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Abstract

In this paper the Multi Trip Vehicle Routing Problem with Time Windows and Release Dates

is introduced. The problem is particularly interesting in the City Logistics context, where trucks

deliver merchandise to depots located in the outskirts of the city. Goods continuously arrive during

the day becoming available for final distribution after the working day has started. This introduces the

concept of release dates associated with merchandise. In this paper, a set of instances is introduced

and a hybrid genetic algorithm is proposed to solve the problem.

1 Introduction

The well known Vehicle Routing Problem (VRP) is an NP-hard combinatorial optimization problem

where a set of geographically scattered customers has to be served by a fleet of vehicles minimizing

routing costs and respecting capacity constraints on vehicles.

In some city distribution systems, goods are delivered to city distribution centers (CDC) and then

delivered to final customers by vehicles with limited capacity. They can be back to the depot much

earlier than the end of the working day and then be available for another delivery trip. This introduces

the multi trip aspect.

Customers usually ask to be served within a certain time interval. Meeting these intervals is vital

for the carrier: delays mean losing reliability and trustworthiness and often penalties need to be payed.

Then, time windows should be considered and associated with each customer.

Finally, merchandise can be delivered to the CDC all day long. This means that they are not com-

pletely available at the CDC at the beginning of the planning horizon. The concept of release date is then

associated with each merchandise.

In this paper we address the Multi Trip Vehicle Routing Problem with Time Windows and Release

Dates (MTVRPTWR). It is noteworthy that the problem is deterministic even if the merchandise contin-

uously arrives to the CDC during the day: the release dates are supposed to be known before the working

day starts.

The paper is structured as follows. Section 2 reviews the literature, Section 3 formally defines the

problem. In Section 4 the hybrid genetic algorithm (HGA) we proposed to solve the MTVRPTWR is

explained. Results are reported in Section 5, while Section 6 concludes the paper.

2 Literature Review

In multi-echelon distribution systems, delivery to customer is not direct, but goods are firstly delivered to

CDC. Final distribution trips need to take into account the moment goods become available at the CDC.

Normally, only the availability of the vehicles to perform deliveries is required. When goods must be

loaded immediately after unloading, synchronization aspects can be introduced (Drexl [6]).

We model time-interdependency among vehicles introducing the concept of release date associated

with merchandise. To the best of our knowledge no previous work is done on it.
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Few papers study the Multi Trip VRP with Time Windows (MTVRPTW) and most of all use exact

methods to solve it.

Azi et al. [1] propose an exact algorithm to solve the single vehicle MTVRPTW. The solution ap-

proach exploits an elementary shortest path algorithm with resource constraints. In the first phase all

non-dominated paths are calculated. Then the shortest path algorithm is applied to a modified graph.

Each node represents a non-dominated route and two nodes are connected by an arc whether it is possi-

ble to serve the two routes consequently and they do not serve common customers. Solomon instances

are used with different values of time horizon. 16 instances out of 54 with 100 customers are solved to

optimality. Azi et al. [2] address the MTVRPTW with a column generation approach embedded within a

branch-and-price algorithm. A set packing formulation is given for the master problem and each column

represents a working day. Since each pricing problem is an elementary shortest path with resource con-

straints, a similar approach to the one proposed in Azi et al. [1] is applied. As in Azi et al. [1], Solomon

instances are considered and a time horizon is introduced. Due to the limitation of the algorithm, the

authors focus on instances formed by the first 25 or 40 customers of each Solomon’s instance. The

algorithm can also solve few instances of size 50. 24 instances out of 27 of size 25 are solved within

30 hours. When the number of customers increases to 40, only 9 instances out of 27 can be solved to

optimality. Hernandez et al. [8] use a similar approach of Azi et al. [2]. A set covering formulation is

given for the problem and each column represents a trip instead of a working day. Results on the same

instances of Azi et al. [2] show that 25 out of 27 instances with 25 customers and large time horizon and

2 vehicles and 22 out of 27 instances of size 50 with large time horizon and 4 vehicles have been solved

within 30 hours. All the three exact methods cited use the algorithm proposed by Feillet et al. [7] for the

elementary shortest path problem.

