
HAL Id: emse-00921628
https://hal-emse.ccsd.cnrs.fr/emse-00921628

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multicore Mining of Correlated Patterns
Christian Ernst, Alain Casali

To cite this version:
Christian Ernst, Alain Casali. Multicore Mining of Correlated Patterns. IMMM 2013, Nov 2013,
Lisboa, Portugal. pp 18-23. �emse-00921628�

https://hal-emse.ccsd.cnrs.fr/emse-00921628
https://hal.archives-ouvertes.fr

Multicore Mining of Correlated Patterns

Christian Ernst

Ecole des Mines de St Etienne

CMP - Site Georges Charpak

Gardanne, France

ernst@emse.fr

Alain Casali

Aix-Marseille Universit,

CNRS, LIF UMR 7279,

Marseille, France

alain.casali@lif.univ-mrs.fr

Abstract—We present a new approach related to the discovery
of correlated patterns based on the use of multicore architectures.
Our work rests on a full Knowledge Discovery in Databases
system allowing one to extract Decision Correlation Rules based
on the Chi-squared criterion from any database that includes a
target column. We use a levelwise algorithm as well as contingency
vectors, an alternate and more powerful representation of contin-
gency tables. The goal is to parallelize the extraction of relevant
rules by invoking the Parallel Patterns Library which allows
a simultaneous access to the whole available cores on modern
computers. We finally present first results and performance gains.

Keywords—Data Mining, Decision Correlation Rule, Multicore
Architecture, Parallel Pattern Library.

I. INTRODUCTION AND MOTIVATION

Innovations in multicore architectures have begun to al-
low parallelization on inexpensive desktop computers. Many
standard software products will soon be based on recent
parallel computing concepts implemented on such hardware.
Consequently, there is a growing interest in the field of par-
allel data mining algorithms, especially in Association Rules
Mining (ARM). By exploiting multicore architectures, parallel
algorithms may improve both execution time and memory
requirement issues, two main objectives of ARM.

Independently of this framework, we developed a Knowl-
edge Discovery in Databases (KDD) system based on the
discovery of Decision Correlation Rules (DCRs) with large
and specialized databases [1]. The rules are functional in
semiconductor fabs: the goal is to discover the parameters that
have the most impact on a specific parameter, the yield of
a given product. DCRs are close to Association Rules, but
present huge technical differences. After implementing DCRs
using “conventional sequential algorithms”, we adapted our
approach to multicore implementation issues.

This paper is organized as follows: In Section II, we
expose current aspects of multicore programming. Section
III is dedicated to related work: we present (i) an overview
of ARM over a multicore architecture and (ii) what DCRs
are. Section IV describes the concepts used for multicore
decision rules mining and our algorithms. In Section V, we
show first results of experiments. Last Section summarizes our
contribution and outlines some research perspectives.

II. NEW FEATURES IN MULTICORE PROGRAMMATION

In the last two decades, parallelization on personal
computers has consisted to develop multithreaded code layers.

What required complex co-ordination of threads, due to the
interweaving of shared data processing. Although threaded
applications added limited performance on single-processor
machines, the extra overhead of development has been
difficult to justify. But with Intel and AMD introducing
commercially multicore chips in 2005, non exploiting the
resources provided by multiple cores will now quickly reach
performance ceilings. At that last date, no simple software
environment able to take advantage of the different processors
have been simultaneously proposed. New opportunities
appeared in 2010, presented in the C++ language used in our
developments.

Multicore processing influenced actual computational soft-
ware development. Many modern languages do not support
multicore functionality. Therefore, different conceptual models
deal with the problem, such as using a coordination language
(programming libraries and/or higher order functions). Users
program using these abstractions, and an “intelligent” compiler
then chooses the best implementation based on the context
[2]. Cilk++, OpenMP, OpenHMPP, TBB, etc., are examples
of such models having been recently proposed for use on
multicore platforms. A comparison of some OpenX approaches
can be found in [3]. Nevertheless, the majority of these models
rests on an intelligent transformation of general code into
multithreaded code.

