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a b s t r a c t

We consider a multi-echelon joint inventory-location (MJIL) problem that makes location, order
assignment, and inventory decisions simultaneously. The model deals with the distribution of a single
commodity from a single manufacturer to a set of retailers through a set of sites where distribution
centers can be located. The retailers face deterministic demand and hold working inventory. The
distribution centers order a single commodity from the manufacturer at regular intervals and distribute
the product to the retailers. The distribution centers also hold working inventory representing product
that has been ordered from the manufacturer but has not been yet requested by any of the retailers.
Lateral supply among the distribution centers is not allowed. The problem is formulated as a nonlinear
mixed-integer program, which is shown to be NP-hard. This problem has recently attracted attention,
and a number of different solution approaches have been proposed to solve it. In this paper, we present a
Lagrangian relaxation-based heuristic that is capable of efficiently solving large-size instances of the
problem. A computational study demonstrates that our heuristic solution procedure is efficient and
yields optimal or near-optimal solutions.

1. Introduction

Supply chain management (SCM) involves a group of organiza-
tions that perform the various processes that are required to
manage the flow of products at the lowest possible cost and
highest degree of customer satisfaction. The chain typically begins
with raw materials and ends with the finished product that is
delivered to the customer. The supply chain includes the manu-
facturer, transporters, warehouses, retailers, and customers them-
selves. Within each organization, the supply chain includes all
functions involved in satisfying customer demand. Supply chain
decision phases are classified into the following three categories
based on the frequency with which they are made and the time
frame over which a decision phase has an impact: (1) strategic
decisions, which impact the firm over several years, for example
the locations of distribution centers; (2) tactical decisions, which
are usually made one to four times a year, for example determin-
ing transportation and inventory policies; and (3) operational
decisions, which are usually made on a daily basis, for example
scheduling and routing decisions; see Chopra and Meindl [6] and

Simchi-Levi et al. [31]. In today's competitive environment, only
efficient supply chains that integrate decisions in the various
phases can survive.

Inventory management and facility location are two major
issues in the efficient design of a supply chain network; see
Gunasekaran et al. [16,17] and Stevens [34]. However, literature
on supply chain optimization has traditionally considered these
issues independently not only because of different planning
horizons but principally because of the computational complexity
of the joint optimization problem. Indeed, facility location pro-
blems are typically NP-hard combinatorial optimization problems,
and the majority of inventory management problems are formu-
lated as nonlinear programming problems. Combining such two
problems leads to more difficult NP-hard problems that are usually
nonconvex, and therefore cannot be easily solved to optimality
using exact optimization methods. However, such an integration
offers a possibility to considerably improve the supply chain
management and reduce the costs.

It is worth mentioning a real-world example, in the interest of
demonstrating how the strategic level decision of facility location
(which does not necessarily refer to an actual location of a new
facility) can be successfully integrated with the tactical level
inventory decisions, to provide better solutions and lead to
improved performance. The motivation behind initial work on
joint inventory location problems arose from the problem of
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producing and distributing blood platelets for a blood bank in
Chicago and it was addressed by Daskin et al. [8], Shen et al. [23]
and Ozsen et al. [27,28]. This particular bank distributes blood to
more than thirty hospitals in the region and the inventory cost of
the platelets is high, due to specific conditions that should be
maintained at all times, such as the frequent agitation of the
platelets or the temperature that must be kept between 20 and
24 1C. Furthermore, the expiration of the blood platelets a few days
after they are collected is another important factor to be consid-
ered. Each hospital stored its own platelet inventory and this
independent inventory and location policy led to platelets going to
waste after expiration in certain hospitals, while others ran out
very soon. After re-addressing this problem as a joint location-
inventory model, by enforcing some hospitals to serve as distribu-
tion centers and others as retailers, the efficiency and usage of the
platelets greatly improved. The same example motivated Le et al.
[22] to jointly study inventory decisions and routing decisions for
perishable goods. Therefore, many real-world problems can be
formulated as location-inventory problems without including any
“real” location decisions for opening new warehouses. The exis-
tence of the location-type decision variables, in addition to the
inventory decision variables, is the only reason for calling such
problems location-inventory problems.

The objective of the present paper is to develop an efficient
Lagrangian-based heuristic for such an integrated problem, which
we call a large-scale multi-echelon joint inventory-location pro-
blem and which we refer to as the MJIL problem.

The paper is organized as follows: Section 2 reviews existing joint
inventory-location models; Section 3 introduces the MJIL problem;
Section 4 introduces the new Lagrangian relaxation algorithm for
solving the MJIL problem; Section 5 presents computational studies;
and Section 6 discusses future research directions.

2. Literature review

Integrated supply chain network design involves several core
components, among which are facility location and inventory
management. Most literature on supply chain optimization has
traditionally considered facility location decisions and inventory
management decisions independently: Amiri [1], Daskin et al. [9],
Hindi and Pienkosz [18], Pirkul and Jayaraman [29], and Tsiakis
et al. [40] focused on location decisions, while Axsäter [2], Jones
and Riley [20], Muckstadt and Roundy [25], Svoronos and Zipkin
[35], and Wee and Yang [41] focused on inventory management
decisions. Only recently, integrated models have attracted the
attention of researchers.

Barahona and Jensen [3] introduced a large-scale integer
programming formulation for a location-inventory model, and
used Dantzig–Wolfe decomposition to solve the linear program-
ming relaxation of this problem. Because the standard implemen-
tation of the Dantzig-Wolfe decomposition algorithm was too
slow, the authors used subgradient optimization to improve the
rate of convergence of their solution procedure. Although they
included ordering and inventory costs in their model, they
considered these costs only for one echelon. Thus, their model
represents the integration of a location model with an economic
order quantity (EOQ) model; see Nahmias [26].