Battarra et al. [3] study an extension of the MTVRPTW where products are clustered in different

commodities that cannot be transported in the same vehicle. The approach they propose is a two-stage

sequential heuristic: they generate a set of feasible routes considering each commodity independently,

then, routes are assigned to vehicles.

3 Problem definition and notation

The MTVRPTWR can be defined on a completed undirected graph G = (V,E), where V = {0, . . . , N}
is the set of vertices and E = {(i, j)|i, j ∈ V, i < j} the set of edges. Vertex 0 represents the depot,

where a fleet of M identical vehicles with capacity Q is based. Vertices 1, . . . , N represent the customers.

With each customer is associated a demand Di and a Time Window (TW) [Ei, Li] during which the

service should start and a service time Si. Arriving at customer location before Ei is allowed. Since the

service cannot start earlier than Ei the driver must wait. Late arrivals at customer location are forbidden.

Moreover, the quantity Di of product requested by customer i is available at the depot not earlier than

Ri. Ri is called release date. For brevity, we say Ri is associated with customer i, instead of Ri is

associated with the demand Di requested by customer i. It is possible to travel from i to j incurring in

a travel time Tij . A vehicle, before performing each trip, needs to wait until goods it is going to deliver

are available at the depot, i.e., it cannot start the trip before the maximal release date associated with

customers it has to serve.

A time horizon TH is given and establishes the duration of the working day. It must be respected

and it can be viewed as a TW associated with the depot. Thus, it is assumed that [E0, L0] = [0, TH ].
Moreover D0 = 0.

The MTVRPTWR calls for the determination of a set of routes and an assignment of each route to a

vehicle, such that the total travel time is minimized and the following conditions are satisfied:

(a) each route starts and ends at the depot;

(b) each route starts not earlier than the largest Ri associated with customers assigned to the route itself;

(c) each customer is visited by exactly one route;
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(d) service at customer i starts during the associated TW [Ei, Li];

(e) the sum of the demands of the customers in any route does not exceed Q;

(f) each vehicle arrives at the depot after performing its last route not later then TH (TW associated with

the depot is respected).

It is also supposed that each customer i could be served by a return trip, i.e, Ri + T0i + Ti0 ≤ TH and

Di ≤ Q (otherwise no feasible solution would exist).

The following notation is used in the remaining. The symbol σ indicates a route. The capital Σ
indicates the set of routes assigned to a vehicle. For easiness, it is called journey. Then, a journey is

formed by different routes. The symbol ⊕ indicates the concatenation of paths (partial routes) or routes.

For example (v1, . . . , vn) ⊕ (w1, . . . , wm) is the concatenation of two paths (that results in a route if v1

and wm are the depot). σ1 ⊕ σ2 means that route σ1 is performed right before σ2 on the same vehicle.

The time a vehicle needs to visit customers on route σi is indicated by τσi , while the time the vehicle

leaves the depot to perform σi is indicated by T σi .

The symbol “∈” describes “belonging”. For example σ ∈ Σ means route σ belongs to journey Σ,

v ∈ σ means customer v belongs to (i.e., it is served by) route σ, and so on.

It is noteworthy that in absence of release dates it would hold T σi+1 = T σi +τσi . On the other hand,

considering release dates it holds T σi+1 = max {T σi + τσi ,maxvi∈σi
{Rvi

}}.

A customer vi is feasible if the vehicle arrives at its location before Li, infeasible otherwise. A

route is feasible if it serves only feasible customers, infeasible otherwise. A journey is feasible if it is

composed by feasible routes, infeasible otherwise.

