep 2013, State College, PA, United States.
pp.103-110, �10.1007/978-3-642-41266-0_13�. �emse-00880909�

https://hal-emse.ccsd.cnrs.fr/emse-00880909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chance Constrained Programming Model

for Stochastic Profit–Oriented Disassembly Line

Balancing in the Presence of Hazardous Parts

Mohand Lounes Bentaha, Olga Battäıa, and Alexandre Dolgui
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Abstract. A Stochastic Partial profit–oriented Disassembly Line Bal-
ancing Problem (SP–DLBP) in the presence of hazardous parts is con-
sidered. The goal is to assign disassembly tasks of the best selected disas-
sembly alternative to a sequence of workstations while respecting prece-
dence and cycle time constraints. An AND/OR graph is used to model
the disassembly alternatives and the precedence relations among tasks.
Task times are assumed independent random variables with known nor-
mal probability distributions. Cycle time constraints are to be satisfied
with at least a certain probability level fixed by the decision maker. The
objective is to maximize the profit produced by the line. It is computed as
the difference between the positive revenue generated by retrieved parts
and the line operation cost considered as negative revenue. The line cost
includes the workstations operation costs as well as additional costs of
workstations handling hazardous parts of End of Life (EOL) product. To
deal with uncertainties, a Chance Constrained Programming formulation
is developed.

Keywords: Sustainable Manufacturing; Product Recovery; Disassem-
bly; Line Design; Cone and Chance Constrained Programming; Interior–
point Algorithm.

1 Introduction

Disassembly lines play a key role in the selective separation of parts and materials
of EOL products. The success of the product recovery depends partially on the
economical efficiency of such lines. However, their design presents a complex
optimization problem requiring adapted mathematical tools to obtain efficient
solutions.

A first study on disassembly line considering task failures was presented by
Güngör and Gupta [6]. Later, the deterministic version of the Disassembly Line
Balancing Problem (DLBP) was studied in [10–13]. Several performance criteria
were considered including minimization of the number of stations needed and
variation in idle times between the stations of the line. The following solution
methods were developed and compared: exhaustive search, genetic algorithm, ant



colony metaheuristics, a greedy algorithm, greedy/hill–climbing and greedy/2–
optimal hybrid heuristics. Altekin et al. [3] defined and solved the profit–oriented
DLBP. The problem was modeled via a mixed–integer programming formulation
and its solution simultaneously determined the number of stations and cycle time
along with the assignment of the tasks to the stations. Upper and lower bound-
ing schemes were also developed. Koc et al. [7] proposed two exact (MIP and
DP) formulations to solve DLBP with the objective of minimizing the number of
stations. They used an AND/OR graph to model EOL product data and showed
that the use of such a graph allowed obtaining better solutions in comparison
with a single precedence diagram. Altekin and Akkan [2] considered task–failure
driven rebalancing of disassembly lines. A mixed–integer programming based
predictive–reactive approach was proposed. In the first step, a predictive bal-
ance was created and then, in the second step, given a task failure, the tasks of
the disassembled product with that task failure were reselected and re–assigned
to the stations. Agrawal and Tiwari [1] considered the case of a mixed–model
U–shaped disassembly line with stochastic task times. They proposed a col-
laborative ant colony optimization technique to simultaneously determine the
sequencing of the models and assign the tasks to the stations.

The literature exposed above shows that no adequate mathematical model
taking into account simultaneously the stochasticity of disassembly task times,
the partial disassembly and maximizing the profit produced by the line can be
found. To fill this gap, this paper aims to provide such a model where some of
disassembled parts are considered hazardous and require a particular treatment
incurring a supplementary cost. An adapted solution method to find efficient
design solutions is presented. The paper is organized as follows. Section 2 presents
the problem formulation. Section 3 describes the solution method. Section 4
analyzes the numerical experiments. Conclusions are given in Section 5.

