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The present contribution is devoted to developing robust finite element solutions for coupling flows in both purely fluid region, ruled by Stokes equations, and fibrous preform region governed by a Darcy's law. Particularly the cases of low permeability of preform, down to 10 -15 m 2 , are of interest to model LCM processes. Flows are solved using mixed finite elements stabilized with a sub-grid scale stabilization technique (ASGS). A special attention is paid to the interface conditions, namely normal stress and velocity continuity and tangential velocity constraint similar to a Beaver-Joseph-Saffman's condition. The originality of the model consists in using one single mesh to represents the Stokes and the Darcy sub-domains (monolithic approach). A level set context is used to represent Stokes-Darcy interface and to capture the moving flow front. It is shown that provided a very special attention is paid to the coupling conditions, very precise results can be obtained. This monolithic approach is now perfectly robust due to the introduction of the ASGS sub-grid scale stabilization and leads to perform 3D complex shapes for manufacturing process by resin infusion.

Introduction

Manufacturing processes by resin infusion are competitive routes to elaborate composite structures with organic matrix, especially for large pieces in aeronautics. They consist in infusing a liquid resin through the thickness of the reinforcements rather than in their plane. Under the effect of a mechanical pressure applied on the top of the mold, the resin flows and infuses into the preforms. However, although these processes are efficient, they still remain hard to control. Indeed the physical and mechanical properties of the final part (the final thickness and the fiber volume) are hardly predictable. To control this process, we developed a model based on the coupling between the resin flow within the porous domain (Darcy), and the purely fluid domain (Stokes). The Stokes-Darcy coupled problem has been studied by many researchers in many field of engineering. Both a decoupled approach as proposed by [1] and a monolithic approach as proposed by [2] are investigated in severe regimes. The decoupled strategy consists of using two different element spaces to solve the Stokes and Darcy equations, whereas the unified strategy consists in using the same finite element space. In literature, flows are solved using mixed finite elements stabilized with P1+/P1 elements in Stokes and Darcy's domain [1]. Another approach consists in using P1+/P1 elements in Stokes and HVM (Hughes Variational Multiscale) Method for stabilization in Darcy [2]. Due to consistency errors and spurious oscillations that appear in this previous approach, we use a robust approach which yields improvements compared to the latest one. The robustness of the approach which is assessed in this paper, is ensured by using ASGS method (Algebraic Subgrid Scale) to stabilize velocity and pressure approximated by linear and continuous elements in Stokes and Darcy domains. Signed functions are used to represent the Stokes-Darcy interface and to capture the moving flow front.

The paper is organized as follows. The first section presents the mathematical modelling for the Stokes-Darcy coupled problem. The next section introduces both the velocity-pressure mixed formulation for the Stokes-Darcy problem and the variational multiscale method used for stabilization. The last section shows numerical validation and results in severe regimes (low permeability, down to 10 -15 m 2 , complex 2D and 3D geometries with curved interfaces) to illustrate the capability of modelling manufacturing processes by resin infusion.

Mathematical model

Let us define Ω ∈ R m (m = 2 or m = 3) a bounded domain formed by two non overlapping subdomains Ω s and Ω d separated by a surface Γ = ∂Ω s ∩ ∂Ω d . Index s is used to denote everything that concerns the purely fluid part (Stokes domain), and index d for modelling porous medium (Darcy domain). In this section, we present Stokes and Darcy equations, then we present the interface conditions on Γ and the coupling of the two domains. The fluid is considered as Newtonian and incompressible. The Stokes equations are then expressed as: find the velocity v s and the pressure p s fields defined by :

-div(2µ ε(v s )) + ∇p s = f s in Ω s -div v s = h s in Ω s v s = v 1 on Γ s,D (1) 
σ n = p ext,s .n s on Γ s,N
where f s is the volume force, n s is the unit vector normal to the boundary of Ω s and σ n is the stress vector to be prescribed on Γ s,N . If the fluid is incompressible then h s = 0.

