Diego Cattaruzza
email: cattaruzza@emse.fr

Nabil Absi
email: absi@emse.fr

Dominique Feillet
email: feillet@emse.fr

The Multi Trip Vehicle Routing Problem with Time Windows and Release Dates

Keywords: Multi trip, release dates, genetic algorithm, split

The Multi Trip Vehicle Routing Problem with Time Windows and Release Dates is a variant of the Multi Trip Vehicle Routing Problem where a time windows is associated with each customer and a release date is associated with each merchandise to be delivered at a certain client. The release date represents the moment the merchandise becomes available at the depot for final delivery.

The problem is relevant in city logistics context, where delivery systems based on city distribution centers (CDC) are studied. Trucks arrive at the CDC during the whole working day to deliver goods that are transferred to eco-friendly vehicles in charge of accomplish final deliveries to customers.

We propose a population-based algorithm for the problem based on giant tour representation of the chromosomes as well as a split procedure to obtain solutions from individuals.

Introduction

The well known Vehicle Routing Problem (VRP) is an N P-hard combinatorial optimization problem where a set of geographically scattered customers has to be served by a fleet of vehicles minimizing routing costs and respecting capacity constraints on vehicles. The VRP represents a simplified problem that is usually far from the reality of freight distribution. To better represent real world problems, different aspects need to be taken into account leading to more complex problems, usually called rich (or multi-attribute) problems.

In this paper, we introduce a new variant of the VRP, the Multi Trip Vehicle Routing Problem with Time Windows and Release Dates. Our interest for this problem originates from mutualized distribution in cities, where external goods continuously arrive in a City Distribution Center (CDC) from where the last-mile delivery is operated In this context, vehicle distribution from the CDC should be optimized on a daily basis. As vehicles have preferably small capacities and the fleet size should be minimized, vehicles will typically perform several trips along the day. This introduces the multi trip aspect.

Customers usually ask to be served within a certain time interval. Meeting these intervals is vital for the carrier: delays mean loosing reliability and trustworthiness and often means paying a penalty. Then, time windows should be considered and associated with each customer.

Finally, merchandise can be delivered to the CDC all day long. This means that they are not necessarily available at the CDC at the beginning of the planning horizon. Vehicle routes must then be designed such that no vehicle leaves the CDC before the goods it has to transport in its trip have arrived. The concept of release date is associated with each merchandise, indicating the time at which the merchandise is available at the CDC.

These attributes together lead to the Multi Trip Vehicle Routing Problem with Time Windows and Release Dates (MTVRPTW-R). It is noteworthy that the problem is static (or off-line) even if the merchandise continuously arrives to the CDC during the day. In fact, the release dates are supposed to be known before the working day starts.

Online variants can consider requests that become known at time intervals differently long before the respective release date. This aspect raises the issue of the value of the information. These variants, as well as stochastic variants, where the actual availability of the merchandise might differ from the release date, are left for future researches. To the best of our knowledge, this is the first time release dates are considered in a routing problem. Discussions with researchers from several software companies revealed that this issue, coupled with multiple trips and time windows, is actually very relevant in practice and models a problem that companies have to deal with (Grunert [START_REF] Grünert | [END_REF] and Kleff [16]).

The MTVRPTW-R implicitly models the dependence between different levels in multi-level distribution systems. The particular case of two-level distribution systems (called as well two-echelon or two-tier distribution systems, Hemmelmayr et al. [START_REF] Hemmelmayr | An adaptive large neighbourhood search heuristic for two-echelon vehicle routing problems arising in city logistics[END_REF], Crainic [START_REF] Crainic | City Logistics[END_REF]) has recently largely been investigated by scholars. In these systems, final delivery trips depend on the time and on the CDC where vehicles operating in the first level unload goods. Information sharing and synchronization between the two levels of distribution are however assumed. On the contrary, the MTVRPTW-R models a situation where the first level of distribution cannot be controlled. The purpose of this paper is to contribute filling this gap introducing a new routing problem that takes into account this aspect as well as proposing an efficient procedure to solve it.

The paper is organized as follows. In Section 2 the problem is formally defined and characterized. Section 3 reviews related research. Section 4 describes a heuristic solution. Instance sets and results are presented in Section 5, while Section 6 concludes the paper.