2 Problem Statement

The SP–DLBP aims to assign a set of disassembly tasks, I = {1, 2, . . . ,N},N ∈
N

∗ to an ordered sequence of workstations, J = {1, 2, . . . ,M},M ∈ N
∗ under

precedence relationships constraints among tasks. Cycle time (C0 > 0) limitation
at each station is satisfied with a certain probability level fixed by the decision
maker. Task times are assumed mutually independent random variables with
known normal probability distributions, i.e. ti(ξ̃)  N (µi, σi), ti(ξ̃) > 0, i ∈ I;
the random variables are modeled by a random vector ξ̃ = (t̃1, t̃2, . . . , t̃N) varying
over a set Ξ ⊂ R

N
+ given a probability space (Ξ,F , P ) introduced by ξ̃. A

disassembly task i ∈ H ⊂ I is called hazardous if its execution generates a
hazardous subassembly or component. All possible alternatives for disassembly
process and precedence relationships among tasks and subassemblies are modeled
by an AND/OR graph [5]. An example for such a graph is given in Fig. 1. To
simplify the graph, without information loss, subassemblies with one component
are not shown. Each subassembly of single type EOL product to be disassembled
is represented by a node Ak, k ∈ K = {0, 1, . . . ,K},K ∈ N in the graph and each



Fig. 1. AND/OR graph of the piston and connecting rod

disassembly task gives a node Bi, i ∈ I. Two types of arcs define the precedence
relations between the subassemblies and tasks: AND–type and OR–type arcs.
For instance, if a disassembly task generates two sub–assemblies, or more, then it
is related to these subassemblies by AND–type arcs. If, for a given subassembly,
one or more disassembly tasks can be performed, but only one must be selected,
this subassembly is related to these disassembly tasks by OR–type arcs. In order
to consider the case of partial disassembly, where the product is not necessarily
disassembled till obtaining single parts, a dummy task s is introduced into the
precedence graph as a sink node, as illustrated in Fig. 1. Since the case of partial
disassembly is considered, not all existing tasks have to be assigned. The level of
the disassembly depends on the profit generated by the corresponding line. The
recycling or reuse of certain parts or subassemblies bring its benefit while the
line cost is considered as a negative revenue. This cost includes two components:
the cost of workstations used and additional cost entailed by the treatment of
hazardous parts. For the problem defined, the following stochastic Mixed Integer
Program with Joined Probabilistic Constraints (MIPJPC) has been developed.

Parameters

H: Hazardous disassembly tasks’ index set;
L: Parts’ index set: L = {1, 2, . . . , L}, L ∈ N

∗;
rℓ: Revenue generated by part ℓ, ℓ ∈ L;
Li: Set of retrieved parts by the execution of disassembly task Bi, i ∈ I;
Fc: Fixed cost per unit time of operating workstations, Fc > 0;



Ch: Additional cost for stations handling hazardous parts, Ch > 0;
Pk: Predecessors index set of Ak, k ∈ K, i.e. Pk = {i| Bi precedes Ak};
Sk: Successors index set of Ak, k ∈ K, Sk = {i| Ak precedes Bi}.

Decision Variables YES

xij =











1, if disassembly task Bi

is assigned to workstation j;

0, otherwise.

zj =

{

C0, if xsj = 1;

0, otherwise.

xsj =











1, if dummy task s is assigned

to workstation j;

0, otherwise.

hj =











1, if a hazardous task is assigned

to workstation j;

0, otherwise.

Stochastic Program

max







∑

i∈I

∑

j∈J

∑

ℓ∈Li

rℓ · xij − Fc ·
∑

j∈J

j · zj − C0Ch ·
∑

j∈J

hj







(MIPJPC)

s.t.

zj = C0 · xsj , ∀j ∈ J (1)
∑

i∈S0

∑

j∈J

xij = 1 (2)

∑

j∈J

xij 6 1, ∀i ∈ I (3)

∑

i∈Sk

∑

j∈J

xij 6
∑

i∈Pk

∑

j∈J

xij , ∀k ∈ K\{0} (4)

∑

i∈Sk

xiv 6
∑

i∈Pk

v
∑

j=1

xij , ∀k ∈ K\{0}, ∀v ∈ J (5)

∑

j∈J

xsj = 1 (6)

∑

j∈J

j · xij 6
∑

j∈J

j · xsj , ∀i ∈ I (7)

hj > xij , ∀j ∈ J, ∀i ∈ H (8)

P
(

∑

i∈I

ti(ξ̃) · xij 6 C0, ∀j ∈ J
)

> 1− α (9)

zj > 0, ∀j ∈ J (10)

xsj , xij , hj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (11)

