
HAL Id: emse-00921635
https://hal-emse.ccsd.cnrs.fr/emse-00921635

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting correlated parameters on multicore
architectures

Christian Ernst, Alain Casali

To cite this version:
Christian Ernst, Alain Casali. Extracting correlated parameters on multicore architectures. CD-ARES
2013, Sep 2013, Regensburg, Italy. pp 118-133. �emse-00921635�

https://hal-emse.ccsd.cnrs.fr/emse-00921635
https://hal.archives-ouvertes.fr

Extracting Correlated Patterns on Multicore

Architectures

Alain Casali1 and Christian Ernst2

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS UMR 6166, Aix Marseille Université

IUT d’Aix en Provence, Avenue Gaston Berger,
13625 Aix en Provence Cedex, France

alain.casali@lif.univ-mrs.fr

2 Ecole des Mines de St Etienne, CMP - Georges Charpak
880 avenue de Mimet, 13541 Gardanne

ernst@emse.fr

Abstract. In this paper, we present a new approach relevant to the
discovery of correlated patterns, based on the use of multicore architec-
tures. Our work rests on a full KDD system and allows one to extract
Decision Correlation Rules based on the Chi-squared criterion that in-
clude a target column from any database. To achieve this objective, we
use a levelwise algorithm as well as contingency vectors, an alternate and
more powerful representation of contingency tables, in order to prune the
search space. The goal is to parallelize the processing associated with the
extraction of relevant rules. The parallelization invokes the PPL (Paral-
lel Patterns Library), which allows a simultaneous access to the whole
available cores / processors on modern computers. We finally present
first results on the reached performance gains.

1 Introduction and Motivation

In the past couple of years, innovations in hardware architecture, like hyper-
threading capabilities or multicore processors, have begun to allow parallel com-
puting on inexpensive desktop computers. This is significant in that standard
software products will soon be based on concepts of parallel programming im-
plemented on such hardware, and the range of applications will be much broader
than that of scientific computing (the main area for parallel computing). Conse-
quently, there is a growing interest in the research field of parallel data mining
algorithms, especially in association rules mining (ARM). By exploiting mul-
ticore architectures, parallel algorithms may improve both execution time and
memory requirement issues, the main objectives of the data mining field.

Independently of this framework, we soon developed a KDD system based on
the discovery of Decision Correlation Rules with large and specialized databases
(Casali and Ernst, 1). These rules are functional in semiconductor fabrication
capabilities. The goal is to discover the parameters that have the most impact
on a specific parameter, the yield of a given product ... Decision Correlation

2 A. Casali, C. Ernst

Rules (DCRs) are similar to Association Rules. But, as it will be shown, there
are huge technical differences, and the overall computation times of DCRs are
in the end much better. Furthermore, after implementing DCRs using “conven-
tional sequential algorithms”, we decided to adapt this approach to multicore
implementation possibilities.

This paper is organized as follows. In Section 2, we recall current features of
multicore programming. Section 3 is dedicated to related work: we present (i)
an overview of Association Rules Mining over a multicore architecture and (ii)
what Decisional Correlation Rules are. Section 4 describes the concepts used
for multicore decision rules mining and our algorithm. In Section 5 we show
the results of first experiments. Finally, in the final Section, we summarize our
contribution and outline some research perspectives.

2 Recent advances in multicore programmation

Multicore processing is not a new concept, however only recently has the tech-
nology has become mainstream with Intel or AMD introducing commercially
available multicore chips in 2008. At that date, no software environment able
to take advantage simultaneously of the different existing processors had been
proposed, let alone produced for the commercial market.

The situation radically changed in 2010. We present in this section these new
opportunities, showing the covered aspects in the C++ language used in our de-
velopments. We first introduce what the approaches towards parallelization were
until only a few years ago. We then present quickly the Lambda Calculus, a new
programming paradigm integrated into the last C++ norm and essential to un-
derstand multicore prorammation. And we finally expose the PPL environment,
which allows effective multicore programmation in a simple way.

2.1 Parallelization issues on modern desktop computers

For about twenty years, parallelizing tasks on personal computers consisted es-
sentially in the development of multithreaded code, by adding or not higher
abstraction levels on the base threaded layers. This often required complex co-
ordination of threads, and introduced difficulties in finding bugs due to the in-
terweaving of processing of data shared between the threads. Although threaded
applications added limited amounts of performance on single-processor machines,
the extra overhead of development was difficult to justify on the same machines.