4 Method

We propose a genetic algorithm (HGA) for the MTVRPTWR. The main scheme of our approach is illus-

trated in Algorithm 1. The algorithm is an adaptation of the procedure proposed by Cattaruzza et al. [4]

Algorithm 1 Hybrid Gentic Algorithm sketch

1: Initialize population

2: while Termination criteria are not met do

3: Select parent chromosomes ΨP1
and ΨP2

4: Generate a child ΨC

5: Improve ΨC with LS

6: if ΨC is infeasible then

7: Repair ΨC

8: end if

9: Insert ΨC in the population

10: if Dimension of the population is bigger or equal than π + µ then

11: Select survivors

12: end if

13: end while

(we refer to this paper for more details). First, π random chromosomes are generated in order to create

an initial population. These individuals are then improved with Local Search (LS). The classical binary

tournament procedure is used for selection and children are created by crossing the selected parents (with

the OX operator). Infeasible chromosomes are repaired (Section 4.4). When the population reached the

dimension of π + µ, µ individuals are eliminated accordingly to their quality and their diversification

contribution to the population (as proposed by Vidal et al. [13]).

In the remaining, Sections 4.2 and 4.3 provide details for the LS while Section 4.5 describes AdSplit

procedure used to obtain MTVRPTWR solutions from a chromosome.
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4.1 Solution representation and search space

A chromosome is a sequence (permutation) Ψ = (Ψ1, . . . ,ΨN ) of the N client nodes, without trip

delimiters. Ψ can be viewed as a TSP solution that has to be turned in a feasible MTVRPTWR solution

by splitting the chromosome (inserting trip delimiters and assigning trips to vehicles). From that point

of view, Ψ is usually called a giant tour. From a giant tour Ψ, different MTVRPTWR solutions can be

constructed depending on the way Ψ is split.

During the search phase, overload and TW violations are allowed and penalized in the fitness function

respectively by coefficients λ and θ.

The procedure AdSplit (see Section 4.5) is used to get a MTVRPTWR solution ξ from Ψ. The two

following notations are introduced: TΣ(ξ) and TWΣ(ξ) are respectively the travel time and the TW

violation of journey Σ in solution ξ. Lσ(ξ) is the load of trip σ where σ ∈ Σ is a route σ of journey

Σ. The fitness F (Ψ) of the chromosome Ψ is the cost of the best solution ξ found by AdSplit and it is

defined as follows:

F (Ψ) = c(ξ) =

M
∑

Σ=1

TΣ(ξ) + θ

M
∑

Σ=1

TWΣ(ξ) + λ

M
∑

Σ=1

∑

σ∈Σ

max{0, Lσ(ξ) − Q} (1)

When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome Ψ is called

feasible (infeasible) if AdSplit obtains, from Ψ, a feasible (infeasible) solution ξ.

4.2 Local Search for VRP with Time Windows

LS in presence of TW becomes more complicated than in the classic VRP. In particular, feasibility cannot

be checked in constant time straightforwardly. In our approach, we adapt the scheme proposed by Vidal

et al. [12] (that is in turn an extension of the scheme proposed by Nagata et al. [10]) for a large class of

problems with TWs. Given a path ρ, the quantities T (ρ), TW (ρ), E(ρ), L(ρ), D(ρ) respectively denote

the minimum duration, the minimum TW violation of ρ, the earliest and the latest date service can start

at the first customer of ρ (that can be the depot) allowing minimum duration and TW penalization, and

the cumulative demand of served customer. Given two paths ρ1 and ρ2, the following relations hold:

T (ρ1 ⊕ ρ2) = T (ρ1) + T (ρ2) + Tv1,v2
+ ∆WT ; (2)

TW (ρ1 ⊕ ρ2) = TW (ρ1) + TW (ρ2) + ∆TW ; (3)

E(ρ1 ⊕ ρ2) = max {E(ρ2) − ∆, E(ρ1)} − ∆WT ; (4)

L(ρ1 ⊕ ρ2) = min {L(ρ2) − ∆, L(ρ1)} + ∆TW ; (5)

D(ρ1 ⊕ ρ2) = D(ρ1) + D(ρ2); (6)

where

∆ = T (ρ1) − TW (ρ1) + Tv1,v2
;

∆WT = max {E(ρ2) − ∆ − L(ρ1), 0} ;

∆TW = max {E(ρ1) + ∆ − L(ρ2), 0} ;

v1 last customer in ρ1 and v2 first customer in ρ2.