The terms of the objective function represent respectively the earned profit of
retrieved parts, the cost of operating workstations and the additional cost for



handling hazardous parts. If the dummy task s is assigned to workstation j,
which defines the number of processed stations, then

∑

j∈J j · zj = j · C0 and
workstations operating cost becomes j · (Fc · C0). Constraints (1) ensure the
value of zj to be C0 when the dummy task s is assigned to station j. Con-
straint (2) imposes the selection of only one disassembly task (OR–successor) to
begin the disassembly process. Constraint set (3) indicates that a task is to be
assigned to at most one workstation. Constraints (4) ensure that only one OR–
successor is selected. Constraint set (5) defines the precedence relations among
tasks. Constraint (6) imposes the assignment of the dummy task s to one station.
Constraints (7) ensure that all the disassembly tasks are assigned to lower or
equal–indexed workstations than the one to which s is assigned. Constraints (8)
ensure the value of hj to be 1 if at least one hazardous task is assigned to a work-
station j. Constraints (9) enforce the station operating time to remain within
the cycle time, for all opened workstations, with a probability at least (1 − α)
determined by the decision maker. Finally, sets (10)–(11) represent the trivial
constraints.

3 Solution Method

Let (1−α) = ᾱ. Sine disassembly task times are assumed mutually independent
random variables with known normal probability distributions, then:

P
(

∑

i∈I

ti(ξ̃) · xij 6 C0, ∀j ∈ J
)

> ᾱ ⇐⇒
∏

j∈J

P
(

∑

i∈I

ti(ξ̃) · xij 6 C0

)

> ᾱ

⇐⇒
∏

j∈J

P
(

∑

i∈I

ti(ξ̃) · xij 6 C0

)

> ᾱ1=
∑

j∈J
yj , yj > 0, ∀j ∈ J

⇐⇒ P
(

∑

i∈I

ti(ξ̃) · xij 6 C0

)

> ᾱyj , ∀j ∈ J,
∑

j∈J

yj = 1.

P
(

∑

i∈I

ti(ξ̃) · xij 6 C0

)

> ᾱyj , ∀j ∈ J

⇐⇒ P

(

∑

i∈I ti(ξ̃) · xij −
∑

i∈I µi · xij
√

∑

i∈I σ
2
i · xij

6
C0 −

∑

i∈I µi · xij
√

∑

i∈I σ
2
i · xij

)

> ᾱyj

⇐⇒ P

(

Zj 6
C0 −

∑

i∈I µi · xij
√

∑

i∈I σ
2
i · xij

)

> ᾱyj , Zj  N (0, 1), ∀j ∈ J

⇐⇒
∑

i∈I

µi · xij + Φ−1
(

ᾱyj
)

·

√

∑

i∈I

σ2
i · xij 6 C0, ∀j ∈ J (12)

Let
(

v, w
)

∈ R×R
l−1; the unit second–order convex cone of dimension l is defined

as Ql =

{(

w

v

)

∣

∣

∣v > ‖w‖

}

where ‖ · ‖ refers to the standard Euclidean norm.

Since α < 50%, which is justified by the fact that α represents the risk and mostly



α 6 10%, we have Φ−1
(

ᾱyj
)

> 0, and since xij ∈ {0, 1} ⇐⇒ x2
ij ∈ {0, 1}, then,

inequality (12) is a second–order cone constraint of dimension l = N+ 1:

∑

i∈I

µi · xij + Φ−1
(

ᾱyj
)

·

√

∑

i∈I

σ2
i · xij 6 C0, ∀j ∈ J

⇐⇒ µT · xj + Φ−1
(

ᾱyj
)

· ‖Σ
1

2 · xj‖ 6 C0, ∀j ∈ J

⇐⇒ ‖Σ
1

2 · xj‖ 6
1

Φ−1
(

ᾱyj

) ·
(

C0 − µT · xj

)

, ∀j ∈ J

⇐⇒







(

Σ
1

2

−µT

Φ−1

(

ᾱ
yj

)

)

xj +

(

0
C0

Φ−1

(

ᾱ
yj

)

)







∈ QN+1, ∀j ∈ J

where µ = (µ1, . . . , µN), xj = (x1j , . . . , xNj)
T, ∀j ∈ J , Σ

1

2 =







σ1 0

. . .