But given the increasing emphasis on multicore chip architectures, developers
unable to design software to fully exploit the resources provided by multiple cores
will now quickly reach performance ceilings.

Multicore processing has thus affected the ability of actual computational
software development. Many modern languages do not support multicore func-
tionality. This requires the use of specialized libraries to access code written

Extracting Correlated Patterns on Multicore Architectures 3

in languages such as C. There are different conceptual models to deal with the
problem, for example using a coordination language and program building blocks
(programming libraries and/or higher order functions). Each block may have a
different native implementation for each processor type. Users simply program
using these abstractions, and an intelligent compiler then chooses the best im-
plementation based on the context (Darlington, 2).

Many parallel programming models have been recently proposed (Cilk++,
OpenMP, OpenHMPP, ...) for use on multicore platforms. Intel introduced a
new abstraction for C++ parallelism called TBB. Former and more organiza-
tion oriented research efforts include the Codeplay Sieve System, Cray’s Chapel,
Sun’s Fortress, and IBM’s X10. A comparison of some OpenXXX approaches
can be found in (Hamidouche and al., 3).

But the majority of these models roughly bases on the intelligent transforma-
tion of general code into multithreaded code. A new, even if simple idea, has been
proposed by the OpenMP consortium in FORTRAN in 1997, based on the fact
that looping functions are the key area where splitting parts of a loop across all
available hardware resources may increase application performance. The Open
Multiprocessing Architecture Review Board (or OpenMP ARB) became an API
that supports shared memory multiprocessing programming in C++. It consists
of a set of compiler directives, library routines, and environment variables that
influence run-time behavior. In order to schedule a loop across multiple threads,
the OpenMP pragma directives were introduced in 2005 to explicitly relay to the
compiler more about the transformations and optimizations that should take
place. The example chosen to illustrate our purposes is the computation of the
sum of an integer vector:

vector<int> v = ...;

int sum = 0;

#pragma omp for

for (int i = 0; i < v.size(); i++) {

#pragma omp atomic

sum += v[i];

}

The first directive requests that the for loop should be executed on multiple
threads, while the second is used to prevent multiple simultaneous writes to the
sum variable ...

This approach has then be adapted to multicore programmation, as illus-
trated hereafter. Let us previously underline that parallelism also has its lim-
its. It is widely admitted that applications that may benefit from using more
than one processor necessitate (i) operations that require substantial amount
of processor time, measured in seconds (or larger denominations) rather than
milliseconds and (ii) one or more loops of some kind, or operations that can be
divided into discrete but significant units of calculation that can be executed
independently of one another.

4 A. Casali, C. Ernst

2.2 A new programming paradigm: the Lambda Calculus

The example above without parallelization issues can be re-written as follows:

vector<int> v = ...;

int sum = 0;

for (int i = 0; i < v.size(); i++){

sum += v[i];

}

A declarative looping technique generalized the syntax for STL containers:
the for each function has been introduced in a first C++ 0x draft, so the code
can be re-written in:

vector<int> v = ...;

int sum = for_each(v.begin(), v.end(), Adder());

The third argument is a functor: a class overloading the () operator. In our
example, the functor has to perform the addition. This approach did not result
in much success for many reasons, the two main of which include: (i) developers
must implement the functor, but defining a whole class in order to finally execute
a single instruction is a bit verbose; (ii) using a named function is sub-optimal
because confusion may arise with the “C” pointer function syntax.

Recognizing these shortcomings, the C++ draft provided a simplified syntax
based on Lambda functions. The associated formalism is a computational model
invented by Alonzo Church in the 1930s, which directly inspired both the syntax
and the semantics of most functional programming languages (Mitchell, 4). The
basic concept of the λ calculus is the “expression”, recursively defined as follows:

<expression>:= <name>— <function>— <application>
<function>:= λ <name>.<expression>
<application>:= <expression><expression>

The λ calculus in its most basic form has two operations: (i) Abstractions,
which correspond to anonymous functions, and (ii) Applications, which exist
to apply the function. Abstraction is performed using the λ operator, giving
the lambda calculus its name. Anonymous functions are often called ”lambdas”,
”lambda functions” or ”lambda expressions”: these remove all the need for the
scaffolding code, and allow a predicate function to be defined in-line in another
statement. The current example can thus be re-written as follows:

vector<int> v = ...;

int sum = 0;

for_each(v.begin(), v.end(),[&sum](int x) {sum += x;}

);

The syntax of a lambda function is reasonably straight-forward, of the form:

[lambda-capture] (parameter-list) {->} return-type {statement-list}

Extracting Correlated Patterns on Multicore Architectures 5

In the example, the first element of the lambda in the square brackets is
called the capture specification: it relays to the compiler that a lambda function
is being created and that the local variable sum is being captured by reference.
The final part is the function body.