Problem definition and notation

This section defines the problem (Section 2.1) and introduces the notation used in the rest of the paper (Section 2.2). Moreover, relations with the VRP with pickup and delivery are presented in Section 2.3. Finally, a characterization of problems with release dates is proposed in Section 2.4.

Problem definition

The MTVRPTW-R can be defined on a complete undirected graph G = (V, E), where V = {0, . . . , N } is the set of vertices and E = {(i, j)|i, j ∈ V, i < j} the set of edges. Vertex 0 represents the depot, where a fleet of M identical vehicles with capacity Q is based. Vertices 1, . . . , N represent the customers. With each customer is associated a demand Q i that needs to be delivered during a time window (TW) indicated by [E i , L i]. Service at customer i takes S i and must start during the TW. Service time S 0 at the depot is usually called loading time. Arriving at customer location before E i is allowed. Since the service cannot start earlier than E i , the driver must wait. On the other side, late arrival at customer location is forbidden. Moreover, the quantity Q i of product requested by customer i is available at the depot not earlier than R i . R i is called release date. For brevity, we will say R i is associated with customer i, instead of R i is associated with the quantity Q i requested by customer i. It is possible to travel from i to j incurring in a travel time T ij and covering a distance D ij , i, j = 0, . . . , N .

It is noteworthy that the release dates introduced here do not have the same implication as those considered in scheduling problems (called as well release or ready times, Błażewicz [START_REF] Błażewicz | Handbook on Scheduling -From Theory to Application, chapter Scheduling on One Processor[END_REF]). In that case, the release date is the earliest time at which job can be processed on a machine (Pinedo [25]). A vehicle needs to wait until all goods it has to carry are available at the depot, i.e., it cannot start the trip before the maximal release date associated with the customers it has to serve. On the other hand, a machine can start processing available jobs without waiting for all to be ready.

A time horizon T H is given and establishes the duration of the working day. It can be viewed as a TW associated with the depot. Thus, it is assumed that [E 0 , L 0] = [0, T H], Q 0 = 0. Operations cannot start before E 0 and all vehicles must be back to the depot at time L 0 .

The MTVRPTW-R calls for the determination of a set of trips and an assignment of each trip to a vehicle, such that the total travel distance is minimized and the following conditions are satisfied: (a) each trip starts and ends at the depot;

(b) trips do not start earlier than E 0 = 0 and finish later than L 0 = T H ;

(c) no trips assigned to the same vehicle overlap;

(d) operations of each trip start not earlier than the greater R i associated with customers assigned to the trip itself;

(e) each customer is visited by exactly one trip;

(f) service at customer i starts in the associated range [E i , L i];

(g) the sum of the demands of the customers served by any trip does not exceed Q;

It is supposed that each customer i can be served by a return trip, i.e,

R i + T 0i ≤ L i , max{E i , R i + T 0i } + S i + T i0 ≤ T H and Q i ≤ Q (otherwise no feasible solution would exist).

Notation

The notation used in the rest of the paper is introduced here. The symbol σ will always indicate a trip. The capital Σ will indicate the set of trips assigned to a vehicle. It will be called journey in the following. A journey is formed by different trips. The symbol ⊕ is used to indicate the concatenation of paths (partial trips) or trips. For example (v 1 , . . . , v n) ⊕ (w 1 , . . . , w m) is the concatenation of two paths (that results in a trip if v 1 and w m are the depot). σ 1 ⊕ σ 2 means that trip σ 1 is performed right before σ 2 by the same vehicle.

The time a vehicle is available at the depot to perform a given trip σ, is indicated as T σ . It is noteworthy that the vehicle cannot start trip σ before max{T σ , max v∈σ R v }. Here and in the next sections, the symbol "∈" will be used to describe "belonging". For example σ ∈ Σ means trip σ belongs to journey Σ, v ∈ σ means customer v belongs to (i.e., it is served by) trip σ, and so on.

The service of a customer i will be called feasible if the vehicle arrives at its location before L i , infeasible otherwise. A trip σ is called feasible if service at each customer in σ is feasible, infeasible otherwise. A journey is called feasible if it is composed by feasible trips, infeasible otherwise.