A novel albeit simple idea was proposed by the Open
Multiprocessing consortium in 1997, based on the fact that
looping functions are the key area where splitting parts of
a loop across all available hardware resources may increase
application performance. The OpenMP Architecture Review
Board became an API that supports shared memory multipro-
cessing programming now also in C++. It consists of a set of
compiler directives, library routines, and environment variables
that influence run-time behavior. In order to schedule a loop
across multiple threads, the OpenMP pragma directives were
introduced in 2005 to explicitly relay to the compiler more
about the transformations and optimizations that should take
place. To illustrate our purpose, we compute in parallel an
approximation of the value of π using a Riemann Zeta function
(π2/6 = 1/12 + 1/22 + 1/32 + ..., see Listing 1):

double p i 2 = 0 . 0 ;

#pragma omp f o r

f o r (i n t i = 1 ; i < 1000000; i ++) {
pragma omp a t o mi c

p i 2 += 6 . 0 / (i ∗ i) ;

}

Listing 1: Computing π using basic multithreaded paralleliza-
tion

The first directive requests that the for loop should be
executed on multiple threads, while the second is used to
prevent multiple simultaneous writes to the pi2 variable.

The example also shows the limits of parallelism. It
is widely agreed that applications that may benefit from
using more than one processor necessitate (i) operations that
require a substantial amount of processor time, measured in
seconds rather than milliseconds and (ii) one or more loops
of some kind, or operations that can be divided into discrete
but significant units of calculation that can be executed
independently of one another. So the chosen example with a
single instruction at each iteration does not fit parallelization,
but is used nevertheless to illustrate in a simple way the
new features introduced by actual multicore programming
techniques.

These were first developed by Microsoft through an own
“parallel” approach in the 2000s. Since 2010, and the relevant
versions of the .NET framework and Visual Studio, Microsoft
enhanced support for parallel programming by providing a
runtime tool and a class library among other utilities. The
library is composed of two parts: Parallel LINQ (PLINQ), a
concurrent query execution engine, and Task Parallel Library
(TPL), a task parallelism component of the .NET framework.
What is particularly advanced is that this component entirely
hides the multithreading activity on the cores: the job of
spawning and terminating threads, as well as scaling the
number of threads according to the number of available cores,
is done by the library itself. The main concept is here a Task,
which can be executed independently.

The Parallel Patterns Library (PPL) is the corresponding
available tool in the Visual C++ environment, and is defined
within the Concurrency namespace. The PPL operates on
small units of work (Tasks), each of them being defined by
what is called a λ expression (see below). The PPL defines
almost three kinds of facilities for parallel processing: (i)
algorithm templates for parallel operations, (ii) class templates
for managing shared resources, and (iii) class templates for
managing and grouping parallel tasks.

Listing 2 rewrites our example using the parallel for
algorithm, equivalent to a for loop that executes loop iteration
in parallel on multiple cores:

f l o a t p i 2 = 0 ;

p a r a l l e l f o r (1 , 1000000 , [& p i 2] (long n)

{
/ / s h a r e <pi2> be tween t h e c o r e s

p i 2 += 6 . 0 / (n ∗ n) ;

}
) ;

Listing 2: Computing π using multi-core parallelization

The PPL also proposes the parallel for each algorithm
(for repeated operations on a STL container), and the par-
allel invoke algorithm (which executes a set of two or more
independent Tasks in parallel).

As mentioned when discussing the OpenMP pragma

directives, if the computation on each iteration in the
parallel for is very short and it is the case here, there will
be important overhead in allocating the task to a core on

each iteration, which may severely erode any reduction in
execution times. This will also be the case if the overall loop
integrates important shared resources management, as will be
shown in Section IV.

The second main novelty introduced by the PPL is the
use of λ expressions: A computational model invented by
Alonzo Church in the 1930s, which directly inspired both
the syntax and the semantics of most functional programming
languages [4]. The λ calculus in its most basic form has two
operations: (i) Abstractions, which correspond to anonymous
functions, and (ii) Applications, which exist to apply the
function. Anonymous functions are often called “lambdas”,
“lambda functions” or “lambda expressions”: They remove all
need for scaffolding code, allowing a predicate function to be
defined in-line in another statement.

The syntax of a λ function is reasonably straight-forward,
of the form:

[lambda-capture] (parameter-list) {->} return-type

{statement-list}

In our example (Listing 2), the element of the lambda
in the square brackets is called the capture specification: It
relays to the compiler that a lambda function is being created
and that the local variable pi2 is being captured by reference.
The final part is the function body.