Erlebacher and Meller [11] developed an analytical joint
location-inventory model. The general version of their problem
is NP-hard, and is therefore difficult to solve, so they developed a
heuristic algorithm which performs well on their test problems.
They consider ordering and inventory costs at the distribution
centers but these costs are omitted at the retailer level. Teo et al.
[37] used an analytical modeling approach to study the impact on
facility investments and inventory costs when several distribution

Table 1
Comparison of relevant published papers.

Paper Model features Decision variables Solution methodology

This paper � Ordering, inventory and transportation costs � Average inventory level at retailer Lagrangian relaxation-based
heuristic

� Multi-echelon � Average inventory level at DC
� Single sourcing � Order-quantity at retailer

� Cycle time of retailer
� Cycle-time of DC

[3] � Ordering and inventory costs � Whether or not a plant is opened Dantzig–Wolfe decomposition and
subgradient optimization

� Single echelon � Customer-plant assignment
� Whether or not a customer that is assigned to a
plant requires a certain part

[11] � Ordering and inventory costs � Number of DCs Stylized analytical model,
heuristics

� Two-level distribution system � Location of DCs
� If DC is open
� If DC serves certain customer grid
� Average distance from DC to customer
� Demand shipped
� Distance from plant to DC

[37] � Stochastic demands at customer locations � Location of DC Consolidation strategy
� Warehouse consolidation � Assignment of demand location to DC

[36] � Possibility for direct flow between customer
and factory

� Flows between customers, factories, DCs Iterative heuristic

� Multiple sourcing � Size of shipments sent
� Total flow passing from every DC

[4] � Two stage distribution system � Set of open DCs Analytical solution
� Explicit modeling of inventory replenishment,
holding and transportation costs

� Assignment of open DCs

[39] � Multiple sourcing � Location of DCs Continuous approximation
� Assignment of retailers to DCs



centers are consolidated into a central distribution center, but did
not consider transportation costs in their formulation.

Transportation costs are considered in most recent models, as
found in the work of Tancrez et al. [36], in which the authors study
the integrated location-inventory problem for three-level supply
networks, comprising suppliers, distribution centers and retailers.
The non-linear continuous formulation includes transportation, fixed,
handling and inventory holding costs and the authors develop a
heuristic to solve the problem, which performs efficiently. Keskin and
Üster [21] similarly address the three-stage supply network, in terms
of modeling assumptions and considerations; however, as a solution
methodology they develop both a local search and a Simulated
Annealing (SA) algorithm and conclude that SA leads to better quality
solutions and lower run times. As in the current paper, both
aforementioned works assume single sourcing.

Çetinkaya et al. [4] further consider that transportation costs
are subject to truck and cargo capacity, leading to a need for
explicit cargo cost modelling. On the other hand, they consider a
two-stage distribution systemwith DCs and retailers and they take
advantage of certain structural properties to reduce to a simpler
non-linear formulation, which leads to efficient solving of the
problem. Contrary to the discrete models seen in the papers
mentioned thus far, Tsao et al. [22] develop a continuous approx-
imation approach, with the motivation of solving larger-scale
problems. They conduct a sensitivity analysis with respect to
parameter values to provide management insights.

Daskin et al. [8] and Shen et al. [23] developed a location-
inventory model with risk pooling (LRMP). LMRP is formulated as
a nonlinear integer programming problem that incorporates
inventory costs at the distribution centers. Ozsen et al. [27,28]
and Sourirajan et al. [32,33] proposed two different extensions to
the model, presented by Daskin et al. [8] and Shen et al. [23].
Table 1 provides a straightforward comparison of several of the
published papers, in terms of distinct model assumptions, deci-
sions made and solution methodology.

In this paper we study a model that considers ordering and
inventory costs at both the distribution center and retailer echelons.
This model, which was studied by Teo and Shu [38], Shu [30], and
Diabat et al. [10], is unlike the models mentioned above, which
consider the ordering and inventory costs at only one level of the
supply chain network. Considering ordering and inventory costs at
two echelons in the model poses additional challenges. Teo and Shu
[38] developed a column generation-based algorithm for solving this
model that was capable of finding an optimal or near-optimal
solution for small to moderate size instances. Shu [30] presented a
greedy heuristic to solve large-scale instances of the problem. Later
on, Diabat et al. [10] developed a basic Lagrangian relaxation-based
heuristic for this problem. Results from the aforementioned works
that employ Lagrangian relaxation-based heuristics demonstrate that
this method seems promising for such integrated problems. There-
fore, in this paper, a new sophisticated Lagrangian relaxation-based
heuristic with efficient lower and upper bounding schemes is
presented. Our computational studies demonstrate that the proposed
method is efficient, and yields optimal or near-optimal solutions in
relatively very small computational times.

3. Problem formulation

The formulation addresses the delivery of a single product from a
manufacturer to distribution centers, which can be opened in multi-
ple locations, and from there to multiple retailers. Single sourcing is
assumed, according to which a single distribution center covers the
total demand of any given retailer. On the retailers' side the demand
is deterministic and they hold working inventory, which is defined as
the product delivered to the retailer by the distribution center,

without having yet been requested by end-customers. As far as
distribution centers are concerned, they receive a single commodity
only from the manufacturer, as lateral supply is prohibited, at
frequent time periods, in order to then redistribute to retailers, and
they also hold working inventory of product from the manufacturer,
that has not yet been ordered from retailers. Fig. 1 serves as a
representation of the described system.

