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Abstract. This paper presents a level set framework for the modelling of doping effect during surface
diffusion phenomena in a granular packing. The molecular flux of the doped compound is related to
the chemical potentials of all the diffusion species. The evolution of the grain compact is simulated
in three dimensions, based on the resulting kinetic law relating the surface diffusion velocity to the
thermodynamic driving force. An anisotropic adaptive mesh, based on the level set function properties
is used to refine the mesh in the surroundings of the grain surface. The simulations have been perfomed
by using parallel computing strategy.

Introduction

The elaboration of materials by metallic or ceramic powder metallurgy is being developed nowadays.
Sintering is an important stage of this process. Even if many studies are dedicated to this process, the
prediction and the control of the microstructure obtained at the end of the sintering have not yet been
mastered. In this context, this work focuses on two aspects of sintering: doping and multi-materials.
We will present the modelling, the numerical methods and the results obtained in the simulations of
doping and multi-materials.

Modelling

Sintering. The physicochemical model used is an extension of that developed by Readey [1], and later
by Gordon [2]. Here, the mass transport is not limited to volume and grain boundary diffusion, but is
also applicable for surface diffusion route as considered in this paper. Furthermore, the mass transport
equation is applied for the the magnesia-doped alumina configuration, but it can be easily apply to
other doped ionic compound.

The fluxes of the diffusing species are given by

Ji = −Li∇µi + εiLiE, i = Al,O,Mg (1)

where Ji is the flux of species i, Li the Onsager coefficient relating fluxes to forces, ∇µi: is the
chemical potential gradient, εi the charges on species i (εAl =+3, εO =-2, εMg =+2), E is the internal
electric field due to the charges.
The electroneutrality condition gives

3JAl + 2JMg − 2JO = 0 (2)
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Therefore, the total molecular flux J(Al2O3,MgO) is given by

J =
JAl

2
+

JMg

3
=

JO
3

(3)

Substituting the three flux equations [Eq. (1)] into [Eq. (2)] permits solving for the internal electric
field E. Replacing this value of electric field E in [Eq. (3)] leads to a complex relationship between
the molecular flux and the chemical potential gradients of all the diffusing species:

J = −
LAlLO(2∇µAl + 3∇µO) +

2

3
LMgLO(2∇µMg + 2∇µO)

9LAl + 4LMg + 4LO

(4)

The Li coefficients are usually expressed as

Li = N
,
jXiDi/kT (5)

whereN ,
j is the number of j sublattice sites perm3 (j=Al, O),Xi the sublattice site fraction of species i,

Di the tracer diffusion coefficient of species i, k is Boltzmann's constant, T is the absolute temperature.

DAl = XAl
···

I

θAl
···

I

+X
V

′′′

Al

θ
V

′′′

Al

, DO = XV
··

O

θV ··

O

(6)

θAl
···

I

, θ
V

′′′

Al

, θV ··

O

are respectively intrinsic diffusion coefficient of aluminium interstitials, aluminium
vacancies and oxygen vacancies.

Now, to obtain the chemical potential gradients in [Eq. (4)], Readey's [1, 3] procedure is applied
and it leads to:

2∇µAl + 3∇µO = Ωm∇p (7)

2∇µMg + 2∇µO =
2

3
Ωm∇p (8)

where p is the pressure on the solid and Ωm the volume per molecular site.
Substituting [Eq. (7)] and [Eq. (8)] in [Eq. (4)] gives the expression below for the molecular flux:

J = −Ωm

LAlLO + 4

9
LMgLO

9LAl + LMg + 4LO

∇p (9)

With some approximations

J = −
(1 + 4

9
XMg)XAl

···

I

θAl
···

I

2kT
∇p (10)

In the case of the mass transport by surface diffusion, the pressure p on the grain is related to the mean
curvature [Eq. (11)]; the matter flows over the grain free surface following the curvature gradient, i.e.
from the grain surface towards the neck formed between two grains.

p ≡ γκ (11)
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For the volume diffusion, to obtain the pressure p, it's necessery to solve the mechanical problem that
will be presented in the next Section.

The surface diffusion flux is then given by

Js = −
γ(1 + 4

9
XMg)XAl

···

I

δsθAl
···

I

2kT
(∇sκ) (12)

where∇s denotes the surface gradient, γ is the surface tension, δs is the thickness of the diffusion layer,
and κ is the surface mean curvature. This flux is tangent to the grain surface while the assumption by
which there no accumulation of matter involves a velocity vs normal to the surface:

vs = −Ωm(∇s· Js)n =
Ωmγ(1 +

4

9
XMg)XAl

···

I

δsθAl
···

I

2kT
(∆sκ)n (13)

∇s· denotes the surface divergence operator, ∆s is the surface Laplacian operator and n is the unit
normal vector pointing outward the grain surface. The numerical techniques used to solve [Eq. (13)]
relating the velocity to the the surface Laplacian of the curvature are detailled in [4].