Relationship with the VRPPDTW

In the VRP with pickup and delivery (VRPPD) requests i = 1, . . . , N need to be picked up at defined locations P ICK i before delivery takes place at location DEL i . Precedence constraints impose pickups to be performed before deliveries. The VRPPD with time windows (VRPPDTW) asks pickups and deliveries to take place during a TW. The MTVRPTW-R can be reduced to an extension of the VRPPDTW where multiple trips are allowed. Given an instance of the MTVRPTW-R, N requests are defined such that P ICK i is the depot for every request and DEL i is the location of customer i. The pickup TW associated with request i is set to [R i , T H], the delivery TW is set to [E i , L i]. Travelling from the depot to a pickup location and between pickup locations does not require time, i.e., T 0P ICK i = 0, T P ICK i 0 = 0 and T P ICK i P ICK j = 0. On the other hand T P ICK i DEL j = T 0j and T DEL i DEL j = T ij . Distances are managed similarly.

Problem characterization

Larsen [START_REF] Larsen | The Dynamic Vehicle Routing Problem[END_REF] and Larsen et al. [START_REF] Larsen | Recent developments in dynamic vehicle routing systems[END_REF] introduce some parameters to characterize problems in the context of the Dynamic VRP (DVRP). Even if there is no exact correspondence between the DVRP and the MTVRPTW-R, these problems share similarities. In the DVRP, a request becomes known at a certain time called disclosure time (Pillac et al. [START_REF] Pillac | A review of dynamic vehicle routing problems[END_REF]), while in the MTVRPTW-R, merchandise becomes available at a certain moment that we call release date. The main difference is that all the release dates are known at the beginning of the working day, that makes the MTVRPTW-R a static problem. On the other side, requests in the DVRP context become known during operations.

We introduce the rigidity of a system (that correspond to the degree of dynamism for the DVRP) as

r = 1 N N i=1 1 - L i -R i T H . (1
) Since R i ≤ L i , r ∈ [0, 1].
It represents how averagely close are the R i to the corresponding L i . In particular, r = 0 when R i = 0 and L i = T H for all customers i. On the other side r = 1 when R i = L i for all customers i. A considerable amount of release dates R i close to the corresponding L i thus makes the plan more rigid than having the release dates R i far in time from L i .

It can be noticed that, when R i = 0 for all customers i, the rigidity r can be strictly positive since it depends on the relationship between L i and T H . We introduce another parameter that takes into account only the relationship between R i and L i . We define the instance tightness as

tigh = 1 N N i=1 R i L i . (2)
The parameter tigh equals zero when R i = 0 for all customers i and equals one when R i = L i for all customers i. Practically, r and tigh are strictly less than 1: all R i = L i would make the problem infeasible as long as travel times between the depot and the customers are not null.

Literature Review

To the best of our knowledge, there is no routing problem considering release dates. On the other side, the Multi Trip VRP with Time Windows (MTVRPTW) is an extension of the well-known Vehicle Routing Problem with Time Windows (VRPTW) where customers must be served during a time interval called time window (Bräysy and Gendreau [START_REF] Bräysy | Vehicle routing problem with time windows, part i: Route construction and local search algorithms[END_REF][START_REF] Bräysy | Vehicle routing problem with time windows, part ii: Metaheuristics[END_REF]) and the Multi Trip VRP, that allows vehicles to perform several trips during the working day (Cattaruzza et al. [START_REF] Cattaruzza | A memetic algorithm for the multi trip vehicle routing problem[END_REF], Olivera and Vera [START_REF] Olivera | Adaptive memory programming for the vehicle routing problem with multiple trips[END_REF], Taillard et al. [START_REF] Taillard | Vehicle routeing with multiple use of vehicles[END_REF]). The MTVRP is a N P-hard problem (Olivera and Viera [START_REF] Olivera | Adaptive memory programming for the vehicle routing problem with multiple trips[END_REF]). This makes the MTVRPTW a N Phard problem (the MTVRP can be reduced to the MTVRPTW associating a TW equal to [0, T H] with each customer). Finally, the MTVRPTW-R is N P-hard since the MTVRPTW trivially reduces to the MTVRPTW-R setting all the release dates to zero.