There are four main cost components in this system: (i) fixed-
order cost: the cost of placing an order, independent of the size of
the order, (ii) unit-inventory cost: the cost of holding one unit of
commodity for one unit of time, (iii) unit-shipping cost: the cost
of shipping one unit of commodity between facilities, and (iv)
fixed-location cost: the cost associated with establishing and
operating a distribution center. The objective of the formulation
is to decide: (1) the number of distribution centers to establish;
(2) their locations; (3) the sets of retailers assigned to each
distribution center; and (4) the size and timing of orders for each
facility, with the aim of minimizing the sum of inventory,
shipping, ordering, and location costs while satisfying end-
customer demand.

To formulate the problem, Diabat et al. [10] introduced the
following notation:

Sets
I set of retailers, indexed by i
J set of potential distribution center

locations, indexed by j
Ij subset of retailers that are assigned to

the distribution center at location j
Parameters

di demand rate of retailer i
f j fixed cost of establishing and operating a distribution

center at location j
sij unit-shipping cost to retailer i from distribution

center j
ŝj unit-shipping cost from the manufacturer to

distribution center j
hi unit-inventory cost per unit of time at retailer i
ki fixed-order cost at retailer i

ĥj
unit-inventory cost at distribution center j, per unit
of time

k̂j
fixed-order cost at distribution center j

tB base-planning period
βtrn weight factor associated with transportation costs,

βtrnZ0
βinv weight factor associated with inventory costs,

βinvZ0

Decision variables
Vi average inventory level at retailer ibV j

average inventory level at distribution
center j

Fig. 1. MJIL supply chain network.



Qi order-quantity at retailer i
Tij cycle-time of retailer i when served by distribution

center jbT j
cycle-time of distribution center j

Binary decision variables
Xj 1 if a distribution center is opened at candidate location j

0 otherwise

�
Yij 1 if retailer i is served by the distribution center at location j

0 otherwise:

�

Now, we can formulate the MJIL problem as follows:

min
T ;bT ;X;Y ∑

jA J
f jXjþ∑

jA J
∑
iA I
βtrnðsijþ ŝjÞdiYijþ∑

jA J
∑
iA I
βinv

ki
Tij

Yij

þ∑
jA J
βinv

k̂jbT j

Xjþ∑
jA J

∑
iA I

1
2
βinvðhi� ĥjÞdiTijYij

þ∑
jA J

∑
iA I
βinv

1
2
ĥjdi max fTij; bT jgYij

¼ ∑
jA J

f jþβinv
k̂jbT j

 !
Xj

þ∑
jA J

∑
iA I

βtrnbijþβinvcijTijþβinv
ki
Tij

þβinveij max fTij; bT jg
� �

Yij

ð1Þ

s:t: ∑
jA J

Yij ¼ 1; 8 iA I ð2Þ

Yij�Xjr0; 8 iA I; jA J ð3Þ

TijARþ ; 8 iA I; jA J ð4Þ

bT jARþ ; 8 jA J ð5Þ

XjAf0;1g; 8 jA J ð6Þ

YijAf0;1g; 8 iA I; jA J ð7Þ
where (1) represents the objective function that minimizes the
sum of inventory, shipping, ordering, and location costs while
satisfying end-customer demand. We have defined bij ¼ ðsijþ ŝjÞdi,
cij ¼ 1

2 ðhi� ĥjÞdi, and eij ¼ 1
2 ĥjdi. Observe that even when retailer i is

not assigned to a distribution center at location j, the variable Tij
will be assigned a value. However, this value does not play a role in
the objective function as it is multiplied by Yij ¼ 0.

According to constraint (2), each retailer has to be assigned to
exactly one distribution center. Constraint (3) assures that a
retailer can be assigned to a distribution center only if it is opened.
Constraints (4) and (5) define variables Tij and bT j as positive real
numbers. Constraints (6) and (7) define variables Xj and Yij as
binary numbers. For more explanation on the formulation of the
problem, we refer the reader to Diabat et al. [10].

Let Ij be the set of retailers that are assigned to distribution
center j. Based on the results obtained in [10], we define sub-
problem(j) to be the system consisting of the distribution center j
and the set of retailers Ij. Because of our single-sourcing assump-
tion, the problem decomposes into jJj sub-problems, each repre-
senting a one-distribution center multi-retailer inventory system.
The goal of each sub-problem is to find an optimal inventory
policy, that is, the size and timing of orders for each facility, so as
to minimize the sum of ordering and inventory costs while
meeting demand. To find the subsets Ij; 8 jA J, each sub-problem
is defined as nonlinear program as shown in [10] and should be
solved endogenously and simultaneously with problem (1)–(7),

since its decisions are interrelated with the ordering decisions Tij
and bTj .

If βinv ¼ 0, the MJIL problem (1)–(7) reduces to the uncapaci-
tated fixed-charge location problem (UFLP); see Daskin [7]. There-
fore, the MJIL problem is NP-hard. In fact, the nonconvexity of
(1)–(7) indicates that it is probably difficult to solve the problem to
global optimality. We now propose an alternative formulation for
the nonlinear mixed integer program (1)–(7) that is easier to work
with. For simplicity, we drop the index j on the retailer cycle-time,
that is, Tij is replaced by Ti. We define ZjðIj; bT j; Ti;XjÞ and Zn

j ðIj;XjÞ
to respectively be the total average inventory cost and the optimal
inventory cost of serving all retailers in Ij from a distribution
center located at location j. Formally, we have

ZjðIj; bT j; Ti;XjÞ ¼
k̂jbT j

Xjþ ∑
iAIj

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �
ð8Þ

and

Zn

j ðIj;XjÞ ¼minbT j ;Ti
k̂ jbT j

Xjþ ∑
iAIj

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �
s:t: bT jARþ

TiARþ ; 8 iAIj

8>>>><>>>>:

9>>>>=>>>>;: ð9Þ

By convention we interpret Zn

j ðIjÞ as Zn

j ðIj;Xj ¼ 0Þ when Ij ¼ |
and as Zn

j ðIj;Xj ¼ 1Þ when Ija|.
With this convention, the program (1)–(7) can be reformulated

as follows:

min
X;Y ;I

∑
jA J

f jXjþ∑
iA I
βtrnbijYijþβinvZ

n

j ðIjÞ
 !