Lambdas behave like function objects (as did previously
functors), except for that we cannot access the class that
is generated to implement a lambda in any way other than
using the lambda. Consequently, any function that accepts
functors as arguments will accept lambdas, but any function
only accepting function pointers will not.

These and many other features of λ functions have been
included in the C++11 language norm, allowing a more
declarative programming style, taking for example advantage
of STL algorithms in a much streamlined and cleaner form.
λ functions allow the inline definition of a function body in
the code section in which it is to be logically used. As well as
providing strong hints to the compiler about potential real time
optimizations, λ functions make discerning the intent about
what a section of code is doing much easier.

III. RELATED WORK

Due to the variety of the algorithms (and their specific
internal data structures) no general model allowing parallel
ARM computation exists. Main techniques based on A-Priori
algorithms [5] are described in Section 3.A. Other multicore
ARM approaches are based either on vertical mining [6] or on
FP-Growth [7]. Each model consists in an multicore optimized
architecture built upon specific thread managers [4]. Finally,
Section 3.B presents the main results about what Decision
Correlation Rules are and how can we compute them using
a single processor.

A. A-Priori based algorithms

Most of the parallel ARM algorithms are based on par-
allelization of A-Priori that iteratively generates and tests

candidate itemsets from length 1 to k until no more frequent
itemsets are found. These algorithms can be categorized into
Count Distribution, Data Distribution and Candidate Distri-
bution methods [8]. The Count Distribution method divides
the database into horizontal partitions, that are independently
scanned, in order to obtain the local counts of all candidates on
each process. At the end of each iteration, the local counts are
summed up a into the global counts so that frequent itemsets
can be found. The Data Distribution method partitions both
the database and the candidate itemsets in the main memory
of parallel machines. Since each candidate is counted by
only one process, all processes have to exchange database
partitions during each iteration in order, for each process, to
obtain the global counts of the assigned candidate itemsets.
The Candidate Distribution method also partitions candidate
itemsets but replicates, instead of partitioning and exchanging,
the database transactions. Thus, each process can proceed
independently.

B. Decision Correlation Rules

Brin et al. [9] have proposed the extraction of correlation
rules using the Chi-Squared (χ2) statistic instead of the support
and the confidence measures. The χ2 (i) is a more significant
measure in a statistical way than an association rule, (ii)
takes into account the presence but also the absence of the
items and (iii) is non-directional, highlighting thus more
complex existing links than implications. A correlation rule
is represented by an itemset.

Let r be a binary relation over a set of items R = I ∪ T .
I represents the items of the binary relation used as analysis
criteria and T is a target attribute which may not necessarily
have a value. The computation of the value for the χ2 function
for an item X ⊆ R is based on its contingency table. In
order to simplify the notation, we introduce, in a first step,
the lattice of the literalsets associated with X ⊆ R. This set
of cardinality |X| contains all the literalsets that can be built
up given X .

Definition 1 (Literalset Lattice): Let X ⊆ R be a pattern,
we denote by P(X) the literalset lattice associated with X .

This set is defined as follows: P(X) = {Y Z such that X =
Y ∪ Z and Y ∩ Z = ∅} = {Y Z such that Y ⊆ X and Z =
X\Y }.

Definition 2 (Contingency Table): For a given pattern X ,
its contingency table, noted CT (X), is a 2|X| matrix. Each

cell yields the support of a literalset Y Z ∈ P(X): the number
of transactions including Y and containing no 1-item of Z.

In order to compute the value of the χ2 function for a
pattern X , we apply the following formula:

χ2(X) =
∑

Y Z∈P(X)

(Supp(Y Z)− E(Y Z))2

E(Y Z)
(1)

Brin et al. [9] have shown that there is a single degree of
freedom between the items. A table giving the centile values in
function of the χ2 value for X can be used in order to obtain
the correlation rate for X .

Definition 3 (Correlation Rule): Let MinCor (≥ 0) be a
given threshold and X ⊆ R a pattern. If χ2(X) ≥ MinCor,
then X is a valid correlation rule. If X contains an item of T ,
then the obtained rule is called a Decision Correlation Rule
(DCR).

Moreover, in addition to the previous constraint, the
Cochran criteria [10] are used to evaluate whether a
correlation rule is semantically valid: all literalsets of a
contingency table must have an expectation value different to
zero and 80% of them must have a support larger than 5%.
This last criterium has been generalized as follows: MinPerc
of the literalsets of a contingency table must have a support
larger than MinSup, where MinPerc and MinSup are
given thresholds.