Therefore, lambdas behave like function objects, except for we cannot access
the class that is generated to implement a lambda in any way other than using
the lambda. Consequently, any function that accepts functors as arguments will
accept lambdas, but any function only accepting function pointers will not.

These and much more features of lambda functions have been included in the
C++11 language norm, allowing a more declarative programming style, taking
advantage of (STL) algorithms in a much simpler and cleaner form. Lambda
functions allow the inline definition of a function body in the code section in
which it is to be logically used. As well as providing strong hints to the compiler
about potential real time optimizations, lambda functions make discerning the
intent about what a section of code is doing much easier.

2.3 Multicore programmation using the PPL

In a different way than the OpenMP consortium, Microsoft developed its own
“parallel” approach in the 2000s within an internal work group called Parallel
Extensions. Since 2010, and the relevant versions of the .NET framework and Vi-
sual Studio, Microsoft enhanced support for parallel programming by providing
a runtime tool and a class library among other utilities. The library is composed
of two parts: Parallel LINQ (PLINQ), a concurrent query execution engine, and
Task Parallel Library (TPL), a task parallelism component of the .NET frame-
work. This component hides entirely the multi-threading activity on the cores:
the job of spawning and terminating threads, as well as scaling the number of
threads according to the number of available cores, is done by the library itself.
The main concept is here a Task, which can be executed independently.

The Parallel Patterns Library (PPL) is the corresponding available tool in
the Visual C++ environment, and is defined within the Concurrency namespace.
The PPL operates on small units of work (Tasks), each of them being defined
by a λ calculus expression. The PPL defines almost three kinds of facilities for
parallel processing: (i) templates for algorithms for parallel operations, (ii) class
templates for managing shared resources, and (iii) class templates for managing
and grouping parallel tasks.

The library provides essentially three algorithms defined as templates for
initiating parallel execution on multiple cores:

– The parallel for algorithm is the equivalent of a for loop that executes loop
iteration in parallel,

– The parallel for each algorithm executes repeated operations on a STL con-
tainer in parallel,

6 A. Casali, C. Ernst

– The parallel invoke algorithm executes a set of two or more independent
Tasks in parallel, in the sense of different programs within the same runtime
environment.

Our current example re-written using parallel capabilities:

vector<int> v = ...;

int sum = 0;

parallel_for_each(v.begin(), v.end(), [&sum](int x)

{

// make sure <sum> is shared between the "cores"...

sum += x;

}

);

Let us underline again that if the computation on each iteration is very short,
there will be inevitably important overhead in allocating the task to a core on
each iteration. Which may severely erode any reduction in execution times. This
will also be the case if the overall loop integrates important shared resources
management, as will be shown in Section 4. This means that upgrading from
sequential to parallel computing must be done very carefully.

3 Related Work

Due to the variety of the algorithms (and their specific internal data structures)
there does not exist any general model allowing parallel ARM computation. Main
techniques are described in Section 3.1. They just are actual models optimized
for the usage of multicore architecture. Developers have to write their own thread
managers (Herlihy and Shavit, 5). Section 3.2 presents the main results about
what Decision Correlation Rules are and how can we compute them using a
single processor.

3.1 Association Rules Mining using Multicore Support

Current research can be divided into three main categories: (i) adaptation of the
A-Priori algorithm, (ii) vertical mining, and (iii) pattern-growth method.