ð10Þ

s:t: ∑
jA J

Y ij ¼ 1; 8 iA I ð11Þ

Yij�Xjr0; 8 iA I; jA J ð12Þ

XjAf0;1g; 8 jA J ð13Þ

YijAf0;1g; 8 iA I; jA J ð14Þ
where Ij ¼ fiA IjYij ¼ 1g.

4. Solution approach

Lagrangian relaxation has shown exceptional success in solving
many NP-hard supply chain combinatorial optimization problems;
see for example Chen and Chu [5], Eskigun et al. [12], Jayaraman
and Pirkul [19], Min et al. [24], and Pirkul and Jayaraman [29].
Excellent surveys of the computational aspects and applications of
Lagrangian relaxations are given by Fisher [13–15]. In the next two
subsections, we describe our approach to solving problem (10)–(14).
The proposed solution procedures are based on Lagrangian dual
formulations, where Constraints (11) are relaxed. A solution of the
Lagrangian dual provides a lower bound on the program (10)–(14).
In order to find an upper bound, we use a heuristic that constructs
a feasible solution from the lower bound solution.

4.1. Lower bounds

The Lagrangian dual obtained by relaxing constraints (11) can
be written as

max
λZ0

min
X;Y ;I

∑
jA J

f jXjþ∑
iA I
βtrnbijYijþβinvZ

n

j ðIjÞ
 !

þ∑
iA I
λi 1�∑

jA J
Y ij

 !

¼ ∑
jA J

f jXjþ∑
iA I

βtrnbij�λi
� �

YijþβinvZ
n

j ðIjÞ
 !

þ∑
iA I
λi ð15Þ



s:t: Yij�Xjr0; 8 iA I; jA J ð16Þ

XjAf0;1g; 8 jA J ð17Þ

YijAf0;1g; 8 iA I; jA J: ð18Þ

Problem (15)–(18) decomposes by location, that is, each dis-
tribution center location can be considered separately. Denoting
the corresponding sub-problem SjðλÞ and defining its correspond-
ing optimal value as Snj ðλÞ, we obtain

min
X;Y ;I

f jXjþ∑
iA I

βtrnbij�λi
� �

YijþβinvZ
n

j ðIjÞ ð19Þ

s:t: Yij�Xjr0; 8 iA I ð20Þ

XjAf0;1g ð21Þ

YijAf0;1g; 8 iA I: ð22Þ

For any given λ, we either set Xj¼0 or Xj¼1 in problem SjðλÞ. If we
set Xj¼0, then Yij ¼ 0 for all iA I, so that Ij ¼ | (empty set), and
hence Zn

j ðIjÞ ¼ 0. Therefore, Snj ðλÞ ¼ 0. On the other hand, if we set
Xj¼1, then for each iA I we can select either Yij ¼ 0 ði=2IjÞ or
Yij ¼ 1 ðiAIjÞ. Since Zn

j ðIjÞZZn

j ðIj\figÞ for any IjD J, when
βtrnbij�λi40 it is never advantageous to set Yij ¼ 1 for any i, that
is, we must select Yij ¼ 0, so that i=2Ij.

A more challenging decision to make occurs when Xj¼1 and
βtrnbij�λio0. The structure of subproblem SjðλÞ, (19)–(22), makes
it difficult to decide if it is beneficial to set Yij ¼ 1 or not, for any
iA I. If the term Zn

j ðIjÞ of the objective function was not present in
(19), as in the UFLP, then we would simply set Yij ¼ 1 whenever
Xj¼1 and βtrnbij�λir0. However, the existence of Zn

j ðIjÞ will force

the objective value Snj ðλÞ to increase since setting Yij ¼ 1 implies

iAIj. Therefore, although Xj¼1 and βtrnbij�λir0, we might have
to set Yij ¼ 0 if the increase in the optimal objective value is
greater than (βtrnbij�λi) for any i in Ij. It is therefore important to
determine how much of an increase in Snj ðλÞ will be caused by
adding i to Ij.

Definition 4.1. The jth marginal inventory cost of retailer i,
denoted by MiðIjÞ for any iAIj, is the difference in the optimal
average inventory costs of sub-problem(j) between serving retailer
i or not. That is, MiðIjÞ ¼ Zn

j ðIjÞ�Zn

j ðIj\figÞ for any iAIj and any
IjD I where Zn

j ð|Þ ¼ 0.

Proposition 4.1. Let IjD I and let iAIj. The jth marginal inventory

cost of retailer i is lower bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
; i.e. MiðIjÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
.

