
HAL Id: emse-00941979
https://hal-emse.ccsd.cnrs.fr/emse-00941979v1

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application management by actors for SNMP
Bernard Kaddour, Michel Beigbeder

To cite this version:
Bernard Kaddour, Michel Beigbeder. Application management by actors for SNMP. International
Conference ”Intelligent Network and Intelligence in Networks” (2IN’97), Sep 1997, Paris, France.
pp.373-390, �10.1007/978-0-387-35323-4_23�. �emse-00941979�

https://hal-emse.ccsd.cnrs.fr/emse-00941979v1
https://hal.archives-ouvertes.fr

Application management by
actors for SNMP
Bernard Kaddour and Michel Beigbeder
Ecole des Mines de Saint-Etienne
158, cours Fauriel,
42023 Saint-Etienne cedex 2
France
Tel: (+33) 4 77 42 01 74 Fax: (+33} 4 77 42 66 66
kaddour@emse.fr, mbeig@emse.fr

This document focuses on management of application resources. Starting from
the message bus design, our original approach is based on active objects. It
provides a dynamic management scheme allowing evolutive and reusable man­
agement functions. Despite important differences with standard managenent
frameworks, our management design is integrated into existing network man­
agement protocols, and so it provides application management capabilities to
existing tools.

Keywords Message bus, actors, interfaces, evolutivity, MIB integration

1 INTRODUCTION

To reduce the time and cost of application development, /ntegroted Envi­
ronments (Reiss 1990) or brokers (0.M.G. 1991) (Brockschmidt 1995) were
designed. They allow to build new applications by aggregation of existing
software components communicating with themselves. Likeness with network
entities appears at first glance.

The increasing complexity and sophistication of network services required
dedicated network management tools and protocols, it will - soon - be the
same for the applications.

Network management platforms have been largely available since the stan­
dardization of network management. Nevertheless, some of their character­
istics are limitative. Centralization is the first one, only managers are able
to execute complex management operations. Secondly, these platforms are
restricted to manage hardware network components and not communicating
applications. These limitations compel network management platforms to use
specific administration functions that other platforms can't reuse.

1

We will describe an application modelization based on active objects and
will use it for application management. We will emphasize evolutivity needs
in application management which network management doesn't provide.

2 APPLICATION MANAGEMENT

+

._.... ... el_..,........ ------· 1
·- -- - - ·

-- --

_,.....A �·

- .. _

.,"---..... _,..­'.A. ot.....,_r_ J.:

A
�-

-·

x

Figure 1 Example of an application management achieved by cooperating
management functions

Application management is concerned with the optimization of the service per
cost ratio, even when the application runs under slightly disturbed working
conditions. Main points are:

quality of service: Checking the fulfilment of the declared services. This is
achieved by monitoring sensible parts of the application.

adaptability: Customizing current services to fulfill other application re­
quirements. For example an interpersonal mail message exchange service
can be used to partially provide file transfer system facilities (Rollin 1986).

optimization of the use of resources: disks, network throughput, etc.

So, application management concerns appear close to usual network man­
agement ones.

2

Network management frameworks (ISO 1989) (Case, Fedor & al. 1990)
based upon a passive object representation of the entities to manage is actu­
ally mainly concerned with physical components. Meanwhile, these manage­
ment standards induce some limitations that application management have
to bypass, such as centralization in management platforms.

A new approach for management TINA (Chapman, Dupy & Nilson 1995)
lastly appears. We will differ from it mainly by the fact that we don't want to
depict another management platform but rather to allow processing capabil­
ities for management, taking into account basic protocols aspects. From this
point of view, our approach draws closer to the JMAPI • spirit.

2.1 Message bus and management

Integrated Environments used for new application development are classified
in families (Boyer 1994) depending on their underlying design. Nevertheless,
one of these design is actually largely available from manufacturers, and it
provides flexibility and genericity: the message bus.

A message bus acts as a server where every client registers with the Software
Communication Group it belongs to. At any time, a client may indicate the
message types it expects to receive and to process, then the message bus
handles messages and routes them to clients (Cf. upper right part of Figure 1).

The message bus model enables management to operate on the application
as a whole, or on its components only. So, the application management is no
longer centralized: management functions dynamically link with the compo­
nents they want to interact with. Moreover, management functions are not
limited to collect data, and can be parts of a complete distributed manage­
ment application (Cf. Figure 1).