0 σN






is a

diagonal matrix and Φ−1(·) is the inverse of the standard normal cumulative
distribution function Φ(·).
Let x be a vector of the decision variables xij , xsj , hj , zj andX = {x| constraints
(1)− (8), (10)− (11) are satisfied}. The Second Order Cone Mixed Integer Pro-
gram given below represents an equivalent version of problem (MIPJPC) [4].

max







∑

i∈I

∑

j∈J

∑

l∈Li

rl · xij − Fc ·
∑

j∈J

j · zj − C0Ch ·
∑

j∈J

hj







(SOCMIP)

s.t.

x ∈ X

vj 6
1

Φ−1

(

ᾱ
1

M

) ·
(

C0 − µT · xj

)

, ∀j ∈ J

wij > σi · xij , ∀i ∈ I, ∀j ∈ J

vj > ‖wj‖, ∀j ∈ J

vj > 0, wij > 0, ∀i ∈ I, ∀j ∈ J

where vj , wij , ∀i ∈ I, ∀j ∈ J are intermediate variables, wj = (w1j , . . . , wNj)
T,

∀j ∈ J . We consider the case where cycle time constraint is to be satisfied with
the same probability for each station of the line, i.e. yj =

1

|J| =
1

M
, ∀j ∈ J . The

resulted (SOCMIP) is then solved using the interior point algorithm [14] of
CPLEX 12.4.

4 Numerical Results

The program (SOCMIP) was implemented in Microsoft Visual C++ 2008 and
ILOG CPLEX 12.4 was used to solve the model on a PC with Intel(R) Core(TM)



Table 1. Problem instances and obtained results

N K, L arcs
AND–relations

M C0 obj. tasks stat. H–stat. CPU time
0 1 2

MJKL11 37 22, 33 68 4 27 6 3 40 20 7 3 1 0.50

L99a 30 18, 28 56 2 26 2 3 50 75 7 3 1 0.03

BBD13 25 11, 27 49 4 18 3 2 120 640 3 2 0 0.05

KSE09 23 13, 20 47 4 5 14 2 20 53 4 2 0 0.05

L99b 20 13, 23 40 5 9 6 3 10 72 7 3 1 0.22

BBD12 10 5, 12 18 3 6 1 2 0.51 18.39 2 2 1 0.05

i5–2400 CPU 3.10 GHz and 8Go RAM. It has been applied to the problem in-
stance illustrated in Fig. 1 and to 5 available in the literature benchmark prob-
lems containing process alternatives for disassembly. The names of the prob-
lem instances were respectively composed of the first letters of authors’ names
and year of publication, i.e. BBD12 [5], KSE09 [7], L99a and L99b from [8],
MJKL11 [9]. BBD13 corresponds to the piston and connecting rod product in-
stance, see Fig. 1. The input data for each problem instance is given in Table 1.
The columns ‘AND–relations’ report the number of disassembly tasks with no
successor in column 0, with one AND–type arc in column 1, and with two AND–
type arcs in column 2, column ‘arcs’ gives the total number of AND–type and
OR–type arcs.

The interior–point algorithm of CPLEX was applied to each instance for
α = 10%. Cost of operating workstations Fc was fixed to 5 and cost for stations
handling hazardous parts Ch = 3 for all instances. The results obtained are
also presented in Table 1 where columns ‘obj., tasks, stat., H–stat., CPU time’
report respectively the optimal profit of the line, the number of selected tasks,
the number of opened stations, the number of hazardous stations and solution
time in seconds. All instances were solved in less than 1 second.

5 Conclusion

In this paper, partial profit–oriented disassembly line balancing problem in the
presence of hazardous parts was studied under uncertainty. A second–order cone
mixed integer program was developed. Disassembly task times were assumed
mutually independent random variables with known normal probability distri-
butions, where cycle time constraints were to be jointly satisfied with at least a
probability level fixed by the decision maker. To solve the problem, the interior
point algorithm and CPLEX solver were used. The solution method was eval-
uated on a set of 6 problem instances taken from the literature. All instances
were solved in less than 1 second.

Our future objective is to develop an exact solution algorithm for the problem
considered based on branch & cut method and compare it to interior point
CPLEX algorithm.
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