Definition 4 (Equivalence Class): We denote by [Y Z] the

equivalence class associated with the literal Y Z: it contains
the set of transaction identifiers including Y and containing
no value of Z (i.e., [Y Z] = {i ∈ T id(r) such that Y ⊆
T id(i) and Z ∩ T id(i) = ∅}).

Definition 5 (Contingency Vector): Let X ⊆ R be a pat-
tern. The contingency vector of X , denoted CV (X), groups
the set of the literalset equivalence classes belonging to P(X)
ordered according to the lectic order.

Since the union of the equivalence classes [Y Z] of the
literalset lattice associated with X is a partition of the Tids,
we ensure that a single transaction identifier belongs only
to one single equivalence class. Consequently, for a given
pattern X , its contingency vector is an exact representation
of its contingency table. To derive the contingency table from
a contingency vector, it is sufficient to compute the cardinality
of each of its equivalence classes. The following proposition
shows how to compute the CV of the X ∪A pattern given the
CV of X and the set of Tids containing pattern A.

Proposition 1: Let X ⊆ R be a pattern and A ∈ R\X a
1-item. The contingency vector of the X ∪ A pattern can be
computed given the CVs of X and A as follows:

CV (X ∪A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A]) (2)

In order to mine DCRs, we have proposed [1] the LHS-
CHI2 algorithm (see Algorithm 1) based both (i) on a double
recursion in order to browse the search space according to the
lectic order and (ii) on CVs.

The CREATE_CV function is an implementation of formula
2, while the CtPerc predicate checks the relaxed Cochran
criteria.

IV. PARALLEL EXTRACTION OF CORRELATED PATTERNS

The development of multicore applications raises two
difficulties in terms of (i) application design and (ii) shared
resource management. The second aspect is rather “normal”
when coping with parallelism. And will constitute the aim
of this section, illustrated through specific mechanisms
provided by the PPL. But application design must not be
underestimated because, amongst other points, of its impact
on resource management. Parallelizing existing algorithms is
an important consideration as well [2]. The use of recursive

Algorithm 1: LHS-CHI2 Algorithm.

input : X and Y two patterns
output: { Z ⊆ X such that χ2(Z) ≥ MinCorr}

1 if Y = ∅ and ∃t ∈ T : t ∈ X and |X| ≥ 2 and

χ2(X) ≥ MinCorr then

2 Output X, χ2(X)
3 end
4 A := max(Y) ;
5 Y := Y \{A} ;
6 LHS-CHI2 (X,Y) ;
7 Z := X ∪ {A} ;
8 CV(Z) := CREATE CV (CV(X),Tid(A)) ;
9 if CtPerc (CV (Z),MinPerc,MinSup) and
|Z| ≤ MaxCard then

10 LHS-CHI2 (Z,Y) ;
11 end

algorithms in a multicore environment is here a sufficient
challenge. This because recursion cannot be measured in
terms of number of loops to perform: We first tried to
replace the recursive calls by calls to appropriate threads,
which quickly appeared “impossible’. Another approach was
based on the well known fact that each recursive algorithm
can be rewritten in a iterative way. However, the while
loop used to run over the used stack may not be evaluated
in terms of a for loop due to the absence of explicit boundaries.

In order to solve the problem, we recalled that we first
compared our LHS-CHI2 algorithm to a LEVELWISE one,
based on the same monotone and anti-monotone constraints
but which did not include Contingency Vectors management.
The main reason of the obtained performance gains is that
pruning the search space using the lectic order is much more
“elegant” than using the LEVELWISE order but has no impact
nor on the results nor on the performances. On the other hand,
generating the candidates at a given level is a bounded task,
limited by the number of existing 1-items. So we decided to
(i) use the LEVELWISE order to prune in a parallel way the
search space and (ii) to keep the CVs in order to manage the
constraints.

The corresponding result is presented hereafter through
different functions. The overall algorithm (see Listing 3),
called PLW Chi2, where PLW stands for Parallel LEVELWISE,
demonstrates first parallel features of our method in order to
generate (and then to test) the candidates.

