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Abstract: Disassembly Line Balancing Problem considered here both chooses the best
disassembly alternative for an end of life product and assigns the corresponding disassembly
tasks to the workstations of the line with the aim to reduce the line cost. Precedence and cycle
time constraints are observed. Task times are assumed stochastic with known normal probability
distributions. The line cost includes the investment and operation costs for workstations as well
as penalty costs generated by the cycle time constraints violations. To deal with uncertainties,
a stochastic linear mixed integer formulation is developed. To solve efficiently the problem,
L-shaped algorithm combined with Latin Hypercube Sampling is proposed.

Keywords: Disassembly, Disassembly Line Design, DLBP, Stochastic Programming, Sample
Average Approximation, L–shaped Method, LHS, Sustainable manufacturing.

1. INTRODUCTION

Disassembly plays an important role in the efficient man-
agement of the waste electrical and electronic equipment as
well as end-of-life vehicles. The industrial interest to this
process is increasing not only due to the environmental
awareness of consumers and governments, but also due
to its economical attractiveness (Zorpas and Inglezakis
(2012), Mayyas et al. (2012), Güngör and Gupta (1999)).
Disassembly aims at the separation of an End of Life
(EOL) product into its components or sub-assemblies for
product and material recovery. Product recovery includes
the parts reuse and remanufacturing, while material re-
covery consists of recycling and material reuse. The dis-
assembly line is the most efficient solution for disassem-
bling complex products (like vehicles) and small products
available in large quantities (like cell phones). Installing a
disassembly line is a long term capital investment. There-
fore, a particular attention has to be paid to its design
stage. A mathematical model for optimizing line cost is
proposed in this paper organized as follows. Section 2
presents a problem formulation. Section 3 describes a solu-
tion method developed. Section 4 presents an illustrative
example. conclusions are given in Section 5.

2. PROBLEM FORMULATION

The case of complete disassembly of a single type of EOL
product is considered. All possible alternatives for disas-
sembly process are given by an And/Or Graph (AOG),
(Ma et al. (2011), Altekin et al. (2008), Koc et al. (2009)).
An example for such a graph is given in Figure 1. To
simplify the graph, without information loss, subassem-
blies with one component are not represented. Each sub-
assembly of the product to be disassembled is represented
by an auxiliary node Ak, k ∈ K, in the AOG, and each
basic node Bi, i ∈ I, represents a disassembly task. Two

types of arcs define the precedence relations between the
subassemblies and the disassembly tasks: And–type and
Or–type arcs. For example, if a disassembly task gen-
erates two subassemblies, or more, then it is related to
these subassemblies by And–type arcs (in bold on the
Figure 1). If, for a given subassembly, one or more dis-
assembly tasks can be performed, but only one must be
chosen, this subassembly is related to these disassembly
tasks by Or–type arcs. In order to calculate the number
of workstations (after optimization), a dummy task S is
introduced into the precedence graph as a sink node, see
Figure 1. Disassembly task times ti, i ∈ I, are assumed
stochastic with known normal probability distributions:
mean µ and variance σ2 are known for each task time, i.e.
ti ∼ N (µi, σi), ti > 0, i ∈ I; (Dolgui and Proth (2010),
Silverman and Carter (1986)). It is modeled by a random
vector ξ̃ = (t1, t2, . . . , tN) varying over a set Ξ ⊂ R

N
+;

consider a given probability space (Ξ, F , P ) introduced by
the random vector ξ̃. Let ti = ζi(ξ̃), i ∈ I. The disassembly
tasks have to be assigned to the workstations of the line in
such a way that precedence constraints given by And/Or
graph are respected and at the same time the line cost is
minimized. The line cost includes two components: first
one is related to the cost of workstations used, the second

Fig. 1. And/Or precedence graph
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one is entailed by exceeding cycle time C. In fact, each time
the duration of tasks assigned to one workstation exceeds
the given line cycle time, a corrective action is needed,
and its cost is included in the objective function. For the
problem described, the following mathematical model has
been developed.