A-Priori based algorithms: Most of the parallel ARM algorithms are based on
parallelization of A-Priori (Agrawal and Srikant, 6) that iteratively generates
and tests candidate itemsets from length 1 to k until no more frequent itemsets
are found. These algorithms can be categorized into Count Distribution, Data
Distribution and Candidate Distribution methods (Agrawal and Shafer, 7), (
Han and Kamber, 8). The Count Distribution method partitions the database
into horizontal partitions, that are independently scanned, in order to obtain
the local counts of all candidate on each process. At the end of each iteration,

Extracting Correlated Patterns on Multicore Architectures 7

the local counts are summed up a into the global counts so that frequent item-
sets can be found. The Data Distribution method utilizes the main memory of
parallel machines by partitioning both the database and the candidate item-
sets. Since each candidate is counted by only one process, all processes have to
exchange database partitions during each iteration in order, for each process,
to obtain the global counts of the assigned candidate itemsets. The Candidate
Distribution method also partitions candidate itemsets but replicates, instead
of partition and exchanging, the database transactions. Thus, each process can
proceed independently.

Vertical mining: To better utilize the aggregate computing resources of parallel
machines, a localized algorithm (Zaki et. al, 9) based on parallelization of Eclat
was proposed and exhibited excellent scalability. It makes use of a vertical data
layout by transforming the horizontal database transactions into vertical tid-
lists of itemsets. By 1-item, the tid-list of an itemset is a sorted list of IDs for
all transactions which contain the 1-itemset. Frequent k-itemsets are organized
into disjoint equivalence classes by common (k − 1)-prefixes, so that candidate
(k+1)-itemsets can be generated by joining pairs of frequent k-itemsets from the
same classes. The support of a candidate itemset can then be computed simply
by intersecting the tid-lists of the two component subsets. Task parallelism is
employed by dividing the mining tasks for different classes of itemsets among the
available processes. The equivalence classes of all frequent 2-itemsets are assigned
to processes and the associated tid-lists are distributed accordingly. Each process
then mines frequent itemsets generated from its assigned equivalence classes
independently, by scanning and intersecting the local tid-lists.

Pattern-Growth Method: The pattern-growth method derives frequent itemsets
directly from the database without the costly generation and test of a large
number of candidate itemsets. The detailed design is explained in the FP-growth
algorithm (Han et al., 10). Basically, it makes use of a frequent-pattern tree
structure (FP-tree) where the repetitive transactions are compacted. Transaction
itemsets are organized in that frequency-ordered prefix tree such that they share
common prefix part as much as possible, and re-occurrences of items/itemsets
are automatically counted. Then the FP-tree is pruned to mine all frequent
patterns (itemsets). A partitioning-based, divide and conquer strategy is used
to decompose the mining task into a set of smaller sub-tasks for mining confined
patterns in the so-called conditional pattern bases. The conditional pattern base
for each item is simply a small database of counted patterns that co-occur with
the item. That small database is transformed into a conditional FP-tree that can
be processed recursively (Zaiane et al., 11, Pramudiono and Kitsuregawa 12, Li
and Liu 13).

3.2 Decision Correlation Rules

Brin et al. (14) have proposed the extraction of correlation rules. The platform
is no longer based on the support nor the confidence of the rules, but on the

8 A. Casali, C. Ernst

Chi-Squared statistical measure, written χ2. The use of χ2 is well-suited for
several reasons: (i) it is a more significant measure in a statistical way than an
association rule, (ii) the measure takes into account not only the presence but
also the absence of the items and (iii) the measure is non-directional, and can
thus highlight more complex existing links than a “simple” implication. Unlike
association rules, a correlation rule is not represented by an implication but by
the patterns for which the value of the χ2 function is larger than or equal to a
given threshold.

Let r be a binary relation over a set of items R = I ∪ T . I represents the
items of the binary relation used as analysis criteria and T is a target attribute.
For a given transaction, the target attribute does not necessarily have a value.
The computation of the value for the χ2 function for an item X ⊆ R is based on
its contingency table. In order to simplify the notation, we introduce, in a first
step, the lattice of the literalsets associated with X ⊆ R. This set contains all
the literalsets that can be built up given X, and having |X|.

Definition 1 (Literalset Lattice). Let X ⊆ R be a pattern, we denote by
P(X) the literalset lattice associated with X. This set is defined as follows:
P(X) = {Y Z such that X = Y ∪ Z and Y ∩ Z = ∅} = {Y Z such that Y ⊆
X and Z = X\Y }.

Definition 2 (Contingency Table). For a given pattern X, its contingency
table, noted CT (X), contains exactly 2|X| cells. Each cell yields the support of a
literalset Y Z belonging to the literalset lattice associated with X: the number of
transactions including Y and containing no 1-item of Z.