In order to simplify the notations, the following Listings
use uc, ui, ul, us to substitute to, respectively, unsigned char,
unsigned int, unsigned long and unsigned short standard
declarations.

void PLW Chi2 (us X[] , us sX , us s I)

/ / X [] : s e t o f computed 1− i t e m s

/ / sX : number o f v a l i d 1− i t e m s w i t h i n X []

/ / s I : t o t a l number o f 1− i t e m s i n X []

{
/ / number o f c a n d i d a t e s a t l e v e l c l and (c l +1)

u l c i t , n i t ;

c i t = sX ;

f o r (uc c l = 2 ; c l <= MaxLv && c i t > 0 ; c l ++)

{
n i t = 0L ;

T Res aRes ;

combinable l n i t ;

p a r a l l e l f o r (0 u , (u i) c i t , [c l , X, sX , &aRes , &l n i t] (i n t i)

{
d o w o r k l e v e l (c l , X, sX , i , s I , &aRes) ;

l n i t . l o c a l () += aRes . n i t ; / / . . .

}) ;

n i t = l n i t . combine (p lus ()) ;

/ / . . .

c i t = n i t ;

u p d a t e s h a r e d r e s o u r c e s () ;

}
}

Listing 3: The simplified PLW CHI2 method

Parallelization takes place at each cl level of the LEVEL-
WISE search algorithm. The number of launched Tasks at level
cl directly depends of the number of existing candidates at
level (cl - 1), e.g., cit. Each Task corresponds to a call to
the dowork level () function, which performs the work it is
intended to do (see below), and collects some statistics during
the call through the aRes object. Let us mention here that
database access is performed through global objects.

In this paragraph, we only focus on the signification of a
particular statistic, the lnit member of the aRes object: It sums
the number of discovered candidates to be examined at the
next level. Because each Task computes its own candidates for
the next level, the method has to pay attention to the possible
interference which could take place during the overall parallel
computation on such a “shared” variable, which can be seen
as an aggregation pattern. A two-phase approach is therefore
used: First, partial results are locally computed on a per-Task
basis. Then, once all of the per-Task partial results are at
disposal, the results are sequentially merged into one final
accumulated value. The PPL provides the combinable class
data structure that creates per-Task local results in parallel,
and merge them as a final sequential step. In the above
code, the final accumulated object is the lnit object, which
decomposes into local to each Task lnit.local() sub-objects.
After the parallel for loop achieves, the final sum is produced
by invoking the combine() method on the global object.

Listing 4 partially shows the implementaton of the
dowork level () function:

void d o w o r k l e v e l (uc nc , us pX [] , us X, u l ne l ,

us sIX , T Res& pRes)

{
us vmin , tCand [MaxLv + 1] ; / / a c a n d i d a t e

u l j , k ;

uc ∗theCV ; / / a CV

/ / o t h e r d e c l a r a t i o n s and i n i t i a l i z a t i o n s

/ / g e t c u r r e n t i t e m s e t

vmin = g e t p a t t e r n (nc , tCand , pX , cX , ne l , sIX) ;

/ / j i s t h e i n d e x o f t h e f i r s t 1− i t e m t o add

j = 0 ;

whi le (j < cX && pX [j] <= vmin) j ++;

f o r (k = j ; k < cX ; k ++)

{
/ / add a 1− i t e m t o c u r r e n t i t e m s e t t o produce a c a n d i d a t e

tCand [0] = pX [k] ;

/ / compute i t s CV i f t h e c o n s t r a i n t s are v a l i d

theCV = compute CV (tCand , nc , . . .) ;

/ / memorize t h e c a n d i d a t e and add i t t o r e s u l t s

/ / i f a p p l i e s

s tore CV (tCand , nc , theCV , pRes , . . .) ;

/ / up da t e s t a t i s t i c s

pRes . n i t ++; / / . . .

}
}

Listing 4: Code of main method called by PLW CHI2

We shall not enter into the implementation details of this
function. First because the code is most C likely and is easy
to understand. And second because it does not include any
specific parallel or shared memory features. So, we shall
only explain its overall functionalities. The for loop is used
to produce all the candidates at the current stage (the tCand
variable). This is done by “adding” the possible existing
1-items to the base itemset managed by the function, and
identified by the nel “number” (we shall discuss this aspect
later). Once having generated such a candidate, we verify
first if the different constraints underlying to our method are
verified or not by the candidate. If it is the case, we compute
its Contingency Vector using the compute CV () function. We
second (try to) memorize the candidate in order to reuse it at
the next level, and we add the candidate to the results if it
contains one item of the target attribute.