Stochastic Linear Mixed Integer Program

Parameters

I: Disassembly tasks’ index set: I = {1, 2, . . . , N},
N ∈ N

∗;
J : Workstations’ index set: J = {1, 2, . . . , M}, M ∈ N

∗;
K: Index set of the And/Or precedence graph’s auxiliary

nodes: K = {0, 1, . . . , K}, K ∈ N;
Ak: Auxiliary node of the And/Or graph, k ∈ K;
Bi: Disassembly task, i ∈ I;
S: The And/Or graph’s sink node, tS = 0;

Fc: Fixed cost per unit time of operating the worksta-
tions;

C: Cycle time, C > 0;
Pk: Predecessors index set of Ak, k ∈ K,

i.e. Pk = {i| Bi preceeds Ak};
Sk: Successors index set of Ak, k ∈ K,

Sk = {i| Ak preceeds Bi}.

Decision Variables

xij =





1, if disassembly task Bi is assigned

to workstation j;

0, otherwise.

xSj =





1, if dummy task S is assigned

to workstation j;

0, otherwise.

zj =

{
C, if xSj = 1;

0, otherwise.

The objective considered in this paper is to minimize
the line cost including fixed workstation operating costs
and recourse costs, qj , j ∈ J (per unit time), caused by

exceeding C. A recourse variable yj(ξ̃), j ∈ J , measures the
amount of time exceeding C if there is any. The following
model is used for the Stochastic DLBP presented.

SLMIP

min



Fc ·

∑

j∈J

j · zj + Eξ̃

(
∑

j∈J

qj · yj(ξ̃)

)
 (I)

s.t.

zj = C · xSj , ∀j ∈ J (1)∑

i∈S0

∑

j∈J

xij = 1 (2)

∑

j∈J

xij 6 1, ∀i ∈ I (3)

∑

i∈Sk

∑

j∈J

xij =
∑

i∈Pk

∑

j∈J

xij , ∀k ∈ K\{0} (4)

∑

i∈Sk

xiv 6
∑

i∈Pk

v∑

j=1

xij , ∀k ∈ K\{0}, ∀v ∈ J (5)

∑

j∈J

xSj = 1 (6)

∑

j∈J

j · xij 6
∑

j∈J

j · xSj , ∀i ∈ I (7)

∑

i∈I

ζi(ξ̃) · xij − yj(ξ̃) 6 C, ∀j ∈ J (8)

zj ∈ {0, C}, ∀j ∈ J (9)

xSj , xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (10)

yj(ξ̃) > 0, ∀j ∈ J (11)

The term of the objective function represents the cost of
operating workstations and the expected recourse cost. If
the dummy task S is assigned to station j, which defines
the number of processed workstations, then

∑
j∈J j·zj = j·

C and the workstations operating cost becomes j · (Fc ·C).
Constraints (1) ensure the value of zj to be C when
dummy task S is assigned to station j. Constraint (2)
imposes the selection of only one disassembly task (Or–
successor) to begin the disassembly process. Constraint
set (3) indicates that a task is to be assigned to at most
one workstation. Constraints (4) ensure that only one
Or–successor is selected. Constraint set (5) defines the
precedence relations among tasks: the selected successor
is assigned to upper–indexed station (or the same) than
the one to which the selected predecessor is assigned.
Constraint (6) imposes the assignment of the dummy
task S to one station. Constraints (7) ensure that all
the disassembly tasks, preceding S, are assigned to lower
or equal–indexed workstations than the one to which
S is assigned. The constraints (8) enforces the station
operating time to remain within the cycle time under
uncertainty. Finally, sets (9)–(11) represent the trivial
constraints. Eξ̃ stands for the expected value with the

respect to the distribution of ξ̃:

Eξ̃

(
∑

j∈J

qj · yj(ξ̃)

)
=

∫

Ξ

(
∑

j∈J

qj · yj(ξ̃)

)
dP (12)

Note that the integral (12) makes the program (I) a
nonlinear one, that is one source of difficulty in solving
this problem.
Let x be a vector representing a solution of problem (I)
and X = {x| constraints (1)–(7), (9)–(10) are satisfied}.
The program (II), given below, represents an equivalent
stochastic version of program (I). It is a two–stage stochas-
tic linear mixed integer program with deterministic re-
course, (Birge and Tang (1993), Kall and Wallace (1994)).

min



Fc ·

∑

j∈J

j · zj + Eξ̃

[
Q(x, ξ̃)

]


 (II)

s.t.

x ∈ X

where for an outcome ξ of ξ̃, we have:
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Q(x, ξ) = min




∑

j∈J

qj · yj(ξ)



 (II')

s.t.∑

i∈I

ζi(ξ) · xij − yj(ξ) 6 C, ∀j ∈ J (13)

yj(ξ) > 0, ∀j ∈ J

Let L = {1, 2, . . . , L}, L ∈ N
∗. If ξ̃ has a finite discrete

distribution {(ξl, pl), l ∈ L}, pl > 0, ∀l ∈ L, pl is the
realization probability of ξl of ξ̃, then (I) is an ordinary
linear program with a dual decomposition structure, as
shown below.