3 ACTIVE OBJECT APPROACH

With the passive object oriented model, network entities are hardwired tem­
plates and their management is operated by platform dependant supervision
services. When new managed entities are inserted, new templates with new
specific management entities are to be (re)written. This scheme can't grace­
fully take into account the dynamic and autonomous aspects of the applica­
tions we want to manage. The actor (or active object) model (Hewitt 1977,
Agha 1986) seems to be the most suitable for our purpose. Moreover, it al­
lows unification of managed and management applications, providing an ho­
mogeneous framework. Lastly, the description of these entities enters in this
framework.

Two points need some explanations to make our point of view accept-

*http://java.sun.com/products/ JavaManagement/

3

able: i} We have to bypass some burdens of the actor calculus model, for
example the unification in the extreme which doesn't facilitate the model use
(Venkatasubramanian & Talcott 1993), ii} We have to take into account ex­
isting software and existing management frameworks. In particular, arrange­
ments are necessary to draw closer to, and finally merge with, the current
network management architecture.

We will introduce three kinds of entities to address our main points of § 2:
interfaces, activities and contexts.

3 .1 Interfaces

Interfaces play a descriptive role part in our application management system.
They describe the operations any interface conformant actor must support,
asASN-1 templates do in SNMP or CMIP. However, as the expected manage­
ment entities have to operate between themselves and with managed entities,
an interface integrates the methods that a conformant actor renders to the
community and the services it requires. Interface finally draws closer to typed
active objects (Nierstrasz 1993).

Interfaces differ from typed active objects by the set of standardized opera­
tions an interface responds to. These operations give interfaces capabilities to
manage version numbers or to combine between themselves to describe new
families of actors.

Roughly speaking, an interface is composed of the set of the typed variables
- according to SNMP allowed types. and the set of the method signatures
for each one of the states that a conformant actor may enter.

An interface example will be the action table an entity has to respond to
to be conformant with the editor notion of company X. For example Apple
defines an editor as a program responding to a set of Apple Events.

Interfaces of a special kind, called translation interfaces, ensure that any
actor conformant to a translation interface may adapt some elements - under
some restrictive conditions - to be conformant to another interface (Kaddour
& Beigbeder 1996).

Our design thus differs from the usual network management scheme which
needs a tree of classes (or types) and a tree of instanciations, the former
containing abstract representations of managed objects, the latter containing
managed objects. Our approach needs a single tree which contains manage­
ment entity descriptions, management entities, managed entities, and man­
aged entity descriptions where entities descriptions are represented by inter­
faces.

4

3.2 Activities

Most of our management entities are activities.
The original activity concept has first been introduced in the Computer

Supported Co-operative Work framework (Danielsen, Pankake & al. 1986)
(Brun 1987). We will continue to use this term although its meaning has
deeply been altered.

Main parts of an activity are:

• roles: We distinguish external roles corresponding to resources that other
third parties may provide to the activity from internal roles corresponding
to sub-activities of the current activity. Both are described by means of
references to interfaces.

• constraints and preferences. They are the combination of logical conditions
based upon the events the activity can receive. They associate an internal
tool to be executed when they are verified. The loading of a particular
character set font as a new incomer conforming to an editor interface is
such an example.

• internal tools: It is a set of functions embedded in the activity for it's own
needs. These tools, usually inactive, can be triggered at any time by the
arrival of a new element (via a preference e.g.) or by needs of the activity.
Particular tools are the incoming or outgoing filters acting upon messages
received or emitted by the activity and variables filters (Cf§ a).

• the main body of the activity made of methods the activity responds to and
the set of its private variables. Security policy to apply for each received
message or termination of the activity are known methods that every ac­
tivity must implement or delegate.

• set of attributes from which the activity can be designated. E.g. an edition
activity can specify an octet string attribute file which is the name of
the file it proceeds with.

This structure of the activity enables both the description of applications
build as communication components that we want to manage, and the de­
scription of management applications.

It is the activity responsibility to report to the system management the
interface or set of services it can respond to.

So, an activity can be seen as an actor solely composed of a set of sub­
activities, variables and methods that can be called for particular processings,
but also has a set of elements mainly composed of filtering functions appliable
to messages. The former vision is suited to the applications to manage, the
latter to the management applications. Both of them are unified under the
activity concepts.