Knowing those quantities allows to evaluate classical LS operators in constant time.

The quantities defined above for all the paths and their reverse (needed, for example, to evaluate

2-opt moves) can be calculated in a preprocessing phase.

4.3 Local search: introduction of release dates and application to the multi-trip case

The problem we address has two more characteristics than the VRPTW: vehicles can perform several

trips and goods become available for final distribution throughout the time horizon. The consequence is
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that vehicles can start a trip at t > 0, because the trip they are going to accomplish is not the first, or

either because they wait for goods to be available.

Vidal et al. [12] prove relations 2–6 by induction on the concatenation operator proving the following

stronger relations:

T (ρ)(t) = T (ρ) + max {0, E(ρ) − t} ; (7)

TW (ρ)(t) = TW (ρ) + max {0, t − L(ρ)} . (8)

Relation 8 is used to calculate effective TW violation due to later departing from the depot.

We introduce R(ρ) as the largest release date of customers served in ρ. We define R(vi) = Rvi
and

it holds

R(ρ1 ⊕ ρ2) = max {R(ρ1), R(ρ2)} (9)

Thus, release dates, do not introduce any complexity into the moves evaluation scheme introduced in

Section 4.2.

It remains to consider the multi-trip aspect. The idea is to consider each route σi as it would start

at T σi = 0 and calculate variation in TW violations and time completion based on the effective starting

time of the trip itself, i.e., considering T σi = max
{

R(σi), T
σi−1 + τσi−1

}

. Given a journey Σ =
(σ1 ⊕ · · · ⊕ σn), Equation 8 can be used to calculate TW (σi) for all the trips in Σ, while T σi+1 can be

calculated as

t =











E(σi) + T (σi) − TW (σi) if T σi ≤ E(σi),

T σi + T (σi) − TW (σi) if E(σi) < T σi ≤ L(σi),

L(σi) + T (σi) − TW (σi) if L(σi) < T σi .

(10)

T σi+1 = max{t, R(σi+1)} (11)

The effect of a move on trip σi ∈ Σ can be propagated to each of the following routes by means of

a variation in completion time and in TW penalization. Using Equations 7 and 8 this variation can be

locally calculated in constant time. Complete calculation requires O(Σmax), where Σmax indicates the

maximum numbers of trips among all journeys.

4.4 Repair Procedure

Infeasible chromosomes are repaired applying LS with penalization factors multiplied by 10 depending

on the nature of the infeasibility. If the resulting chromosome is still infeasible, λ and/or θ are multiplied

again by 10 and LS is re-applied.

4.5 A split algorithm for the MTVRPTWR

4.5.1 Auxiliary graph construction

The splitting procedure AdSplit, is an adaptation of the procedure proposed by Prins in [11]. It works

on an auxiliary graph H = (V
′

, A
′

). V
′

contains N + 1 nodes indexed from 0 to N . Arc (i, j), i < j,

represents a trip σ
j
i+1

serving customers from Ψi+1 to Ψj in the order they are in a given chromosome

Ψ, i.e., σ
j
i+1

= (0, Ψi+1, . . . ,Ψj , 0). Since we are looking for feasible solutions, we could consider only

feasible trips with the corresponding routing cost cij associated with arc (i, j), i.e.,

cij = T (σj
i+1

)

The best solution associated with chromosome Ψ would be represented by the path that goes from node

zero to the node ΨN respecting time and capacity constraints.
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In fact, we do not have the guarantee that such a feasible path (and then such a feasible solution)

exists. We, then, allow infeasibility with respect to time and load constraints and we associate with each

arc (i, j) the following cost

cij = T (σj
i+1

) + θTW (σj
i+1

) + λ max{0, D(σj
i+1

) − Q}. (12)