Deterministic Equivalent

min



Fc ·

∑

j∈J

j · zj +
L∑

l=1

pl

∑

j∈J

qj · yj(ξl)



 (III)

s.t.∑

i∈I

ζi(ξ
l) · xij − yj(ξl) 6 C, ∀j ∈ J, ∀l ∈ L

yj(ξl) > 0, ∀j ∈ J, ∀l ∈ L

x ∈ X

Depending on the number of realizations of ξ̃, i.e. L,
this linear mixed integer program may become very large
in scale, but its particular block structure can be ex-
ploited by specially designed algorithms such as the L-
shaped method, (Ahmed and Shapiro (2002), Birge (1997);
Birge and Tang (1993), Kall and Wallace (1994), Ntaimo
(2013)).

3. SOLUTION METHOD

As mentioned earlier, computing the expected value
Eξ̃

[
Q(x, ξ̃)

]
, for a given disassembly task assignment to

workstations, is quite impossible. Even, for discrete distri-
butions of ξ̃, the number of linear programs of type (II')
to solve may be a huge one. Although the exact evaluation
of the expectation term in (II) is possible, its optimization
presents serious difficulties, (Birge and Louveaux (1997),
Santoso et al. (2005)). Indeed, Eξ̃

[
Q(x, ξ̃)

]
is implicitly de-

fined. To deal with these difficulties, we present a solution
strategy combining a method, latin hypercube sampling,
with the L–shaped algorithm. We begin by introducing
the latin hypercube sampling and the L–shaped algorithm,
then, the solution strategy developed is detailed.

3.1 Latin Hypercube Sampling

The Latin hypercube sampling is a Monte Carlo tech-
nique, having the efficient manner to sample the range
of each random variable. Under the assumption of random
variables independence, latin hypercube sampling gener-
ates, in the following manner, a sample of size Λ from
ξ̃ = (t1, t2, . . . , tN) in consistency with the probability
space (Ξ, F , P ), (Helton and Davis (2003), Helton et al.
(2006)).
The range of each variable ti, i = 1, 2, . . . , N, is divided into
Λ disjoint intervals of equal probability and one value is
randomly selected from each interval. Then, the Λ values

obtained for t1 are paired at random, without replacement,
with the Λ values obtained for t2. These Λ pairs are
randomly combined without replacement with the Λ values
of t3 to form Λ triples. This process is continued until a
set of Λ N–tuples is formed. These N–tuples constitute the
Latin hypercube sample.

3.2 The L–shaped Algorithm

The main idea of the L–shaped method is to approximate
the nonlinear term in the objective function of the two–
stage stochastic problems, (Birge (1997), Birge and Tang
(1993)). Consider the formulation (II) of the SDLBP.
Assume a finite realizations set Ξ of the stochastic vector
ξ̃ such as |Ξ| = L. The L-shaped algorithm, adapted
to the SDLBP, processes as follows. Counters r, h, υ are
respectively used for the feasibility and optimality cuts
as well for the algorithm iterations. Constraint (16) is
the matrix version of the cycle time constraints (13); I

represents the identity matrix.

L–shaped Algorithm
Step 0. Set r = h = υ = 0

Step 1. Set υ = υ + 1. Solve the following LP:

min



Fc ·

∑

j∈J

j · zj + ϕ





s.t.

x ∈ X

Dν · x > dν , ν = 1, 2, . . . , r (14)

Eν · x + ϕ > eν , ν = 1, 2, . . . , h (15)

x mixed binary, ϕ > 0

Let (xυ, ϕυ) be an optimal solution.

Step 2. For l = 1, 2, . . . , L, solve the following LP:

min Z = aT · u

s.t.