5

(a) Wrappers
Particular activities are wmppers. They acts as gateways between the man­
agement system and the real world we have to interact with. From the system
point of view, they represent real world applications when these one don't
naturally support the mechanisms required to be managed.

The manner a wrapper interacts with the software it represents is highly
software dependent and cannot be exactly specified. This is the same kind of
problem found in usual network management between a managed object and
its management agent.

Finally, we emphasize that management functions are obtained by means
of input, output or variables filters tied to wrappers as depicted by Figure 2.

incoming reques1s
rorw

._r

manaaemenc
activity

Lf oJ

oulgoing even1s/ia:iucsts
fromW

Figure 2 A wrapper with activities of management by means of filters

3.3 Contexts

The execution of any activity takes place in a dedicated context. This con­
text represents the environment in which the activity operates. Taking into
account the different pieces an activity is compound of, its associated context
conceptually contains:

6

• attributes from which this particular instance of the activity can be desig­
nated. Some of these attributes directly come from the activity description,
others, such as the set of provided services are dynamically obtained.

• a reception port that all the messages sent to the activity have to pass
through. The port acts as a security manager (or a forwarder to a security
delegate} .

• the sons-context of the context attached to the considered activity. These
are execution instances of internal sub-activities or of external resources
required by the activity, provided by the management system.

• constraints and preferences which have tasks close to that of filters. The
main difference is that the former proceed on incoming and outgoing ac­
tivities, whereas the latter proceed on messages.

• filters, - incoming, outgoing and variables - registered or in execution.

(a) Filters
Incoming (outgoing} filters are lightweight processes that can receive the mes­
sages sent to (emitted by} the activity. They can notify the arrival (departure}
of a message to a delegate, read, write and modify the message.

To be considered as active, a filter has to register itself to the management
system.

The format of registration and the main structure of filters are standard­
ized. At registration time, the filter provides the required privilege (notifi­
cation, read or write access) and the t-uple set (address-identification of the
originator, method's name, arguments} characterizing the incoming messages
the filter wants the system to notify it.

Each part of this set may describe one or several elements. For exam­
ple, ("user=bk".cambur.emse.fr, mO OR ml, ANY) is interested by messages
coming from the context identified as "user=bk". cambur. emse.fr, calling the
method mO or ml, regardless of the arguments.

From theses pieces of information, the management system either provides
message manipulation functions or refuses the filter's registration.

The fact that the signature of a method has been split between its name
and its arguments enables us to construct the tree of the potentially activable
filters for the context.

The walk through the tree of filters is then accomplished for each received
message, according to the originator's address-identification in the first stage,
according to the method's name called in the second stage and finally accord­
ing to the arguments in the last stage.

For each of theses stages, we search a node of the tree matching the pro­
cessed message in the corresponding level. If such a node is found, firstly the
filter registered with a writing/modifying privilege is spawn, thus, if after the
processing of the message by this filter the node found still matchs the mes­
sage, the reading and notifying registered filters are simultaneously spawn
whereas the next stage begins.

7

identif. iO
I w filterO !

lft)

R filter2
R filter3
N filter4

,,,:./
�-r�I]
R filter::I)

�
al

R filter?
N filter x

aO

identif. ii
[W filterO]
[!_ filters J

/\
lftl ml

al

I w filter9 I

Figure 3 The tree of filters

identif. x

\
�

mx

Based upon the structure of filters, the tree obtained allows an efficient
forwarding of the messages across the filters.

This is only after being processed by the activated filters that the message
is finally delivered to the activity of the context - assuming that no spawned
filters has stopped the forwarding process.

We note that each node of the tree contains at most one filter registered
with write privilege for a given context, because allowing the registration of
several filters with write privilege for the same node will lead to consider the
set of activable filters as a graph, where loops may appear. Preventing any
troubles from such loops would overload the system and slow down the walk­
trough process having regard to the small system improvement. This "one
writer constraint" applies only in a given context.

It is important to note that the particular forwarding mechanism induced
by the way filters are registered and act does not conflict with existing com­
munication protocols.

The way outgoing filters act is sensibly the same.

Variables filters are not interested in the way messages are exchanged, but
they have to monitor some inner aspects of an activity. They achieve this
goal by registering expressions made of variables with which the activity is
described, for which they want to be notified as soon as they appear to be
true.