Proof of Proposition 4.1. Assume bT j is fixed. Define

gijðTi; bT jÞ ¼
ki
Ti
þ1
2
ðhi� ĥjÞdiTiþ

1
2
ĥjdimaxðTi; bT jÞ: ð23Þ

Let ∂gijðTi; bT jÞ be the subgradient of gij with respect to its first
argument, which we will abbreviate as ∂gijðTiÞ. Clearly, the func-
tion gijðTi; bT jÞ is a convex function of its first argument over Ti40
since it is the sum of three functions that are convex in Ti for fixedbT j; it follows that the minimum of gij over Ti40 will be attained at
any point where 0A∂gij. We have

∂gijðTi; bT jÞ ¼

� ki
T2
i

þ1
2
ðhi� ĥjÞdi if TiobT j

� ki
T2
i

þ1
2
ðhi� ĥjÞdi; �

ki
T2
i

þ1
2
hidi if Ti ¼ bT j

� ki
T2
i

þ1
2
hidi if Ti4bT j

8>>>>>>>>><>>>>>>>>>:
ð24Þ

There are three possibilities:

Case 1: If bT jr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=hidi

p
, then define Tn

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=dihi

p
. It then

follows that Tn

i 4
bT j and hence that ∂gijðTn

i Þ ¼ 0, and thus

that Tn

i minimizes gijð�; bT jÞ.
Case 2:

If bT jZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=ðhi� ĥjÞdi

q
, then define Tn

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=ðhi� ĥjÞdi

q
.

It then follows that Tn

i obT j and hence that ∂gijðTn

i Þ ¼ 0, and

thus that Tn

i minimizes gijð�; bT jÞ.
Case 3:

If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=hidi

p
rbT jr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki=ðhi� ĥjÞdi

q
, then define Tn

i ¼ bT j.

It then follows that 0A∂gijðTn

i Þ, and thus that Tn

i minimizes

gijð�; bT jÞ.

It follows from the above that gijð�; bT jÞ attains a minimum at

Tn

i ¼

ffiffiffiffiffiffiffiffiffi
2ki
dihi

s
if bT jr

ffiffiffiffiffiffiffiffiffi
2ki
hidi

s

bT j if

ffiffiffiffiffiffiffiffiffi
2ki
hidi

s
rbT jr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki

ðhi� ĥjÞdi

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ki
ðhi� ĥjÞdi

s
if bT jZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki

ðhi� ĥjÞdi

s
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Let

giðbT jÞ ¼ min
Ti 40

gijðTi; bT jÞ

be the value of gij at the minimum, then

giðbT jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
if bT jo

ffiffiffiffiffiffiffiffiffi
2ki
dihi

s
kibT j

þ1
2
dihibT j if

ffiffiffiffiffiffiffiffiffi
2ki
dihi

s
rbT jr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki

ðhi� ĥjÞdi

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kiðhi� ĥjÞdi

q
þ1
2
ĥjdibT j if bT j4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki

ðhi� ĥjÞdi

s
:

8>>>>>>>>>>>><>>>>>>>>>>>>:
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Since giðbT jÞ is continuous and nondecreasing in bT j, it follows
that

minbT j

fgiðbT jÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
:

Without loss of generality, select retailer iAIj. We prove next
that MiðIjÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
, for any IjD I.

MiðIjÞ ¼ Zn

j ðIjÞ�Zn

j ðIj\figÞ
¼minbT j ;Ti

fZjðIj; bT j; Ti;XjÞg�minbT j ;Ti fZjðIj\fig; bT j; Ti;XjÞg

¼minbT j ;Ti
k̂jbT j

Xjþ ∑
iAIj

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �( )

�minbT j ;Ti
k̂ jbT j

Xjþ ∑
iAIj\fig

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �( )

ZminbT j ;Ti
ki
Ti
þcijTiþeij max ðTi; bT jÞ

� 


þminbT j ;Ti
k̂ jbT j

Xjþ ∑
iAIj\fig

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �( )

�minbT j ;Ti
k̂ jbT j

Xjþ ∑
iAIj\fig

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� �( )



¼minbT j min
Ti

ki
Ti
þcijTiþeij max ðTi; bT jÞ

� 
� 

¼minbT j giðbT jÞ

n o
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
:

Proposition 4.2. Assume that In

j D I is the set of retailers that will be
assigned to distribution center j in the optimal solution to problem
SjðλÞ. Then
βtrnbij�λiþβinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
r0 for any iAIn

j :

Proof of Proposition 4.2. Since inAIn

j , it follows that

∑
iAIn

j

βtrnbij�λi
� �þβinvZ

n

j ðIn

j Þr ∑
iAIn

j \fing
ðβtrnbij�λiÞþβinvZ

n

j ðIn

j \figÞ:

This inequality can be simplified to

ðβtrnbin j�λin ÞþβinvZ
n

j ðIn

j ÞrβinvZ
n

j ðIn

j \fingÞ
rβinvZ

n

j ðIn

j Þ�βinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kindinhin

q
:

Simplifying the above expression, we obtain

0r�ðβtrnbinj�λin Þ�βinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kindinhin

q
or equivalently

0Z ðβtrnbin j�λin Þþβinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kindinhin

q
which is the desired result.

Proposition 4.2 yields the following helpful contrapositive that
can be used in designing our solution algorithm for solving the
MJIL problem.