Tl · xυ − I · y − I · u 6 C (16)

y > 0, u > 0

a = (1, . . . , 1)T, until for some l the optimal

value Z > 0. In this case, let συ be the associated

simplex multipliers; define

Dr+1 = (συ)T · Tl

and

dr+1 = (συ)T · hl

in order to generate constraint called a feasibility cut

of type (14). Set r = r + 1, add constraint type (14)

and return to Step 1. If ∀l ∈ L, Z = 0, go to Step 3.

Step 3. For l = 1, 2, . . . , L, solve the LP:

min W = qT

l · y

s.t.

Tl · xυ − I · y 6 C

y > 0

Let ωυ
l be the simplex multipliers associated with

an optimal solution of problem l above; define
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Eh+1 =
∑

l∈L

pl · (ωυ
l )T · Tl

eh+1 =
∑

l∈L

pl · (ωυ
l )T · hl

Let θυ = eh+1 − Eh+1 · xυ. If ϕυ
> θυ, stop; xυ is

an optimal solution. Else, generate an optimality
cut (constraint) of type (15), set h = h + 1,

add constraint type (15) and return to Step 1.

This method approximated (12) using an outer lineariza-
tion. Two types of constraints (cuts) are sequentially
added:
1) feasibility cuts (14): if for a given solution x̂ ∈ X, it
exists ξ ∈ Ξ such that the problem (II') isn’t feasible,
then, a constraint of type (14) cutting x̂ is generated.
2) optimality cuts (15): in Step 1 of the L-shaped al-
gorithm, a new variable, ϕ, is introduced. It verifies the

inequality ϕ >
∑L

l=1
pl · Q(x, ξl). Since each Q(x, ξ) is im-

plicitly defined by an optimization problem, the program
in Step 1 is solved without this inequality. If for a given

feasible solution, (x̂, ϕ̂), of Step 2, we have ϕ̂ >
∑L

l=1
pl ·

Q(x̂, ξl), then, (x̂, ϕ̂) is an optimal solution, otherwise, a
constraint of type (15) cutting (x̂, ϕ̂) is generated.

3.3 Sample Average Approximation Strategy

The SAA strategy deals with an approximate computation
of the expected recourse cost. It allows the computa-
tion of lower and upper bounds of the optimal solution
of problem (II). A random sample of ξ̃ generated by
the LHS having size Λ, is considered. Then, the term
Eξ̃

[
Q(x, ξ̃)

]
is approximated by the sample average func-

tion 1

Λ
·
∑Λ

l=1
Q(x, ξl). Thus, the problem (II) is approxi-

mated by the problem (III) while pl = 1

Λ
, l = 1, 2, . . . , Λ.

The problem (III) is solved with the L–shaped algorithm.

SAA Procedure
Step 1. Lower Bound Estimation:

generate, using LHS, Ω independent random samples

(ξn
1 , ξn

2 , . . . , ξn
Λ), n = 1, 2, . . . , Ω; Λ is the size of each

sample. Solve the corresponding problem (III) with

the L–shaped algorithm ∀n = 1, 2, . . . , Ω. Compute

an optimal solution xn
Λ and the corresponding

objective value γn
Λ, for each value of n.

Compute a lower bound: LBΛΩ =
1

Ω
·

Ω∑

n=1

γn
Λ.

If γ∗ represents the optimal objective value of (II),

then, we have E(γΛ) 6 γ∗ and γΛ −→Λ→∞ γ∗ with

probability 1; γΛ repesents the optimal objective

value of problem (III), where L = Λ and pl = 1/Λ,

l = 1, 2, . . . , Λ. As LBΛΩ is an unbiased estimator

of E(γΛ), we have LBΛΩ 6 γ∗, (Mak et al. (1999)),

Santoso et al. (2005).

The variance σ2
LBΛΩ

of LBΛΩ is calculated as follows:

σ2
LBΛΩ

=
1

Ω − 1
·

Ω∑

n=1

(γn
Λ − LBΛΩ)2.

Step 2. Upper Bound Estimation:

generate, using LHS, a sample (ξ1, ξ2, . . . , ξΛ′)

of size Λ′ independent from those generated in Step 1.