Monitoring a variable value (that may be modified without any method
call) needs control on the run-time or the interpreter of the language used by
the application.

The variable filters act upon variables of simple or complex types. Special

8

keys have been introduced for variables of complex types such as SEQUENCE
and SEQUENCE OF to distinguish if an expression is interested in the mod­
ification of the variable (e.g. destruction of an element in a SEQUENCE OF
variable) or in the modification of one of its component.

3.4 The layout of the contexts

A context represents the environment in which the activity is executed.
So, the activity behavior is customized to the environment it is diped in

according to its needs and to the available tools the system management can
find or build from the interfaces information.

Without more information, the context of a new activity is placed in the
context of the activity which requires the activation. This can be overriden
by placement specification.

This mechanism is used to manage applications. For example, the manage­
ment of an application b is achieved by spawning a management activity a -
mainly made of filters and functions - and the system is told to place the
context of a as an over-context of the context attached to b.

As a consequence, contexts appear as stacked upon each others, almost in
the same manner protocols do (Venkatasubramanian & Talcott 1993).

Precisely, the set of contexts is built as a tree. From the object model point
of view, a major difference appears between activities and contexts. Activities
act as autonomous entities without class or inheritance mechanism. They
draw closer to prototypes (Lieberman 1986): note that each activity initiator
is the kernel of the management system which acts as the default delegate.
So, by the layout of the delegates (Stein 1987), at run time the contexts use a
mechanism similar to the usual inheritance. Data or services are successively
searched in the upper layers of the caller context.

(a) The session
We have to take care in using incoming (outgoing) filters.

The interface of the couple (filter, main activity body) may present to the
outer community is not the same has the one of the activity (this is a way
adaptability or evolutivity is achieved). This may lead to some troubles or
incoherences. For example with the following scenario:

- A context c asks the system for an entity compatible with the interface
iO. The system provides the entity i.

- A writer filter modifies the interface of i to interface i1.
e's knowledge of i is then wrong. This kind of mistakes comes from the

stateless nature of the management system. Rather than systematically freez­
ing the attendees (which will disable us to address one of the major point
stated in § 2), better seems to preserve the nature of the system but to add
the session notion. When a session is required by a context, the system either

9

activity B

Figure 4 The layout of contexts and links with activities

ensures that the vision the context has will be stable as it will temporally
freeze branchs of the tree of contexts, or at least notify the context about
modifications that could not be avoided, as for example an exit of i.

A session may sometime disables - as long it has not been held down -
the execution of attendees (the registration of filter with write privilege e.g.) .

(b) Some particular contexts
Finally, to take into account existing computing, two kinds of contexts has
been added: user-contexts and site-contexts.

A user-context includes all the contexts which belong to a given user. Its
interest resides in the contribution offered to the security management.

The site-context enables to group the contexts present on a site/computer.
While conceptually articifial, it takes into account the real world constraints.

• A context is generally tied to a computer, even if sometimes some of it
sub-contexts may execute remotely.

10

• basic resources are provided by the operating system of the computer (net­
work, access rights, files, ...). Operating systems are generally centralized,
in spite of the emergence of distributed operating systems.

• as previously described, management induces particularities in the forward­
ing of messages. The site-context enables the use of existing network pro­
tocols.
The specific part of our management approach is implemented in this site­
context.

It is in the site-context that translation capabilities or that the description
of services provided by the actors are registered.

4 THE KERNEL OF MANAGEMENT SYSTEM

The kernel of the management system (kMS) is used to implement and rep­
resent the management system on a computer. It corresponds to the services
that the site-context must provide and to the basic services of the manage­
ment system. kMS implements for a site the set of methods that the execution
of an activity may require, such as communications, printing capabilities, etc.

Moreover, as representing the site-context, the kMS provides a way for
activities that doesn't implement mandatory methods (security methods e.g.)
to delegate them to it.

It's worth noting that the kMS has a global vision over the contexts of the
site. This makes the kMS the manager of all the site available resources (with
their interfaces) that activities may ask for.

More generally, kMS ensures coherence of the contexts in the site and it
is in charge to interact with major external components such as languages
interpreters or SNMP.