When considering the volume diffusion flux denotes Jv, the displacement of the ceramic grain free
surface induced by this flux is characterized through the following interface velocity:

vv = Ω(Jv.n)n (14)

The volume diffusion velocity vv is then related to (∇p.n)n; see [5, 6] for more details.

Mechanical problem. Here, we consider two materials with the same constitutive law: isotropic,
linear and elastic but with different materials properties (Young's modulus, Poisson's ratio). This re-
flects the fact of having inclusions harder or softer in the continuous phase. It is therefore to study
the influence of the inclusions on the microstructure evolution. It will be solved by finite element, the
mechanical momentum conservation problem of these two solid phases embedded into a surrounding
medium, the air, assumed to be a Newtonian fluid. Neglecting the inertia terms and the volume forces,
the momemtum conservation can be expressed as follows:

σij,j = 0 (15)

σij is the Cauchy stress tensor for the matrix or the inclusions or the air.

Incompressible Newtonian fluid :

σF
ij = 2ηϵ̇ij − pδij (16)

vi,i = 0 (17)

σF
ij is the stress tensor for the fluid, η is the viscosity, ϵ̇ is the strain rate tensor, p is the pressure and v
is the velocity.

Ceramic matrix:

σC
ij = 2µCϵij −

(

1−
2

3

µC

KC

)

pδij (18)

uk,k +
p

KC

= 0 (19)
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σC
ij is the stress tensor for the ceramic, ϵij is the strain tensor, µC ,KC are respectively the shear mod-
ulus and the bulk modulus of the ceramic, u is the displacement.

Inclusions:

σI
ij = 2µIϵij −

(

1−
2

3

µI

KI

)

pδij (20)

uk,k +
p

KI

= 0 (21)

σI
ij is the stress tensor in the inclusion, µI ,KI are respectively the shear modulus and the bulk modulus
of the inclusion.
The variationnal formulations below are expressed in velocity-pressure (v,p) for the air and in displace-
ment-pressure (u,p) for ceramic grain the inclusions; φ and q are the trial functions.

∫

ΩF

2ηϵ̇ij (v) ϵ̇ij (φ) dV −

∫

ΩF

pφi,i dV =
∫

ΓF
σF
ijn

F
j φi dS (22)

∫

ΩF

vk,kq dV = 0 (23)

∫

ΩC

2µCϵij (u) ϵij (φ) dV −

∫

ΩC

(1−
2

3

µC

KC

)pφi,i dV =
∫

ΓC
σC
ijn

C
j φi dS (24)

∫

ΩC

uk,kq dV +

∫

ΩC

p

KC

q dV = 0 (25)

∫

ΩI

2µIϵij (u) ϵij (φ) dV −

∫

ΩI

(1−
2

3

µI

KI

)pφi,i dV =
∫

ΓI
σI
ijn

I
jφi dS (26)

∫

ΩI

uk,kq dV +

∫

ΩI

p

KI

q dV = 0 (27)

ΩF , ΩC and ΩI represent domains respectively occupied by the fluid (air), the ceramic matrix and the
inclusions.
ΓF = ∂ΩF : the boundary of the air domain
ΓC = ∂ΩC : the boundary of the ceramic domain
ΓI = ∂ΩI : the boundary of the inclusions domain.

Finally a mixed coupled variationnal formulation expressed in (v,p) is obtained by adding the varia-
tionnal formulation of each phase. Laplace's coupling law is used to take into account the jump of the
stress vector. The numerical method used to solve this mechanical problem is presented in [6].

Numerical simulations

Level set method. The above formulations are discretized and solved by using a finite element ap-
proach.
LetΩ be a computational domain,Ω⊂ IRd, where d is the spatial dimension.Ω contains two immiscible
phases: a set of solid grains, denoted Ωs, embedded into a surrounding fluid medium Ωa, the air.
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Furthermore, the set of grains is assumed to be completely immersed in the computational domain:
Ωs ∩ ∂Ω = ∅, ∂Ω is the boundary of Ω.
The computational domain Ω, is discretized with a fixed unstructured simplex mesh. At each instant
t, grains position is described by a level set function ϕ, governed at the begining of the computation
by [Eq. (28)]:

ϕ(x, t = 0) =







d(x,Γ) if x ∈ Ωa

−d(x,Γ) if x ∈ Ωs

0 if x ∈ Γ = Ωs ∩ Ωa

(28)

where d(x,Γ) is the distance from any point x of Ω to the grain surface Γ.
The level set function is transported by solving by finite element method the following transport

equation:

∂ϕ

∂t
+ v · ∇ϕ = 0 (29)

v is here the diffusion velocitie [Eq. (13)].