Let xn
Λ′ be a feasible solution obtained in Step 1;

xn
Λ′ should be the one for which the objective value

of problem (III) is minimum, with L = Λ′, pl = 1/Λ′,

l = 1, 2, . . . , Λ′. Let cn
Λ′ = Fc ·

∑

j∈J

j · zj

and Qn
Λ′ =

1

Λ′
·

Λ
′∑

l=1

Q(xn
Λ′ , ξl), under the solution xn

Λ′ .

Compute an upper bound: UBΛ′ = cn
Λ′ + Qn

Λ′ .

UBΛ′ is an unbiased estimator of γ∗

xn

Λ′

where

γ∗

xn

Λ′

= cn
Λ′ + Eξ̃

[
Q(xn

Λ′ , ξ̃)
]
; γ∗

xn

Λ′

> γ∗,

we have then, UBΛ′ > γ∗.

The variance σ2
UBΛ′

of UBΛ′ can be estimated with:

σ2
UBΛ′

=
1

Λ′ − 1
·

Λ
′∑

l=1

(cn
Λ′ + Q(xn

Λ′ , ξl) − UBΛ′)2.

4. ILLUSTRATIVE EXAMPLE

The SAA procedure has been applied to the compass
example illustrated on Figure 2. The product is made of
seven components: (1) wheel, (2) left leg, (3) right leg, (4)
left fixation screw, (5) lead, (6) tip and (7) right fixation
screw. The ways of completely disassembling the product
is modeled with the AOG shown on the Figure 1. The data
associated with the product are grouped in Table 1 below.
The method presented in this study was implemented in
Microsoft Visual C++ 2008. ILOG CPLEX 12.4 was used
to solve the model on a PC with Pentium(R) Dual-Core
CPU 2.30 GHz and 3Go RAM.

Solution results

Lower and upper bounds values, after optimization for
the compass example, are summarized in Table 2. Table 3
represents the solution corresponding to the upper bound.
Note that just a subset of disassembly tasks is selected to
completely disassemble the compass.

Fig. 2. Compass example
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Table 1. The sample product associated data.

Task µ σ subassembly component

1 0.21 0.05 1 : 5 6; 7

2 0.21 0.05 1 : 3, 6, 7 4; 5

3 0.50 0.10 2, 4, 5 1; 3

4 0.21 0.05 1 : 3 4; 5

5 0.50 0.10 2, 4, 5/3, 6, 7 1

6 0.21 0.05 1 : 3 6; 7

7 0.50 0.10 3, 6, 7 1; 2

8 0.21 0.05 − 2; 4; 5

9 0.50 0.10 − 1; 2; 3

10 0.21 0.05 − 3; 6; 7

K, M, N Fc C qj , ∀j ∈ J Ω, Λ, Λ′

5, 3, 10 5 0.51 7 20, 30, 50

Table 2. Objective value results

LB UB cn
Λ′

Qn
Λ′

LBΛΩ = 5.253 UBΛ′ = 5.340 5.100 0.240

σ2

LBΛΩ
= 0.000 σ2

UB
Λ′

= 0.533

Under the upper bound solution, the number of worksta-
tions is 2. Tasks {2, 6} are assigned to the 1st workstation
and task 9 to the second one. The overall idle time of the
disassembly line, if mean time of each task selected is con-
sidered, is 0.10. This solution was provided in 10.5 seconds.

Table 3. Upper bound solution

Task µ σ subassembly component

2 0.21 0.05 1 : 3, 6, 7 4; 5

6 0.21 0.05 1 : 3 6; 7

9 0.50 0.10 − 1; 2; 3

5. CONCLUSION

In this paper, the DLBP was studied under uncertainty
and a two–stage stochastic linear mixed integer program
with fixed recourse was developed. Disassembly task times
were assumed random variables with known normal prob-
ability distributions. To solve the problem efficiently, the
SAA strategy was proposed. This strategy combined the
L–shaped algorithm and the LHS Monte Carlo technique.
The SAA procedure provided lower and upper bounds of
the optimal solution for the SDLBP. Deviations of these
bounds were also provided. To illustrate the SAA strategy,
a case example was presented.
Our next objective is to test the SAA strategy on a data
set of industrial problems in order to evaluate its practical
efficiency. Such an evaluation should show if the developed
method can afford the solution of the real–size problems
characterized by a large number of alternatives and sub-
assemblies in reasonable computational time. Further, the
case of partial disassembly under uncertainty will be in-
vestigated.
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