Despite its practical interest, the literature on the MTVRPTW is pretty scarce and most of the existing papers propose exact methods. Azi et al. [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF] propose an exact algorithm for solving the single vehicle MTVRPTW. The solution approach exploits an elementary shortest path algorithm with resource constraints. In the first phase all non dominated paths are calculated. Then the shortest path algorithm is applied to a modified graph. Each node represents a non-dominated trip and two nodes are connected by an arc when it is possible to serve the two trips consecutively and they do not serve common customers. Solomon's instances are used with different values of time horizon. 16 instances out of 54 with 100 customers are solved to optimality.

Azi et al. [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple routes[END_REF] address the MTVRPTW where trips are constrained by a limited duration and service at all customers is not mandatory. A column generation approach embedded within a branch-and-price algorithm is proposed. A set packing formulation is given for the master problem and each column represents a working day. Since each pricing problem is an elementary shortest path with resource constraints, a similar approach to the one proposed in Azi et al. [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF] is applied. As in Azi et al. [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], Solomon's instances are considered. Due to the limitations of the algorithm, the authors focus on instances formed by the first 25 or 40 customers of each Solomon's instance. The algorithm can also solve few instances of size 50. Hernandez et al. [START_REF] Hernandez | A new exact algorithm to solve the multi-trip vehicle routing problem with time windows and limited duration[END_REF] use a similar approach. A set covering formulation is given for the problem and each column represents a trip instead of a working day. With this method applied on the same instances proposed in Azi et al. [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple routes[END_REF] optimal solutions are found for a majority of instances with size up to 50. Macedo et al. [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] propose a minimum flow model where variable represent feasible trips. Optimal solutions are found for a majority of instances with size up to 50 in 2 hours of computation time. In all the previous works, the full set of feasible trips is generated. This is practicable due to the presence of time windows and trip duration constraint that limit the cardinality of the set.

Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF] propose the only exact method on the MTVRPTW. A branch and price algorithm is proposed and instances up to 50 customers and 4 vehicles can be solved.

Battarra et al. [START_REF] Battarra | An adaptive guidance approach for the heuristic solution of a minimum multiple trip vehicle routing problem[END_REF] study an extension of the MTVRPTW where products are clustered in different commodities that cannot be transported in the same vehicle. They first generate a set of feasible trips considering each commodity independently. Then, these trips are assigned to vehicles in order to obtain a solution.

Method

This section describes the hybrid genetic algorithm A CAF we developed for the MTVRPTW-R. In genetic algorithms (GA), a set of chromosomes forms a population that evolves across generations until termination criteria are met. New individuals (children) are generated from those in the current population, called parents, by crossover and mutation operators. GAs turned out to be highly efficient heuristic methods to face different problems, mainly because children generation allows to explore new zones (children differ from parents) that are promising (children keep good parents' characteristics). The papers of Prins [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF], Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems[END_REF] and Cattaruzza et al. [START_REF] Cattaruzza | A memetic algorithm for the multi trip vehicle routing problem[END_REF] are three examples of efficient GA (respectively for the VRP; the multi depot VRP and the periodic VRP; and for the multi trip VRP) in the VRP field.

The principles of genetic procedure were first formalized by Holland [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF]. The interested reader is referred to Reeves [START_REF] Reeves | Genetic algorithms. In Handbook of Metaheuristics -Second Edition[END_REF], Moscato and Cotta [START_REF] Moscato | A modern introduction to memetic algorithms[END_REF] and Neri and Cotta [START_REF] Neri | Memetic algorithms and memetic computing optimization: A literature review[END_REF] for an overview of population based procedures.

Algorithm outline

This section outlines our A CAF for the MTVRPTW-R. Initially, a population Π of π chromosomes is generated. Chromosomes are sequences of client nodes without trip delimiters. Each chromosome is evaluated with an adaptation of the Split procedure developed by Prins [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF], that we call AdSplit (Section 4.4). AdSplit obtains a MTVRPTW-R solution ξ from a chromosome Ψ. The fitness of chromosome Ψ is then defined as the cost of the solution ξ.