It is noteworthy that the arc costs do not take into account the position of the trip in the journey,

but it is the (penalized) cost of the trip as it would be performed as first (i.e., at t = 0). Therefore, the

(contingent) TW violation due to later departure is not taken into account. As a consequence, consid-

ering the arcs that form the shortest path on H to construct the solution (as in the original procedure in

Prins [11] for the VRP and in Cattaruzza et al. [4] for the MTVRP) could provide a solution with a cost

much higher than the best one. We then propose a labelling procedure (explained in Section 4.5.2) that

obtains a solution for the MTVRPTWR starting from the graph H constructed on Ψ.

4.5.2 Assignment of trips to vehicles

In the MTVRPTWR context in particular and in the MTVRP context in general, more than one trip can

be assigned to the same vehicle. TW penalization deeply depends on the time routes leave the depot and

this aspect cannot be considered by the constant costs associated with arcs on H (Section 4.5.1).

We propose the following labelling procedure that enumerates all the possible paths from node 0 to

N in Ψ and construct the best solution associated with the label with lower cost on node N .

Starting from node 0, labels are progressively extended along the graph. Each label L has M + 3
fields: the first M fields store vehicle travel times in decreasing order, the (M +1)th field memorizes the

total load infeasibility, the (M + 2)th the predecessor node, and the last field keeps the cost of the partial

solution evaluated using Equation 1 and equivalent to the cost c(L) of label L. When extending a label,

M new labels are constructed, one for each possible allocation of the new trip to a vehicle.

When node N is reached, the label L with minimum cost c(L) associated with node N is selected

and the related solution is constructed (going backwardly trough the graph).

To speed up the procedure, dominated labels, accordingly with the following dominance rule, are

discarded: let L1 and L2 be two labels associated with the same node i ∈ V
′

. L1 strongly dominates L2

if and only if

c(L1) + θ

M
∑

j=1

δj(L
1,L2) ≤ c(L2) (13)

where c(L) is the cost associated with label L, δj(L
1,L2) = max{0, Tj(L

1) − Tj(L
2)} and Tj(L) is

the (partial) travel time of vehicle j associated with label L. Roughly speaking, given two labels L1 and

L2, extending L1 TW violation is penalized as much as possible while it is not extending L2 in the same

way. If Inequality 13 holds, L2 cannot be extended in a better way than L1, then, L2 is eliminated.

Preliminary computational experiments (Section 5) show the time inefficiency of the procedure. For

this reason a heuristic version of the dominance rule is proposed and a parameter γ ≥ 1 is introduced.

L1 weakly dominates L2 if and only if

c(L1) + θ

M
∑

j=1

δj(L
1,L2) ≤ γc(L2), (14)

c(L1) ≤ c(L2). (15)

It is noteworthy that for γ = 1, the weak dominance rule is equivalent to the strong version. When γ > 1,

Inequality 14 is easily satisfied and a larger number of labels can be eliminated. Condition 15 is added

because when γ > 1 label L2 can be dominated by label L1 even if c(L2) < c(L1). This cannot happen

if γ = 1. Using the weak relation one expects the solution to be obtained quicker. On the other side the

best decomposition of the chromosome can be missed.
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The value of γ is dynamically adapted during the process accordingly with the number of the label

associated with each node. Precisely the following scheme is adopted:

γ =

{

γ + |Li|
1000Lthreshold

if |Li| > Lthreshold

γ − Lthreshold

1000|Li|
if |Li| < Lthreshold

(16)

where |Li| is the number of labels associated with node i and Lthreshold is a threshold parameter that

indicates the number of labels that should be kept associated with each node. If after Equation 16 is

applied, γ is lower than 1, it is set back to 1. This is natural, since for γ < 1 dominated labels would

be kept. The lower Lthreshold the quicker is the procedure and the poorer is the quality of the solution

obtained.