5 A SIMPLE EXAMPLE

In this example we assume that user U asks the kMS to provide a tool with
editing capabilities, i.e. that is compatible with the editor interface:

<implement os:system>

filename: octet string

open
save

printerToUse(octet string)

print(octet string)

The kMS then locally searches for a registered activity having an interface

11

kernel of the IIlllllllglllJIDt system

�giSlralion
of COlllll'aints, �

llld lllribules

filtering

�iSlralion llld liberalion
of services and interfaces

y y
communication J

y
SNMP interpreters

Figure 5 Major components of the kMS

conformant with the editor interface. An activity locally known by the kMS
to conform to an editor/compiler/linker interface, thus including the editor
interface, can be selected.

The arrival of the editing context triggers a set of management functions.
One of them will set the printer to use in this context.

This is done by the triplet: (from: ANY, me thod: e nte r, arg=e di tor
inte rface) tied to the function:

send("printerToUse", "•y-favorite-printer")

We will present three management functions for the printer. The first one
is initiated by the user of the editor, the other two by the owner of the
printer, comparable to the only authorized manager in traditional manage­
ment schemes: we will assume that the printer belongs to root in the rest of
this section.

Firstly, we notice that the printer my-favorite -printe r can be managed
according to its known interface:

paper: boolean

state: integer// -1:error, O:ready, 1:busy, 2:not responding
force

12

We assume that the user management function is in fact pain-relieving and
will translate its data into a standard two columns Postscript form.

This will be achieved by the introduction of a management function acting
by the mean of an output filter which translates the text data to be printed
in the required form:

filter: (Editor of U, "print", ARY)

code: process(11Sg) {
data = getArguments(1, •sg) ;

ps_data = enscript2rGh(data) ;
out(msgHeader, msgMethod, ps_data) ;

}

This management function is created in the context of root, the owner of
the printer, as depicted in Figure 6.

context ofU

Figure 6 Contexts state after insertion of the user U management function

13

So, anyone can use the management system for its own needs according to
its privileges. But, simultaneously, other management functions can coexist
around the printer context: for example, management functions introduced
by the owner of the printer.

Let's consider two of them. The first one monitors the requests sent to the
printer and logs them; the second one automatically solves the paper size
trouble (A4 paper versus US legal paper), forcing the printing with the actual
paper.

The monitoring function is a filter put by root around the printer, de­
fined by the triplet (from= ANY, method="print", arg=ANY). The function
attached to this filter will in turn locate the sender of the message and displays
its name on the administrator's console or logs it in a file.

This function, initiated by the owner of the printer is put in a low level
context around the context of the managed printer.

It can be noticed that, because the context of the printer is diped in the
printer owner context, a kind of priority between management functions is
implicitly induced: highest priorities for the system and the owner of the
application, lowest priorities for other users.

This way, the monitoring function is placed closer to the context of the
printer than the user management function (Cf. Figure 7).

The management function in charge of recovering paper size troubles acts
in a different way. Let's assume that this dysfunction is not notified by an
event (which would then be catched by a management output filter function),
and that we are faced to an interface in which such a trouble is only notified
by the setting of the variable printerError to PAPERSIZE...ERROR.

In such a realistic scheme, the paper size management function is achieved
with a variable filter, this filter checks the condition:

printerError == PAPERSIZE_ERROR

and triggers the force operation when it becomes true.
In this example, we showed that the management allows to automatize the

recover of the cumbersome paper size trouble; whereas incoming requests are
monitored and any user may put a processing function for it's own conve­
mence.

6 INTEGRATION INTO SNMP

As we want our management system to operate upon existing tools, it is
important to incorporate a prototype into the popular SNMP framework.
Integration under CMIP would be very similar and SNMP is preferred to
SNMPv2, far less popular. Integration under SNMP is achieved by Smux (Rose
1991) protocol capabilities and is based on a complete ASN-1 description of
the kMS, and as a consequence of the different entities presented in § 3.

14

conteJ<I of rOOI

Figure 7 Contexts state after insertion of the monitoring management func­
tion

The obtention of the kMS mib isn't a straightforward process. It needs
to use both complex indirections (Waldbusser 1991) and multi-types entries
(Case & Levi 1993).

Though this description deals with kMS entities , it doesn't solve the inter­
face aspects. Interfaces describe variables and method signatures that entities
support. As long as this kind of description is usually achieved using the
TYPE-OBJECT macro, interfaces appear to compete with this macro: we
could call them virtual MIBs.