Finally, the store CV () function (see Listing 5) describes,
in a very simplified way, a specific section of code dedicated
to the storage of results:

bool s tore CV (us X[] , us cardX , . . .)

{
/ / add X t o t h e r e s u l t f i l e i f X c o n t a i n s t h e t a r g e t

i f (. . .)

{
c r i t i c a l s e c t i o n cs ;

c s . l o c k () ;

i f (. . .)

w r i t e l l h s p t o f i l e (X, cardX , . . .) ;

e l s e

w r i t e p a t t e r n t o f i l e (X, cardX , . . .) ;

c s . u n l o ck () ;

}
/ / . . .

}

Listing 5: Sharing ressources with the PPL using a critical
section

Let us focus on the functionality involved in the first if
statement: k-itemsets verifying the whole defined constraints
and including an item belonging to the target column must be
included into the results. This is done through their insertion
into data files (one is associated to each value of k). During
the parallellization process, each Task may write to one of
these files each time it discovers a new valid itemset. What
raises another shared resource problem, addressed by the
PPL by the use of critical sections (a well-known concept in
multithreading developments), as shown in the above code.
When encountering such an instruction at run-time, the OS
will not authorize any other Task to execute before the “lock”
has been released.

To finish this Section, we explain the way we manage the
memorization of candidates and associated information such
as CVs. The main shared data structure in our developments
is a tree storing the k-itemsets of “interest” (see Listing 6).
The corresponding node structure, given in the C language, is:

t y p e d e f s t r u c t p a t t e r n n o d e

{
unsigned s h o r t ∗ P a t t e r n ; / / t h e p a t t e r n

unsigned char ∗pCV ; / / p o i n t e r t o t h e CV

T NM ∗ b r o t h e r ; / / p o i n t e r t o n e x t node a t same l e v e l

T NM ∗son ; / / p o i n t e r t o n e x t node a t lower l e v e l

. . .

} T NM;

Listing 6: Main index structure used by the PLW CHI2
method

Each time a Task discovers a candidate verifying the whole
constraints, the candidate is inserted into the tree. The insertion
by itself uses the critical section concept we just introduced.
Because the stored itemsets (patterns) are lexicographically
organized within the tree, each of them can be referred to
by a node number (what explains the nel “number” intro-
duced above). Finally, after evaluating the candidates, the
exploring process will retain them or not. In the latter case,
the tree structure may be garbaged, which is done by the
update shared resources () function called at the end of our
global PLW Chi2 method.

V. EXPERIMENTAL ANALYSIS

As briefly mentioned in the Introduction Section, this work
has been initially applied on raw data measurement files
provided by two industrial manufacturing partners in the area
of Microelectronics: STMicroelectronics (STM) and ATMEL
(ATM). The results of the realized experimental series are
presented on 2 plans to be followed. They are associated
with an analysis of 2 files among those supplied by both
manufacturers. The first one (STM) contains 1241 columns
and 296 lines. The second (ATM) consists of 749 columns and
213 lines. We chose a target attribute among a few possible
columns. In both cases, the presented diagrams show the
execution times of two methods when MinSup varies while
MinPerc (0.34 for the STM file and 0.24 for the ATM one)
and MinCor (1.6 resp. 2.8) are fixed (see section III-B for
more details).

Figures 1(a) and 1(b), extracted from [1], show the
execution times of a standard LEVELWISE algorithm and
the LHS-CHI2 algorithm on a non core computer (a HP
Workstation with a 1.8 GHz processor and 4 Gb RAM,
working under a Windows XP 32 bits OS). The difference
between the two methods is that the LEVELWISE method
uses no contingency vectors but standard computation of
contingency tables. As the graphs point it out, the response
times of the LHS-CHI2 method are between 30% and 70%
better than LEVELWISE.

Figures 2(a) and 2(b) show the same execution times
using the LHS-CHI2 algorithm and the presented PLW-CHI2
algorithm on a 4 core computer (a DELL Workstation with
a 2.8 GHz processor and 12 Gb RAM working under the
Windows 7 64 bits OS).