In order to compute the value of the χ2 function for a pattern X, for each
item Y Z belonging to its literalset lattice, we measure the difference between
the square of the support of Y Z and its expectation value (E(Y Z)), and divide
by the average of Y Z (E(Y Z)). Finally, all these values are summed.

χ2(X) =
∑

Y Z∈P(X)

(Supp(Y Z)− E(Y Z))2

E(Y Z)
, (1)

Brin et al. (14) have shown that there is a single degree of freedom between
the items. A table giving the centile values in function of the χ2 value for X can
be used in order to obtain the correlation rate for X.

Definition 3 (Correlation Rule). Let MinCor (≥ 0) be a threshold given by
the end-user and X ⊆ R a pattern. If χ2(X) ≥ MinCor, then X is a valid
correlation rule. If X contains an item of T , then the obtained rule is called a
Decision Correlation Rule (DCR).

Moreover, in addition to the previous constraint, the Cochran criteria (Moore,
15) is used to evaluate whether a correlation rule is semantically valid: all liter-
alsets of a contingency table must have an expectation value not equal to zero
and 80% of them must have a support larger than 5% of the whole population.

Extracting Correlated Patterns on Multicore Architectures 9

This last criterium has been generalized by Brin et al. (14) as follows: MinPerc

of the literalsets of a contingency table must have a support larger thanMinSup,
where MinPerc and MinSup are thresholds specified by the user.

Definition 4 (Equivalence Class associated with a literal). Let Y Z be
a literal. Let us denote by [Y Z] the equivalence class associated with the literal
Y Z. This class contains the set of transaction identifiers of the relation includ-
ing Y and containing no value of Z (i.e., [Y Z] = {i ∈ T id(r) such that Y ⊆
T id(i) and Z ∩ T id(i) = ∅}).

Definition 5 (Contingency Vector). Let X ⊆ R be a pattern. The contin-
gency vector of X, denoted CV (X), groups the set of the literalset equivalence
classes belonging to P(X) ordered according to the lectic order.

Since the union of the equivalence classes [Y Z] of the literalset lattice as-
sociated with X is a partition of the TIds, we ensure that a single transaction
identifier belongs only to one single equivalence class. Consequently, for a given
pattern X, its contingency vector is an exact representation of its contingency
table. To derive the contingency table from a contingency vector, it is sufficient
to compute the cardinality of each of its equivalence classes. If the literalsets,
related to the equivalence classes of a CV , are ordered according to the lectic
order, it is possible to know, because of the binary coding used, the literal rela-
tive to a position i of a contingency vector (i ∈ [0; |X| − 1]). This is because the
literal and the integer i have the same binary coding. The following proposition
shows how to compute the CV of the X ∪A pattern given the CV of X and the
set of identifiers of the relation containing pattern A.

Proposition 1. Let X ⊆ R be a pattern and A ∈ R\X a 1-item. The contin-
gency vector of the X ∪A pattern can be computed given the contingency vectors
of X and A as follows:

CV (X ∪A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A]) (2)

In order to mine DCRs, we have proposed in (Casali and Ernst, 1) the LHS-

Chi2 algorithm (see Alg. 1 for a simplified version). This algorithm is based
both (i) on a double recursion in order to browse the search space according to
the lectic order and (ii) on CVs.

The CREATE_CV function is used, given the contingency vector of a pattern
X and the set of the transaction identifiers containing a 1-item A, to build
the contingency vector of the pattern X ∪ A. The CtPerc predicate checks the
relaxed Cochran criteria.

4 Extracting Correlated Patterns in Parallel

As it is easy to apprehend when regarding last section, the use of a recursive al-
gorithm in a multicore programming environment is an effective challenge. This

10 A. Casali, C. Ernst

Alg. 1 LHS-Chi2 Algorithm.