The Darcy equations are expressed as: find the velocity v d and the pressure p d defined on Ω d , solution of :

µ k v d + ∇p d = f d in Ω d -div v d = h d in Ω d (2) v d .n d = g on Γ d,D p d = p ext,d on Γ d,N
where k is the permeability tensor reduced to a scalar in the isotropic case considered here, p ext,d is a pressure to be prescribed on Γ d,N , n d is the outward unit vector normal to the boundary of Ω d and f d is the volume force. If the fluid is incompressible then h d = 0. In Stokes-Darcy coupled problem, boundary conditions must be considered on the interface Γ of normal n = n s . These conditions are:

Continuity of normal velocity

The mass conservation through interface Γ is expressed by the continuity of the velocity field v across Γ:

v s .n s + v d .n d = 0 on Γ (3)
Continuity of the fluid normal stress n.σ s .n = n.σ d .n on Γ (4)

Beaver-Joseph-Saffman condition

The Beaver Joseph Saffman condition allows the tangential velocity to be specified on the interface Γ. The interface condition can be written as:

2n. ε(v s ).τ j = α √ k (v s .τ j ) (5) 
where α is a dimensionless parameter, so-called slip coefficient and τ j are the tangential vectors on the interface.

Weak formulation

In order to solve the Stokes-Darcy coupled problem by a finite element method, the weak formulation has to be established. We present the weak formulation of Stokes and Darcy's systems separately. The weak formulation of the coupled problem is obtained by summing up the Stokes and Darcy's weak formulations and by taking into consideration interface conditions described in the Mathematical model section. For a sake of simplicity, we choose to write the L 2 inner product in Ω d/s as < •, • >.

The following functional spaces are used as velocity, pressure and test function spaces:

L 2 (Ω i ) = {u : Ω i → R | ∫ Ω i u 2 dΩ < ∞} H 1 (Ω i ) m = {u ∈ L 2 (Ω i ) m | ∇u ∈ L 2 (Ω i ) m×m } H 1 Γ i,D (Ω i ) m = {u ∈ H 1 (Ω i ) m | u = u 1 on Γ i,D } H 1,t Γ i,D (Ω i ) m = {u ∈ H 1 (Ω i ) m | u = 0 on Γ i,D } (6) 
H(div, Ω i ) = {u ∈ L 2 (Ω i ) m | div u ∈ L 2 (Ω i )} H Γ i,D (div, Ω i ) = {u ∈ H(div, Ω i )| u.n = u 2 on Γ i,D } H t Γ i,D (div, Ω i ) = {u ∈ H(div, Ω i )| u.n = 0 on Γ i,D } with i = s or i = d and m is the dimension equal to 2 or 3.
The variational formulation of Stokes problem consists in finding a velocity-pressure

pair [v s , p s ] ∈ H 1 Γ s,D (Ω i ) m × L 2 (Ω s ), such that : B s ([v s , p s ], [w s , q s ]) = L s ([w s , q s ]), ∀w s ∈ H 1,t Γ s,D (Ω s ) m , ∀q s ∈ L 2 (Ω s ). ( 7 
)
where the bilinear form B s and the linear form L s are defined in Stokes by:

B s ([v s , p s ], [w s , q s ]) = < 2µ ε(v s ) : ε(w s ) > Ωs -< p s , divw s > Ωs -< divv s , q s > Ωs + < p d , w s • n s > Γ + < αη √ k (v s • τ ), (w s • τ ) > Γ (8) L s ([w s , q s ]) = < f s , w s > Ωs + < h s , q s > Ωs + < p ext,s .n s , w s > Γ s,N (9) 
The variational formulation of Darcy's problem consists in finding a velocity-pressure

pair [v d , p d ] ∈ H Γ d,D (div, Ω d ) × L 2 (Ω d ) such that : B d ([v d , p d ], [w d , q d ]) = L d ([w d , q d ]), ∀w d ∈ H t Γ d,D (div, Ω d ), ∀q d ∈ L 2 (Ω d ). (10) 
The bilinear form B d and the linear form L d are defined in Darcy by :