As it is easy to understand, the LHS-CHI2 method works
here about two times faster on the multicore architecture, this
is not because of the number of cores (which are not used)
but because of the computer basic enhanced capabilities. When
regarding to the performances of the PLW-CHI2 method, there
is a gain factor of about 3.5, which is to compare to the
number of available cores, which is 4. In other words, the
parallelization of the LHS-CHI2 algorithm raises performance
gains practically equals to the number of cores, the (little) loss
being due to the shared memory management issues. Let us
underline here that we do not integrate in these amounts that
one core remains dedicated to system management ...

0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27

MinSup (%)

0

500

1000

1500

2000

T
im

e
(s

)

Levelwise

LHS-Chi2

(a) Results for STM File

0.30 0.35 0.40 0.45 0.50 0.55

MinSup (%)

0

500

1000

1500

2000

T
im

e
(s

)

Levelwise

LHS-Chi2

(b) Results for ATM File

Fig. 1: Execution times with a single processor.

0.19 0.20 0.21 0.22 0.23 0.24

MinSup (%)

0

100

200

300

400

500

600

700

T
im

e
(s

)

LHS-Chi2

PLW-Chi2

(a) Results for STM File

0.30 0.32 0.34 0.36 0.38 0.40

MinSup (%)

0

100

200

300

400

500

T
im

e
(s

)

LHS-Chi2

PLW-Chi2

(b) Results for ATM File

Fig. 2: Execution times with 4 cores.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a new approach to discover
correlated patterns, based on the usage of multicore architec-
tures. Our approach is based on two concepts: Contingency
Vectors, an alternate representation of contingency tables, and
the Parallel Patterns Library. One advantage of Contingency
Vectors is that they allow the Chi-squared computation of a k-
itemset directly from one of its subsets. However, the usage of
this library has a disadvantage: The parallelization of recursive
algorithms is hard (we do not control neither the number
of cores, nor the depth of the tree), even if we derecursify
the algorithm. That is why we have chosen to implement a
LEVELWISE algorithm which implements these two concepts.
Experiments are convincing because our PLW Chi2 algorithm
gains a time factor of about 3.5 (when using 4 cores) in
comparison with the recursive version. For future works, we
intend to develop a new version of the recursive algorithm
using Contingency Vectors and to build our own thread/core
manager.

REFERENCES

[1] A. Casali and C. Ernst, “Discovering correlated parameters in semicon-
ductor manufacturing processes: A data mining approach,” Semiconduc-

tor Manufacturing, IEEE Transactions on, vol. 25, no. 1, pp. 118–127,
2012. I, III-B, V

[2] J. Darlington, M. Ghanem, Y. ke Guo, and H. W. To, “Guided resource
organisation in heterogeneous parallel computing,” 1996. II, IV

[3] G. Krawezik and F. Cappello, “Performance comparison of mpi and
openmp on shared memory multiprocessors,” Concurrency and Com-

putation: Practice and Experience, vol. 18, no. 1, pp. 29–61, 2006.
II

[4] H. P. Barendregt, “Functional programming and lambda calculus,” in
Handbook of Theoretical Computer Science, Volume B: Formal Models

and Sematics (B), 1990, pp. 321–363. II, III

[5] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB, J. B. Bocca, M. Jarke, and C. Zaniolo,
Eds. Morgan Kaufmann, 1994, pp. 487–499. III

[6] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithms
for discovery of association rules,” Data Min. Knowl. Discov., vol. 1,
no. 4, pp. 343–373, 1997. III

[7] E. Li and L. Liu, “Optimization of frequent itemset mining on multiple-
core processor,” in VLDB, C. Koch, J. Gehrke, M. N. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, Eds. ACM, 2007,
pp. 1275–1285. III

[8] R. Agrawal and J. C. Shafer, “Parallel mining of association rules,”
IEEE Trans. Knowl. Data Eng., vol. 8, no. 6, pp. 962–969, 1996. III-A

[9] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets:
Generalizing association rules to correlations,” in SIGMOD Conference,
1997, pp. 265–276. III-B, III-B

[10] D. Moore, “Measures of lack of fit from tests of chi-squared type,”
Journal of statistical planning and inference, vol. 10 (2), no. 2, pp.
151–166, 1984. III-B

	I Introduction and Motivation
	II New features in multicore programmation
	III Related Work
	III-A A-Priori based algorithms
	III-B Decision Correlation Rules

	IV Parallel Extraction of Correlated Patterns
	V Experimental Analysis
	VI Conclusion and future work
	References