Corollary 1. Assume that In

j D I is the set of retailers that will be
assigned to distribution center j in the optimal solution to problem
SjðλÞ. For any iA I,

if βtrnbij�λiþβinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
40 then i=2In

j : ð27Þ

Corollary 1 shows that, in solving subproblem SjðλÞ, we should
choose Yij ¼ 0 for any retailer iA I that has a positive value of

βtrnbij�λiþβinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
. Unfortunately, Xj¼1 and βtrnbij�λiþ

βinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
o0 are not sufficient conditions to require Yij ¼ 1

for any iA I. However, Corollary 1 shows that we can restrict our
search to the set of retailers:

Ij ¼ fiA I s:t: βtrnbij�λiþβinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kidihi

p
o0g:

For those retailers, we sort all iA Ij such that δ1jrδ2jr⋯rδmj,
where m¼ jIjj and δij ¼ ðβtrnbij�λiÞþZn

j ðfigÞ. Then we use a simple
greedy heuristic to assign these retailers as outlined in Algorithm
AlgLB below. This algorithm is used to obtain a lower bound on
SjðλÞ.

Algorithm AlgLB.

Step 1: Partition set I into two subsets as follows:

I
=2
j ¼ fiA I s:t: βtrnbij�λiþβinv

ffiffiffiffiffiffiffiffiffiffiffiffi
2kdih

p
Z0g

Ij ¼ I� I
=2
j

Step 2: Compute δij ¼ ðβtrnbij�λiÞþZn

j ðfigÞ, for i¼ 1;…;m.

Step 3: Form the sets

IðkÞj ¼ fℓA Ij : δℓj is among the k smallest

elements of fδijgi ¼ 1;…;mg:

Step 4: Compute the partial sums

ΔðkÞ
j ¼ βinvZ

n

j ðIðkÞj Þþ ∑
iA IðkÞj

ðβtrnbij�λiÞ for k¼ 1;2;…;m:

Step 5: Let kn be the value of k that gives the minimum value of
ΔðkÞ

j and set

Xn

j ¼
1 if f jþΔðknÞ

j o0

0 otherwise:

(

Step 6: Set

Yn

ij ¼
1 if Xj ¼ 1 and iA Iðk

nÞ
j

0 otherwise:

(

Algorithm AlgLB is applied for every jA J. The objective function
(10) evaluated at Xn

j , Yn

ij serves as a lower bound on the MJIL
problem, (10)–(14).

4.2. Upper bounds

In most cases, the solution obtained by algorithm AlgLB will be
infeasible for the MJIL problem. However, a feasible solution can
typically be obtained by using a constructive heuristic on the
lower bound solution, as described in the algorithm AlgUB. The
resulting feasible solution provides an upper bound on (10)–(14).
The problem that algorithm AlgUB addresses is: given an initial
solution X, Y ð0Þ that satisfies (12)–(14) but not necessarily (11), how
does one extend this solution to a good quality feasible solution Y?
Since (11) implies that a feasible solution Y contains exactly a
single “1” in each row, in order to satisfy (11) we must insert a “1”
into each row that does not contain a “1”, and delete all “1‴s but
one from each row that contains two or more “1‴s. The algorithm
we propose is given below:

Algorithm AlgUB.

STEP 1: Initialize the matrix Y and the list L
For i¼ 1;…; I:
� If the ith row of Y ð0Þ has exactly one “1”:

○ Set Yi;j ¼ Y ð0Þ
i;j for 1r jr J, i.e. set the ith row of Y

equal to the ith row of Y ð0Þ.
� If the ith row of Y ð0Þ has either no “1‴s or more than

one “1”:
○ Set Yi;j ¼ 0 for 1r jr J, i.e. set the ith row of Y equal

to zeros.
STEP 2: Initialize the list L

For i¼ 1;…; I:
� If the ith row of Y ð0Þ has no “1‴s:

○ For each j such that Xj ¼ 1, add the tuple ði; j;Δgði; jÞÞ
to the list L, where Δgði; jÞ is the amount by which
the objective function (10) is increased when the (i,
j)th entry of Y is changed to a “1”.

� If the ith row of Y ð0Þ has more than one “1”:
○ For each j such that Y ð0Þ

i;j ¼ 1, add the tuple
ði; j;Δgði; jÞÞ to the list L, whereΔgði; jÞ is the amount



by which the objective function (10) is increased
when the (i,j)th entry of Y is changed to a “1”.

STEP 3: Update Y and L
Repeat the following steps until the list L is empty:
� Find the tuple ði; j;Δgði; jÞÞ in the list having the

smallest value of Δgði; jÞ. Let the value of i and j that
achieve the minimum be respectively imin, jmin.� Remove the tuple ðimin; jmin;Δgðimin; jminÞÞ from the list
and set Yimin ;jmin

¼ 1.
� Scan the list and remove any tuple ði; j;Δgði; jÞÞ with

i¼ imin.� Scan the list and recalculate Δgði; jÞ for any tuple
ði; j;Δgði; jÞÞ with j¼ jmin.

We note that upon completion of algorithm AlgUB, the pair X, Y
will be a feasible solution. Also, at each step, a “1” is inserted in the
location (i,j) that brings about the smallest increase Δgði; jÞ in the
objective function (10). To clarify Step 3, we note that

(i) The reason that tuples ði; j;Δgði; jÞÞ with i¼ imin are removed in
Step 3 is that once Yimin ;jmin

has been set to one, we already have
one “1” in row imin, so we remove any tuples that would place
another “1” in this row.

(ii) The reason why Δgði; jÞ is recalculated for tuples ði; j;Δgði; jÞÞ
with j¼ jmin in Step 3 is that the objective function (10)
depends on all entries in the jth column of Y via the term
βinvZ

n

j ðY ;jÞ, and hence when an entry in this column changes,
all tuples that would add a “1” to this column must be
recalculated.