5 Discussion

In this section the computational results obtained are discussed. First of all we explain how we generated

a set of 19 instances for the MTVRPTWR, since to the best of our knowledge there is not a benchmark of

instances available in the literature for the problem. The value of the Lthreshold is determined (Section 5.2).

Finally results are presented (Sections 5.3- 5.4).

5.1 Instances generation

We define a generator of instances for the MTVRPTWR. The time horizon TH is randomly drawn from

[500, 520] and is represented by a TW [0, TH ] associated with the depot. The capacity Q of each vehicle

is fixed to 100. The service time at the depot S0 is 20, while each customer i requires a service time

Si = 5. Clients and the depot are located on a [0, 50] × [0, 50] squared Cartesian system portion. The

depot is centrally located. For each customer, its abscissa and ordinate are randomly drawn in the interval

[0, 50]. Given two customers i and j, the travel time Tij is the rounded Euclidean distance between them.

Customer’s request is randomly drawn in the interval [5, 15]. The Clarke and Wright heuristic (Clarke

and Wright [5]) is then applied to these data and a VRP solution is obtained. Trips σ obtained are

concatenated as long as the journey respects depot’s TW. Corresponding T σ are calculated. If a trip

cannot be assigned to any vehicle, a new journey is initialized with it. M is fixed to the number of

vehicles which are needed to assign each trip to a journey. For each customer i, two dates are calculated:

the starting of the service si time when the vehicle leaves the depot at t = 0 and si when the vehicle

leaves the depot as late as possible respecting TH . Then si is calculated as the average of si and si. Li is

then calculated as follows:

• If si < 240

– Li = 240 with a probability of 0.7;

– Li = 360 with a probability of 0.2;

– Li = 480 with a probability of 0.1.

• If 240 ≤ si < 360

– Li = 360 with a probability of 0.6;

– Li = 480 with a probability of 0.4.

• Otherwise Li = 480.

The release dates Ri are determined as follows:

• Ri = 0 with a probability of 0.5.

• Otherwise Ri is randomly drawn from [0, Rσ], where Rσ = minj∈σ{T
σ −sj , Lj −sj} and i ∈ σ.

Finally Ei = Ri + S0 + T0i. A set of 19 instances is then created with 20 to 200 customers and 1 to 7

vehicles.
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Strong Weak

Lthreshold = 20 Lthreshold = 10 Lthreshold = 5 Lthreshold = 1
Cost Time Cost Time Cost Time Cost Time Cost Time

1138.94 193.6 0.13% -99.74% 0.19% -99.87% 0.21% -99.94% 7.67% -99.99%

0.51 0.23 0.09 0.01

Table 1: Comparison of dominance rules: average results obtained by AdSplit procedure on 60 chromo-

some for an instance with M = 6 and N = 150 (times in seconds)

M N Best TS Average TS HGA Best known

cost % gap % gap cost

1 20 203 0.0 0.0 203

2 30 309 0.0 0.0 309

2 40 347 0.0 0.0 347

2 50 384 2.9 0.0 384

3 60 491 1.6 0.0 491

3 70 469 1.9 0.0 469

3 80 571 1.9 -0.4 569

4 90 570 5.8 0.9 570

4 100 642 4.5 -0.2 641

4 110 786 2.3 -1.9 771

5 120 755 5.2 -0.7 750

5 130 827 3.1 -1.9 811

5 140 952 4.0 -4.5 909

6 150 971 7.5 -0.9 962

6 160 1028 5.1 -1.9 1008

6 170 1033 3.1 2.0 1033

7 180 1197 5.1 -7.5 1107

7 190 1208 7.4 -3.6 1164

7 200 1245 6.7 -2.6 1213

Table 2: Results on the instances for the MTVRPTWR

5.2 Determination of Lthreshold

To determine the value of Lthreshold, 60 chromosomes for an instance with N = 150 and M = 6 are ran-

domly generated. Then, they are evaluated by the AdSplit procedure with the use of the strong dominance

rule and the weak dominance rule with different values of Lthreshold. Results are reported in Table 1. It

can be noticed that using the strong dominance rule more than 3 minutes are averagely needed to split

a chromosome. This justifies the introduction of the weak dominance rule. Still from Table 1 it can be

noticed that decreasing Lthreshold, the procedure is quicker but the quality of the obtained solutions is

slightly reduced. It has been decided to set Lthreshold = 5.