Simulation of doping effect during sintering. All the developments have been implemented in
the finite element library CimLib, a highly parallel C++ software developed at Center for Material
Forming (Mines ParisTech, CNRS UMR 7635) by the team of Professor Coupez [8]. An important
point of the use of CimLib is a mesh adaptation strategy described in [9], and which consists in refining
the mesh in the surroundings of the grain surface.

Here, the neck growth of two spherical grains of equal radii r=0.2 is investigated. Theoretical
models, based on geometrical assumptions of sintering process modelling (see [10]) state:

(
x(t)

r
)n =

AC0

r4
t = At∗ (30)

where r is the grain radius, x the neck radius, A a constant equal to 56 here, n a numerical expo-
nent that depends on the mechanism of sintering, t∗ = C0

r4
t is the dimensionless time; C0 is equal to

ΩmγXAl
···

I

δsθAl
···

I

/2kT . The simulations have been carried out with alumina parameters contains in
Table 1; then CO = 0.2× 10−7 for the initial undoped state. The time step of the computation is∆t =
10−4. 500 ppmMgO addition to this initial alumina enhenced the rate of grains neck growth by raising
the surface diffusion coefficient by a factor of 5 since Dd

Al = XAl
···

I

θAl
···

I

and V
′′′

Al neglected even in
the undoped case mentioned in [Eq. (6)]. This can be observed in Figure 1 (a) obtained by numerical
simulation, where at the same computational time (t∗ = 0.002 or t∗ = 0.024), the doped grains neck
is more developed than the undoped grains one. Figure 2 shows, in logarithmic scale, the growth of
the dimensionless neck radius x/r versus the dimensionless time t∗ obtained by finite element sim-
ulation for respectively, two undoped and doped grains with same radii r=0.2. These results give for
the undoped grains n = 5.33 and for the doped one n = 5.18 after a curve fitting of their numerical
data showed on Figure 2; even if both n values obtained don't correspond to the most plausible values
n = 7 predicted by the theory [10, 11], they are still in the range of possible values that can be obtained
by this geometrical model.
It is well known that sintering by surface diffusion preserves the volume of the compact powder while
reducing its specific surface area. During the presented simulations, the volume conservation is ob-
tained; and the specific surface area decreases with the time (see Figure 1 (b)), following [Eq.(31)]
[12]:

S(t)− Se = (SO − Se)e
−αt (31)
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These simulations are generalized successfully to the case of N grains.

Table 1: Parameters used for simulations
Ωm = 8.5 m3/mol k = 1.38× 10−23 J/K XAl

···

I

= 33.33 ppm

γ = 0.9 J/m2 T = 1700 K δsθAl
···

I

= 4× 10−18 m3/s

Fig. 1: (a) Neck growth by surface diffusion between two spherical doped and undoped grains of same
radii r = 0.2; (b) Reduction of surface area during surface diffusion sintering of the two doped and
undoped grains.

Fig. 2: Growth by surface diffusion sintering of the dimensionless neck radius x/r over dimensionless
time t∗ (logarithmic scale) for two spherical doped and undoped grains of same radii r = 0.2.

Multi-materials sintering simulation. The case investigated here concerns two grains in contact.
The fact that each grain has its own material properties is an additional difficulty: each grain (or group
of grains), must be described by its own a level set function. We then have to manage many distance
functions.
According to assumptions on the multi-materials model presented in Subsection , the pressure and the
volume diffusion velocity field computed, are shown in Figure 3. A pressure gradient appears near the
surface of contact between the two grains, and this gives the volume diffusion velocity as expression in
[Eq:(14)]. The first simulations, where the ceramic grain is evolving by volume diffusion are presented
in Figure 4. The inclusion is not involved in the diffusion phenomena.
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Fig. 3: (a) Pressure field; (b) Field of volume diffusion velocity.

Fig. 4: (a) Initial state; (b) Intermediate state.

Conclusion

A numerical modelling at microstructure scale of magnesia-doped alumina, and multi-material dur-
ing surface and volume diffusion sintering has been treated in this paper. The molecular flux inMgO

dopedAl2O3 is computed from the fluxes of the diffusing species. For the multi-material, the mechan-
ical problem has been solved and the first simulations have been performed. An Eulerian description
of the problem where the ceramic grains (without restriction concerning the number of grains), evolv-
ing in a fixed adapted mesh, are described by using a level-set method is the key point of the numerical
simulations.
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