Input: X and Y two patterns
Output: {itemset Z ⊆ X such that χ2(Z) ≥ MinCor}
1: if Y = ∅ and |X| ≥ 2 and ∃t ∈ T : t ∈ X and χ2(X) ≥ MinCor then
2: Output X, χ2(X)
3: end if
4: A := max(Y)
5: Y := Y \{A}
6: LHS-Chi2(X,Y)
7: Z := X ∪ {A}
8: VC(Z) := CREATE CV(CV(X),Tid(A))
9: if CtPerc(CV (Z),MinPerc,MinSup) then
10: LHS-Chi2(Z,Y)
11: end if

because recursion cannot be measured in terms of number of loops to perform.
However, parallelizing existing algorithms is an important consideration as well.
We first tried to replace the recursive calls by calls to appropriate threads, which
quickly appeared as an impossible solution. Another possible approach was based
on the well known fact that each recursive algorithm can be rewritten in a iter-
ative format. However, the while loop used to run over the used stack may not
be evaluated in terms of a for loop due to the absence of explicit boundaries.

Finally, and in order to solution the problem, we recalled that we first com-
pared our LHS-Chi2 algorithm to a Levelwise one, based on the same mono-
tone and anti-monotone constraints but which did not include Contingency Vec-
tors management. The main reason of the obtained performance gains is that
pruning the search space using the lectic order is much more elegant than using
the Levelwise order but has no impact nor on the results nor on the per-
formances. On the other hand, generating the candidates at a given level is a
bounded task, limited by the number of existing 1-items. This is why we decided
to go back to the Levelwise order to prune in a parallel way the search space,
and to keep the Contingency Vectors in order to manage the constraints.

The corresponding result is presented hereafter in the form of three functions.
The overall algorithm, called PLW Chi2 (where PLW stands for Parallel Lev-
elwise), demonstrates the parallel features of our method. The second function
dowork level constitutes each single Task executed in parallel. Finally, a partic-
ular aspect of such a Task is detailed in a third function, associated to specific
shared resource management issues. We first present these functions through
simplified code and comment them in a second stage.

void PLW_Chi2 (unsigned short X[], unsigned short sX, unsigned short sI)

// X[] : set of computed 1-items

// sX : number of valid 1-items within X[]

// sI : total number of 1-items in X[]

Extracting Correlated Patterns on Multicore Architectures 11

{

unsigned long cit, nit; // number of candidates at level l and (l+1)

cit = sX;

for (unsigned char curlev = 2; curlev <= MaxLv && cit > 0; curlev++)

{

nit = 0L;

T_Res aRes;

combinable<unsigned long> lnit;

parallel_for(0u, (unsigned) cit, [curlev, X, sX, &aRes, &lnit] (int i)

{

dowork_level (curlev, X, sX, i, sI, &aRes);

lnit.local() += aRes.nit; // ...

});

nit = lnit.combine(plus<unsigned long>()); // ...

cit = nit;

update_shared_resources ();

}

}

Parallelization takes place at each level (curlev variable) of the Levelwise

search algorithm. The number of launched Tasks at level l directly depends of
the number of existing candidates at level (l - 1), e.g. cit. Each Task corresponds
principally to a call to the dowork level function, which performs the work it is
intended to do, and collects some statistics during the call through the aRes
object. We interest us here only to a particular statistic, the lnit member of the
aRes object, which sums the number of discovered candidates to be examined
at the next level. Because each Task computes its own candidates for the next
level, the method has to pay attention to the possible interference which could
take place during the overall parallel computation on such a ”shared” variable,
which can be seen here as an aggregation pattern.

We use therefore a two-phase approach: First, we calculate partial results
locally on a per-Task basis. Then, once all of the per-Task partial results are at
disposal, we sequentially merge the results into one final accumulated value. The
PPL provides a special data structure that makes it easy to create per-Task local
results in parallel, and merge them as a final sequential step. This data structure
is the combinable class. In the above code, the final accumulated object is the
lnit object, which decomposes into local to each Task lnit.local() sub-objects.
After the parallel for loop achieves, the final sum is produced by invoking the
combine() method on the global object.

The dowork level function is for its part roughly implemented as follows:

void dowork_level (

unsigned char nc, unsigned short pX[], unsigned short cX,

unsigned long nel, unsigned short sIX, T_Res& pRes)

{

12 A. Casali, C. Ernst

unsigned short vmin, tCand[MaxLv + 1]; // a candidate

unsigned long j, k;

unsigned char *theVC; // a CV

// other declarations and initializations ...