To be coherent with SMI and SNMP, object identifiers (OBJ-IDs) tied to
variables and methods described by an interface must be MIB conformant
and accessible for clients:

- kMS translate* variables to their equivalent ASN-1 representations, and
methods to SNMP groups, according to the SNMP naming policy. From the

*This scheme can be altered as we can explicitely associate OBJ-IDs to variables or method's
signatures.

15

mib point of view, the resulting object identifiers are always set to constant
locations, relatively to the context.

- Clients have to know the virtual mib built from the interface, as this
information is necessary to properly encode or decode SNMP operation ar­
guments. This process is dynamic and can only be determinated at run time.
For each interface OBJ-ID of the virtual mib, the Mib-manager sends a client­
specific SNMP-trap from which the client updates its mib knowledge. Figure 8
shows the interaction between the Mib manager and kMS.

SNMPserver

Figure 8 Integration with SNMP

From the Mib-manager point of view, kMS appears as a proprietary mib
interacting with Smux, whereas kMS creates for any SNMP-client a context
by which the client can interact over the whole management system.

Integration in SNMP gives the human administrator several possibilities to
manage applications:

• by building new management functions or activating already existing ones
(under both SNMP and kMS control security access) ,

• by calling over the network a complete management package: the packed
management functions will first obey the administrator context environ­
ment constraints and then start the application management.

16

7 CONCLUSION

Although network management is nowadays world widely available, software
application management is still under development.

From the basically Integrated environments architecture scheme, we demon­
strated that applications modelized from active objects provide an homoge­
neous framework containing both management entities and their description.
The system introduced appears to be evolutive and customizable while the
frozen MIB notion has been reconsidered.

In spite of differences between applications and network management, op­
portunities offered by standardized management protocols has enabled the
application management system to be integrated within existing network man­
agement tools.

REFERENCES

Agha, G. {1986), Actors: a model of concurrent computation in distributed
systems, MIT Press, Cambridge Mass.

Boyer, F. {1994), Coordination entre outils dans un environnement integre
de developpement de logiciels, PhD thesis, Bull-Imag et Universite
J.Fourier.

Brockschmidt, K. {1995), Inside OLE, 2nd edition, Microsoft Press.
Brun, P. (1987), Conference repartie en mode messagerie, PhD thesis, Ecole

des Mines et Universite de St-Etienne.
Case, J., Fedor, M. & al. {1990), Simple network management protocol

{SNMP), Technical report, IAB.
Case, J. & Levi, D. {1993), SNMP mid-level-manager MIB, Technical report,

SNMP Research, Inc.
Chapman, M., Dupy, F. & Nilson, G. {1995), 'Overview of the telecommuni­

cations information networking architecture', Tina '95 .
Danielsen, T., Pankoke, U. & al. {1986), 'The amigo project: advanced group

communication model for computer-based communication environ­
ment', CSCW 86 proceedings .

Hewitt, C. { 1977), 'Viewing control as patterns of passing messages', Artificial
Intelligence .

ISO (1989), Information processing systems, open systems interconnection,
Technical Report 7498-4, ISO management framework.

Kaddour, B. & Beigbeder, M. {1996), 'Application management by active
objects', Ecoop, workshop on network management .

Lieberman, H. {1986), 'Using prototypical objects to implement shared be­
havior in object oriented systems', OOPSLA .

Nierstrasz, 0. {1993), 'Regular types for active objects', OOPSLA 93.
0.M.G. {1991), The common object request broker: Architecture and specifi­

cation, Technical report, Object Management Group.

17

Reiss, S. (1990), 'Connecting tools using message passing in the field environ­
ment', IEEE software .

Rollin, F. (1986), Transfert de fichiers en mode messagerie, PhD thesis, Ecole
des Mines et Universite de St-Etienne.

Rose, M. (1991), SNMP MUX protocol and MIB, Technical report, IAB.
Stein, L. (1987), 'Delegation is inheritance', OOPSLA .
Venkatasubramanian, N. & Talcott, C. (1993), A meta-architecture for dis-

tributed ressource management, Technical report, Univerty of Illinois
- Stanford University.

Waldbusser, S. (1991), Remote network monitoring management information
base, Technical report, IAB.

18