If the greatest observed lower bound is equal to the smallest
observed upper bound within some pre-specified tolerance, we
have found an “optimal” solution to (10)–(14). Otherwise, the
Lagrange multipliers are updated using subgradient optimization
as described in Fisher [13–15] and we repeat algorithms AlgLB and
AlgUB until a feasible solution with the desired tolerance is
obtained or the minimum value of the step-size is reached.
If, when the Lagrangian procedure terminates, the best known
lower bound is equal to the best known upper bound (within
some pre-specified tolerance), we have found the optimal solution
to the MJIL problem. Otherwise, a branch-and-bound algorithm is
used to close the gap, with branching performed on the location
variables Xj. At each node of the branch-and-bound tree, the
distribution center selected for branching is the unopened dis-
tribution center with the greatest assigned demand; if all distribu-
tion centers in the solution have already been forced open, we
branch on an arbitrarily selected unforced distribution center. The
variable is first forced to zero and then to one. Branching is done in
a depth-first manner. The tree is fathomed at a given node if the
lower bound at that node is greater than or equal to the objective
value of the best feasible solution found anywhere in the tree to
date, or if all distribution centers have been forced open or closed.

5. Computational results

In this section, we first explain the design of our computational
experiments and then summarize the results. We tested our
heuristic for the MJIL problem on a total 1750 randomly generated
instances against the Lagrangian relaxation based algorithm used
by Diabat et al. [10]. As in Shu [30], the location of the distribution
centers and the retailers are uniformly distributed over [0,100]�
[0,100]. All transportation costs are assumed to be proportional to
the euclidean distance in the plane. Retailers' fixed-order costs,
unit-inventory costs, and demands are generated uniformly in

[150,250]. For the distribution centers, fixed-order costs are
generated in [300,400] and unit-inventory costs are generated
uniformly in (0,100]. We ran the three algorithms on the follow-
ing pairs (βtrn;βinv): (0.01,1), (0.01,100), (1,0.01), (1,1), (1,100),

Table 2
Parameters for the Lagrangian relaxation algorithm.

Parameter Value

Maximum number of iterations at each node 1200
Number of non-improving iterations before halving α 12
Initial value of α 2
Minimum value of α 0.00000001
Minimum gap 1%
Initial value for λi 10μþ10f i

Table 3
Results for ðβinv ; βtrnÞ ¼ ð0:01;1Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 56.6 0.196 1.7 0.359
50 30 174.6 0.256 3.7 0.355
50 50 285.0 0.132 4.7 0.177

100 50 517.7 0.142 9.8 0.238
100 75 875.4 0.147 14.0 0.215
100 100 1100.8 0.126 14.3 0.160
150 100 1683.9 0.180 15.0 0.328
150 125 2372.1 0.209 20.1 0.267
150 150 2625.6 0.137 28.5 0.216
250 200 5124.6 0.264 32.9 0.433

Table 4
Results for ðβinv ; βtrnÞ ¼ ð0:01;100Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 56.4 0.284 0.8 0.417
50 30 176.0 0.088 2.4 0.176
50 50 320.2 0.156 4.2 0.200

100 50 595.7 0.165 4.2 0.273
100 75 829.1 0.203 7.1 0.319
100 100 1241.9 0.129 9.1 0.232
150 100 1590.7 0.177 9.2 0.303
150 125 1895.8 0.221 11.0 0.356
150 150 2391.7 0.114 13.2 0.220
250 200 5041.2 0.093 16.1 0.163

Table 5
Results for ðβinv ; βtrnÞ ¼ ð1;0:01Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 61.5 0.208 1.0 0.367
50 30 190.6 0.264 2.5 0.412
50 50 265.4 0.110 4.9 0.152

100 50 530.5 0.203 4.6 0.331
100 75 820.3 0.256 7.1 0.359
100 100 1078.8 0.270 9.4 0.429
150 100 1740.4 0.189 8.3 0.307
150 125 2186.8 0.154 12.0 0.209
150 150 2848.2 0.241 12.5 0.362
250 200 5267.6 0.116 19.5 0.213



(100,0.01), and (100,1). The values for these parameters were
chosen in this manner to provide a large range of tradeoffs
between location costs, transportation costs, and inventory costs.
For every pair (βtrn;βinv) we ran 25 instances for every problem
size.

The parameters that we used for the Lagrangian relaxation
procedure are given in Table 2. The notation μ stands for the
average demand for all retailers. We terminated our algorithm
when the optimality gap was below 1%, or the maximum number
of iterations allowed or the minimum value of α (the scalar used to
calculate the step-size) occurred. For a more detailed explanation
of the Lagrangian relaxation parameters, see Daskin [7]. We coded
the algorithms in Cþþ and ran them on a 2.26 GHz dual
processor Dell Precision T7500 workstation with 12 GB of RAM.

Tables 3–9 summarize the results of our computational studies. For
Diabat et al. [10], the gap is defined by ðZD

UB�ZD
LBÞ=ZD

LB, where ZUB
D and

ZLB
D are respectively the best upper bound and best lower bound
obtained by the same algorithm. Whereas for the Lagrangian relaxa-
tion heuristic, the value gap is defined by ðZH

UB�ZD
LBÞ=ZD

LB, where
ZUB
H represents the best upper bound obtained using our new heuristic.
The reason for using the best lower bound obtained by Diabat et al. in
calculating the gap for our new heuristic is that algorithm AlgLBmight
give a solution that is not really a lower bound to the MJIL problem
and consequently may be higher than the best known upper bound.
However, during our computational experience with the 1750
instances, we never observed this.

As can be seen from Tables 3–9, our Lagrangian relaxation
heuristic is always able to obtain a solution that is within 0.5% of
the solution obtained by Diabat et al. [10], but in much smaller
computational times.