B d ([v d , p d ][w d , q d ]) = µ k < v d , w d > Ω d -< p d , divw d > Ω d -< q d , divv d > Ω d -< p d , w s • n s > Γ (11) L d ([w d , q d ]) = < f d , w d > Ω d + < h d , q d > Ω d + < p ext,d • n, w d > Γ d,N (12) 
The mixed formulation of the Stokes-Darcy problem is established by considering a velocity v on Ω and a pressure field p on Ω such as v /Ω i = v i and p /Ω i = p i with i = s or i = d. The mixed weak formulation of Stokes-Darcy is obtained by summing up Eq. 8 and Eq. 11 and taking into consideration the conditions imposed on the Stokes-Darcy interface described in Mathematical model section. Hence, the variational formulation of the Stokes-Darcy coupled problem consist in finding

[v, p] ∈ V × Q such that : B c [(v, p), (w, q)] = L c ([w, q], ∀[w, q] defined in V 0 × Q (13)
with:

V = H 1 Γ s,D × H Γ d,D (div, Ω d ) V 0 = H 1,t Γ s,D × H t Γ d,D (div, Ω d ) (14) Q = L 2 (Ω s ) × L 2 (Ω d )
The bilinear form B c and the linear form L c are defined by:

B c ([v, q], [w, q]) = < 2µ ε(v) : ε(w)H s > Ω + < µ k v, w H d > Ω -< p , div w > Ω -< q, divv > Ω + < αµ √ k v , w > Γ (15) L c ([v, p], [w, q]) = < f, w > Ω + < h, q > Ω + < p ext,s .n, w > Γ s,N + < p ext,d .n, w > Γ d,N (f, h) are defined by (f i , h i ) in Ω i .
H i is the Heaviside function, equal to 1 in domain i and vanishing elsewhere.

Finite element method for Stokes-Darcy coupled problem

The whole domain Ω ⊂ R m is discretized with one single unstructured mesh. This mesh is made up of triangles if m = 2 and of tetrahedrons if m = 3. Let V h and Q h be the finite element spaces of the piecewise linear and continuous functions, which contains the solutions v h,i and p h,i . The Galerkin approximation of both the Stokes and the Darcy problems requires the use of velocity-pressure interpolation that satisfy the adequate inf sup condition. Different interpolations pairs are known to satisfy this condition for each problem independently, but the key issue is to find interpolations that satisfy both at the same time. In this paper, we choose the use of stabilized finite element methods. The philosophy of the stabilized methods is to strengthen classical variational formulations so that discrete approximation which would otherwise be unstable becomes stable and convergent. One of the stabilized finite element method approximation for Stokes-Darcy problem is VMS (Variational Multiscale Method) [3,4]. The basic idea of this method is to approximate the effect of the component of the continuous solution which cannot be captured by the finite element solution. It consists in splitting the continuous solution for velocity and pressure into two components, one coarse corresponding to the finite element scale [v h,i , p h,i ], and a finer component corresponding to lower scale [v ′ i , p ′ i ] for resolutions. The velocity is approximated as v i = v h,i + v ′ i and the pressure field is approximated as

p i = p h,i + p ′ i . We consider a subgrid space V × Q = (V h × Q h ) ⊕ (V ′ × Q ′ ).
Invoking this decomposition in the continuous problem for both the solution and test functions, the finite element problem becomes [4]:

B s ([v h,i , p h,i ], [w h,i , q h,i ]) + B s ([v ′ i , p ′ i ], [w h,i , q h,i ]) = L s ([w h,i , q h,i ]) (16) 
The fine scale problem writes:

B s ([v h,i , p h,i ], [w ′ i , q ′ i ]) + B s ([v ′ i , p ′ i ], [w ′ i , q ′ i ]) = L s (w ′ i , q ′ i ]) (17) 
The figures 2a, 2b and 2c show the isovalues of velocity and pressure obtained for the 2D and 3D realistic simulations obtained with ASGS method. Despite this curved interface, velocity and pressure fields computed with the monolithic approach do not exhibit any spurious oscillations.

Finally, the mechanical problem with ASGS method is coupled with the level set problem used to capture the resin flow front to simulate the transient fluid flow in Stokes-Darcy domains. A 3D simulation corresponding to a more complex part, essentially to illustrate the 3D resin flow was conducted. The results of this simulation are shown in Fig. 3. 