// get current itemset

vmin = get_pattern (nc, tCand, pX, cX, nel, sIX);

j = 0; // get j, index of the first 1-item to add to the itemset

while (j < cX && pX[j] <= vmin) j++;

for (k = j; k < cX; k++)

{

// add a 1-item to the current itemset to produce a candidate

tCand[0] = pX[k];

// compute its CV if the constraints are valid

theVC = compute_CV (tCand, nc, ...);

// memorize the candidate and add it to results if applies

store_CV (tCand, nc, theVC, pRes, ...);

// update statistics

(pRes.nit)++; //...

}

}

We shall not enter into the implementation details of this function. First be-
cause the code is most C likely and is easy to understand. And second because it
does not include any specific parallel or shared memory features. So we shall only
explain its overall functionalities. The for loop is used here to produce all the
candidates of the current stage (the tCand variable). This is done by ”adding”
the possible existing 1-items to the base itemset managed by the function, and
identified by the nel ”number” (we shall discuss this aspect later). Once having
generated such a candidate, we verify first if the different constraints underlying
to our method are verified or not by the candidate. If it is the case, we compute
its Contingency Vector (the whole is done by the compute CV function). We sec-
ond (try to) memorize the candidate in order to reuse it at the next level, and
we add the candidate to the results if it contains one item of the target attribute.

The last function we present is store CV. We focus moreover on a very specific
section of code dedicated to the storage of results:

bool store_CV (unsigned short X[], unsigned short cardX, ...)

{

// ... add X to the result file if X contains the target

if (...)

{

critical_section cs;

cs.lock();

if (...)

write_llhsp_to_file (X, cardX, ...);

Extracting Correlated Patterns on Multicore Architectures 13

else

write_pattern_to_file (X, cardX, ...);

cs.unlock();

}

// ...

}

Let us first explain the functionality involved in the last if statement. k-
itemsets verifying the whole defined constraints and including one item belonging
to the target column have to be included into the results. This is managed
through their insertion into data files (one is associated to each value of k).
During the parallellization process, each Task may write to one of these files
each time it discovers a new valid itemset. What raises another shared resource
problem, addressed by the PPL by the use of critical sections (a well-known
concept in multi-threading developments), as shown in the above code. When
encountering such an instruction at run-time, the OS will not authorize any
other Task to execute before the ”lock” has been released.

To finish this presentation, some explanations concerning the way we manage
the memorization of candidates (and associated information such as Contingency
Vectors). The main shared data structure in our developments is a tree storing
the k-itemsets of ”interest”. The corresponding node structure, given in C:

typedef struct pattern_node

{

unsigned short *Mot; /* the pattern */

unsigned char *pVC; /* pointer to the Contingency Vector */

T_NM *frere; /* pointer to next node at same level */

T_NM *fils; /* pointer to next node at lower level */

...

} T_NM;

Each time a Task discovers a candidate verifying the whole constraints, the
candidate is inserted into the tree. The insertion by itself uses the critical section
concept we just introduced. Because the stored itemsets (patterns) are lexico-
graphically organized within the tree, each of them can be referred to by a
node number (what explains the nel ”number” introduced above). Finally, af-
ter evaluating the candidates, the exploring process will retain them or not. In
the latter case, the tree structure may be garbaged, which is done by the up-
date shared resources function called at the end of our global PLW Chi2method.

5 Experimental Analysis

As briefly mentioned in the Introduction Section, this work has been initially
applied on concrete data measurement files provided by two industrial manu-
facturing partners in the area of Microelectronics : STMicroelectronics (STM)

14 A. Casali, C. Ernst

and ATMEL (ATM, which became LFoundry). The results of the realized ex-
perimental series are presented on 2 plans to be followed. They are associated
with an analysis of 2 files among those supplied by both manufacturers. The first
one (STM) contains 1241 columns and 296 lines. The second (ATM) consists of
749 columns and 213 lines. We chose a target attribute among a few possible
columns. In both cases, the presented diagrams show the execution times of two
methods when MinSup varies while MinPerc (0.34 for the STM file and 0.24
for the ATM one) and MinCor (1.6 resp. 2.8) are fixed. The signification of
these parameters were given in section 3.2.

(a) Results for STM File (b) Results for ATM File

Fig. 1. Execution times with a single processor.

Figures 1(a) and 1(b), extracted from (Casali and Ernst, 1), show the exe-
cution times of a standard Levelwise algorithm and the LHS-Chi2 algorithm
on a non core computer (a HP Workstation with a 1.8 GHz processor and 4 Gb
RAM, working under a Windows XP 32 bits OS). The difference between the
two methods is that the Levelwise method uses no contingency vectors but
standard computation of contingency tables. As the graphs point it out, the re-
sponse times of the LHS-Chi2 method are between 30% and 70% better than
Levelwise. An increasing windowing of the results is provided for subsequent
sub-intervals of MinSup.