5.3 Comparison with a classical Tabu Search algorithm

The procedure is run once over all instances for 5 minutes. Results are compared with those obtained

by a Tabu Search (TS) algorithm that we developed to obtain reference values. The TS makes use of the

classical neighborhoods insert and swap. Seven structures are considered combining them differently.

The TS is run 6 times on each instance with each one of the different structures for a total of 42 times

(each stopped after 5 minutes of computation). Results are reported in Table 2.

The first two columns report the number of vehicles and customers on each instance. Column Best

TS reports the cost of the best solution obtained by the TS procedure over the 42 runs, while column

Average TS reports the gap of the average cost of solution obtained over the 42 runs with respect to the

Singapore, August 4–8, 2013



MIC 2013: The X Metaheuristics International Conference id–9

Instance opt HGA CPU Time

C201 2 25 380.8 387.7 300.0

C202 2 25 368.6 368.6 2.1

C203 2 25 361.7 361.7 0.3

C204 2 25 358.8 358.8 0.0

C205 2 25 377.2 377.2 0.0

C206 2 25 367.2 367.2 0.2

C207 2 25 359.1 359.1 0.3

C208 2 25 360.9 360.9 15.5

R201 2 25 554.6 554.6 0.1

R202 2 25 485.0 485.0 1.2

R203 2 25 444.2 444.2 0.3

R204 2 25 407.5 407.5 8.0

R205 2 25 448.4 448.4 0.0

R206 2 25 413.9 413.9 0.5

R207 2 25 400.1 400.1 0.3

R208 2 25 394.3 394.3 2.7

R209 2 25 418.3 418.3 0.1

R210 2 25 448.3 448.3 117.4

R211 2 25 400.1 400.1 0.2

RC201 2 25 660.0 660.0 27.8

RC202 2 25 596.8 596.8 1.2

RC203 2 25 530.1 530.1 0.0

RC205 2 25 605.3 605.3 0.9

RC206 2 25 575.1 575.1 27.1

RC207 2 25 528.2 528.2 0.1

R201 4 50 909.8 922.7 300.0

R202 4 50 816.0 816.0 69.6

R205 4 50 807.3 816.2 300.0

RC201 4 50 1096.6 1097.6 300.0

RC202 4 50 1001.6 1038.6 300.0

Table 3: Comparison with results of Hernandez et al. [9]

value in Best TS. Column HGA reports the cost of the solution obtained by the HGA procedure run just

once. Column Best known reports the cost of the best known solution. HGA is better than TS on 11

instances and provides equivalent solutions on 6 instances.

5.4 Comparison with Hernandez et al. [9]

Hernandez et al. [9] propose an exact method for the MTVRPTW and are able to solve 30 out of 54

instances they construct from Solomon’s instances for the VRPTW. We run our algorithm on those in-

stances (Ri = 0 for all i). Results are reported in Table 3.

The first column reports the instance name ON M N , where ON is Solomon’s instance original

name. The second column reports the optimal value, the third the cost of the solution found by HGA,

while the last column reports the CPU time (in seconds). The procedure is stopped when the optimal

solution is found or after 5 minutes. HGA finds the optimal value 25 out of 30 times missing it just once

for instances with M = 2 and N = 25. The average gap from the optimal value is 0.4%.
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6 Conclusion

In this paper, we introduced the Multi Trip Vehicle Routing Problem With Time Windows and Release

Dates. This problem is particularly interesting in the City Logistics context. We proposed a hybrid GA

based on a new split procedure to face it. A set of instances has been introduced. Comparison with

optimal solution of Hernandez et al. [9] proves the efficiency of our algorithm.
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