Conclusions

The monolithic approach has been developped to solve Stokes-Darcy coupled problem. A stabilized finite element method has been proposed to stabilize Stokes, Darcy and Stokes/Darcy coupled problem in the case where the Brezzi-Babuska stability condition is not fulfilled. This stabilization method is based on a variational multiscale technique called ASGS method. Convergence of this method was validated and compared with another approach [2] showing the accuracy of the results. Also, it was shown that the method could be used for more complex geometries and with a wide range of permeability, which is essential in the industrial applications. The current work focuses more specifically on the simulation of the resin infusion process: coupling the moving flow front and the deformation of preforms, and coupling the mechanical problem with the thermo-physico-chemistry of the resin.
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 123 Fig. 1: Computational domain (a) comparison of normal velocity between P1+/P1-HVM method (b), perpendicular flow (K = 10 -14 m 2 , µ = 1P a.s, α = 1)

  

for all [w h,i , q h,i ] ∈ V h × Q h and [w ′ i , q ′ i ] ∈ V ′ × Q ′ . After approximating (Eq. 17) with an algebraic formulation, by introducing the operator of projection P ′ onto V ′ , the approximated fields [v ′ , p ′ ] are taken into account in the finite element problem (Eq. 16), we get the stabilized forms of the bilinear and linear forms in Stokes, Darcy, and Stokes-Darcy coupled problem. The stabilized problem in Stokes can be written as follow: find

The bilinear stabilized form B s,stable and the linear stabilized form L s,stable are defined by:

The stabilization parameters τ v and τ q are chosen by Fourier transform analysis [4]. τ v and τ q are chosen in Stokes by:

c 1 is an algorithmic constant and h k is the size of mesh.

By using ASGS method, the stabilized problem in Darcy can be written as follow : find

with:

) are defined in (11). τ p , τ u are the stabilization parameters, that we compute as :

with c p and c u algorithmic constants. l u and l p are length scales which can be either taken as (L 0 h k ) 1/2 , L 0 is a characteristic length of the domain and h k is the element size.

For Stokes and Darcy flow coupled through the interfaces, the stabilized problem with ASGS can be written as follow: find

with:

, τ u,c are the stabilization parameters, that we compute as:

The surface integral < α µ k (v h .τ ), (w h .τ ) > Γ is computed on the interface Γ described by the zero isosurface of the signed distance function.

Interface description. The interface Γ separating the purely fluid domain and the porous domain is not described by a set of element boundary. This interface passes throughout the mesh elements, consequently a function φ has to be introduced to depict this interface. φ is chosen as the signed function to Γ. Consequently, Γ is the zero isosurface of φ : Γ = {φ = 0}. The level set function φ which separates Stokes and Darcy's domains allows the computation of the Heaviside functions H s et H d introduced in Eq. 15.

Numerical validation and results

In this section, the accuracy, the robustness and convergence of the proposed method is investigated. Theoretical orders of convergence are successfully obtained with a super-convergence in some cases due to the optimal choice of the stabilization parameters. These results are not presented in this paper.

In the case of a flow perpendicular (Fig. 1a) to the Stokes/Darcy interface we compare our results with another monolithic approach using MINI-element (P1+/P1) in Stokes and HVM (Hughes Variational Multi-scale) for the stabilization in Darcy [2]. We compare the normal velocity v y obtained with ASGS and P1+/P1-HVM methods. In this case, normal velocity should be equal to 10 -9 m/s for a permeability k = 10 -14 m 2 . Fig. 1b shows the ASGS method assume the continuity of normal velocity and a quasi absence of oscillations while spurious oscillations around the interface and non continuity of normal velocity are obviously seen with P1+/P1-HVM method.

The robustness of ASGS method is demonstrated on more realistic geometries of interest, especially in the context of the manufacturing processes of composite materials. 2D and 3D simulations were conducted with a very small height of the Stokes domain with respect to the Darcy's domain height and a very small permeability (k < 10 -14 m 2 ).