6. Conclusion and future research

In this paper we studied an integrated supply chain model that
considers facility location decisions and inventory decisions simul-
taneously. The model combines the one-distribution center multi-
retailer inventory problem with the uncapacitated fixed-charge
location problem. The model aims to determine: (1) the number of
distribution centers to establish; (2) their location; (3) the sets of
retailers that are assigned to each distribution center; and (4) the
size and timing of orders for each facility so as to minimize the
sum of inventory, shipping, ordering, and location costs while
satisfying end-customer demand.

Due to the success that Lagrangian relaxation has exhibited in
tackling several NP-hard supply chain combinatorial optimization
problems, we chose to address the MJIL with a Lagrangian
relaxation-based heuristic. After decomposing the problem by
location, we are able to consider each distribution center location
separately. A simple greedy heuristic is implemented to assign
retailers to each distribution center, and a lower bound is obtained
for the problem. Another algorithm is developed to obtain an
upper bound to the problem and if the greatest observed lower
bound is identical to the lowest observed upper bound, within a
pre-specified tolerance, the optimal solution to the problem is
found. Otherwise, the values of the Lagrange multipliers are
updated by means of subgradient optimization and the lower
and upper bound algorithms are repeated until a feasible solution
is reached, that satisfies the given tolerance.

Our computational tests were performed for 1750 problem
instances, based on problems of 10 different sizes, and the
algorithm was terminated each time when a gap of less than 1%
was achieved, or if the maximum number of iterations was
reached. Results demonstrate that the proposed Lagrangian
relaxation framework is capable of efficiently producing optimal
or near-optimal solutions to the problem. The sub-problems are

Table 6
Results for ðβinv; βtrnÞ ¼ ð1;1Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 63.5 0.233 0.8 0.366
50 30 168.6 0.105 3.1 0.176
50 50 305.2 0.087 5.2 0.160

100 50 636.1 0.210 5.9 0.347
100 75 815.9 0.166 8.4 0.261
100 100 1120.3 0.171 11.6 0.313
150 100 1559.0 0.156 10.8 0.309
150 125 2165.4 0.217 12.9 0.368
150 150 2444.3 0.304 14.6 0.385
250 200 5913.8 0.168 19.8 0.243

Table 7
Results for ðβinv; βtrnÞ ¼ ð1;100Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 61.6 0.144 1.1 0.214
50 30 172.1 0.159 2.5 0.236
50 50 300.8 0.186 4.8 0.266

100 50 566.6 0.335 6.0 0.446
100 75 844.6 0.321 8.9 0.417
100 100 1236.6 0.085 10.3 0.166
150 100 1779.8 0.127 8.1 0.199
150 125 2389.8 0.305 12.6 0.398
150 150 2782.3 0.119 15.1 0.221
250 200 6006.0 0.172 23.0 0.219

Table 8
Results for ðβinv; βtrnÞ ¼ ð100;0:01Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 57.7 0.125 0.9 0.162
50 30 175.2 0.286 2.9 0.392
50 50 288.5 0.307 4.3 0.446

100 50 576.3 0.136 4.1 0.196
100 75 887.4 0.190 6.0 0.325
100 100 1033.5 0.245 10.0 0.408
150 100 1670.0 0.223 9.5 0.417
150 125 2349.2 0.243 11.2 0.413
150 150 2782.0 0.204 13.0 0.380
250 200 6283.6 0.291 18.7 0.421

Table 9
Results for ðβinv ; βtrnÞ ¼ ð100;1Þ.

Problem size Diabat et al. [10] Lagrangian heuristics

jIj jJj CPU Gap (%) CPU Gap (%)

50 10 57.7 0.319 0.9 0.404
50 30 175.2 0.111 2.9 0.187
50 50 288.5 0.221 4.3 0.277

100 50 576.3 0.156 4.1 0.284
100 75 887.4 0.107 6.0 0.172
100 100 1033.5 0.197 10.0 0.289
150 100 1670.0 0.236 9.5 0.448
150 125 2349.2 0.215 11.2 0.413
150 150 2782.0 0.115 13.0 0.209
250 200 6283.6 0.258 18.7 0.450



solved heuristically and this means that the lower bound obtained
from the constructed algorithm could in fact exceed the best
known upper bound. However, this was not observed in any of the
problem instances, which proves that our approach is robust and
reliable.

The research presented in this paper can be extended in a
number of important ways. The structure of the model considered
in this paper is such that new constraints or cost components can
be added easily to the model. The following are some recommen-
dations for future work and research directions for enhancing the
model: (1) The model can be naturally extended to consider
multiple products. (2) We have assumed that there is no capacity
restriction on the amount of product that can be stored or
processed by a facility. We can replace the uncapacitated fixed
charge location problem by the capacitated fixed charge location
problem and then integrate this with the proposed inventory
model. The resulting model would include capacity considerations
at the distribution centers. (3) We can relax the single-sourcing
restriction to allow a single retailer to be supplied by more than
one distribution center. This relaxation is practical in capacitated
models or in models with multiple products. (4) Another impor-
tant extension to our model is to allow lateral shipments between
distribution centers. A distribution center may face a demand that
exceeds its inventory for a certain product that could be shipped
from another distribution center with excess inventory for that
product. Lateral shipments are known to reduce costs in practice
especially when both distribution centers (the provider and the
recipient) are owned by the same firm. Even if these distribution
centers belong to different firms, the concept of lateral shipments
can still reduce costs because a firm with inventory in excess of
demand would generally be willing to sell it at a reduced price.
(5) We have assumed direct shipments between the distribution
centers and the retailers. An important extension is to incorporate
routing decisions. The resulting model would then become a
location-inventory-routing model.
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