Figures 2(a) and 2(b) show the same execution times using the LHS-Chi2

algorithm and the presented PLW-Chi2 algorithm on a 4 core computer (a
DELL Workstation with a 2.8 GHz processor and 12 Gb RAM working under
the Windows 7 64 bits OS).

As it is easy to understand, the LHS-Chi2 method works here about two
times faster on the multicore architecture, this not because of the number of
cores (which are not used) but because of the computer basic enhanced capa-
bilities. When regarding to the performances of the PLW-Chi2 method, there
is a gain factor of about 3.5, which is to compare to the number of available

Extracting Correlated Patterns on Multicore Architectures 15

(a) Results for STM File (b) Results for ATM File

Fig. 2. Execution times with 4 cores.

cores, which is 4. In other words, the parallelization of the LHS-Chi2 algorithm
raises performance gains practically equals to the number of cores, the (little)
loss being due to the shared memory management issues.

6 Conclusion and future work

In this paper, we present a new approach to discover correlated patterns, based
on the usage of multicore architectures. Our approach is based on two concepts:
Contingency Vectors, an alternate representation of contingency tables, and the
Parallel Patterns Library (PPL). One of the advantages of Contingency Vectors
is that they allow the Chi-squared computation of a k-itemset directly from one
of its subsets. However, the usage of the PPL has two disadvantages: on one
hand we need to use lambda calculus, and on the other hand, the parallelization
of recursive algorithms is hard (we do not control neither the number of cores,
nor the depth of the tree), even if we derecursify the algorithm. That is why we
have chosen to implement a Levelwise algorithm which implements these two
concepts. Experiments are convincing because our new algorithm obtains a time
gain factor of about 3.5 (when using 4 cores) in comparison with the recursive
version.
For future works, we intend to develop a new version of the recursive algorithm
using a bitmap representation for a Contingency Vector, thus we can minimize
disk I/O, and, for finer control processors, build our own thread manager.

References

Casali, A., Ernst, C.: Discovering correlated parameters in semiconductor manufac-
turing processes: A data mining approach. Semiconductor Manufacturing, IEEE
Transactions on 25(1) (2012) 118–127

Darlington, J., Ghanem, M., ke Guo, Y., To, H.W.: Guided resource organisation in
heterogeneous parallel computing (1996)

16 A. Casali, C. Ernst

Tatikonda, S., Parthasarathy, S.: Mining tree-structured data on multicore systems.
PVLDB 2(1) (2009) 694–705

Mitchell, J.C.: Foundations for programming languages. Foundation of computing
series. MIT Press (1996)

Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2008)

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In Bocca, J.B., Jarke, M., Zaniolo, C., eds.: VLDB, Morgan Kaufmann (1994) 487–
499

Agrawal, R., Shafer, J.C.: Parallel mining of association rules. IEEE Trans. Knowl.
Data Eng. 8(6) (1996) 962–969

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: Parallel algorithms for discovery
of association rules. Data Min. Knowl. Discov. 1(4) (1997) 343–373

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In Chen, W., Naughton, J.F., Bernstein, P.A., eds.: SIGMOD Conference, ACM
(2000) 1–12

Zäıane, O.R., El-Hajj, M., Lu, P.: Fast parallel association rule mining without candi-
dacy generation. In Cercone, N., Lin, T.Y., Wu, X., eds.: ICDM, IEEE Computer
Society (2001) 665–668

Pramudiono, I., Kitsuregawa, M.: Tree structure based parallel frequent pattern mining
on pc cluster. In Maŕık, V., Retschitzegger, W., Stepánková, O., eds.: DEXA.
Volume 2736 of Lecture Notes in Computer Science., Springer (2003) 537–547

Li, E., Liu, L.: Optimization of frequent itemset mining on multiple-core processor. In:
VLDB. (2007) 1275–1285

Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association
rules to correlations. In: SIGMOD Conference. (1997) 265–276

Moore, D.: Measures of lack of fit from tests of chi-squared type. Journal of statistical
planning and inference 10 (2)(2) (1984) 151–166