All individuals are improved by means of a local search (LS) procedure called as well education phase (Section 4.3). At each iteration two chromosomes Ψ P 1 and Ψ P 2 are selected using the classical binary tournament procedure. Two children Ψ C 1 and Ψ C 2 are obtained crossing parents with the order crossover procedure and one (Ψ C) is randomly selected between them. Ψ C undergoes AdSplit for evaluation and LS for education. It is then inserted in Π.

After µ children are inserted in Π, π chromosomes are selected based on their fitness (representing their quality) and diversification contribution to the population itself, while the other µ are eliminated (survivor procedure, Section 4.5). A sketch of the method is given in Algorithm 1.

Algorithm 1 A CAF outline 1: Initialize population 2: while Termination criteria are not met do 3:

Select parent chromosomes Ψ P 1 and Ψ P 2

4:

Generate a child Ψ C

5:

Educate Ψ C

6:

Insert Ψ C in the population 7:

if Dimension of the population exceeds a given size then 8:

Select survivors

9:
end if 10: end while

Solution representation and search space

A chromosome is a sequence (permutation) Ψ = (Ψ 1 , . . . , Ψ N) of the N client nodes, without trip delimiters. Ψ can be viewed as a TSP solution that has to be turned into a feasible MTVRPTW-R solution by splitting the chromosome (inserting trip delimiters and assigning trips to vehicles). Ψ is usually called a giant tour. From a giant tour Ψ, different MTVRPTW-R solutions can be constructed depending on the way Ψ is split.

During the search phase, overload and TW violations are allowed and penalized in the fitness function. Two penalization factors are needed: θ for TW violation and λ for load infeasibility.

A procedure AdSplit (explained in Section 4.4) is used to get a MTVRPTW-R solution ξ from Ψ. The following notation is introduced: D Σ (ξ) and T W Σ (ξ) are respectively the traveled distance and the TW violation of journey Σ in solution ξ. L σ (ξ) is the load of trip σ. The fitness F (Ψ) of the chromosome Ψ is the cost c(ξ) of the solution ξ found by AdSplit and it is defined as

F (Ψ) = c(ξ) = M Σ=1 D Σ (ξ) + θ M Σ=1 T W Σ (ξ) + λ M Σ=1 σ∈Σ max{0, L σ (ξ) -Q}. (3)
When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome Ψ is called feasible (infeasible) if AdSplit obtains, from Ψ, a feasible (infeasible) solution ξ.

In practice a chromosome is split in order to obtain a solution and then it possibly undergoes LS for improvement. It would then be natural to continue describing the solution method with the AdSplit procedure. However, AdSplit takes advantages of aspects in the LS. Thus, we will start presenting the latter.

Local search

This section presents the local search (LS) procedure embedded in A CAF . First, an efficient scheme to manage TW violations is presented (Section 4.3.1) based on Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] work. In Section 4.3.2 peculiar characteristics of our problem are introduced, and Section 4.3.3 describes the general LS procedure.

Local Search for VRP with TW

LS in presence of TW becomes more complicated than in the classic VRP. Feasibility checks and routing cost variations cannot be straightforwardly calculated in constant time. Savelsbergh [START_REF] Savelsbergh | Local search in routing problems with time windows[END_REF] proposes a scheme to check feasibility and to calculate cost variation for series of k-opt moves. Nagata et al. [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows[END_REF] propose a new scheme to evaluate TW violations. Roughly speaking, when a vehicle arrives late at the customer location, it is allowed to drive back in time in order to meet the TW and a penalization proportional to the TW violation is introduced in the objective function. They also propose formulas to evaluate in constant time inter-route moves as relocation, exchange and 2-opt (inter-route 2-opt is usually called 2-opt *). 1 .

Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] generalize this scheme for a large class of routing problems with TW. Each move is seen as a concatenation of paths. In particular, given a path ρ, the quantities T (ρ), T W (ρ), E(ρ), L(ρ), D(ρ) and Q(ρ) are introduced. T (ρ) and T W (ρ) are respectively the minimum duration and the minimum penalization (called as well time warp) of ρ. E(ρ) and L(ρ) are the earliest and the latest date service can start at the first customer of ρ (that can be the depot) allowing minimum duration and TW violation. D(ρ) is the travelled distance while Q(ρ) is the cumulative demand of served customer. We will call these quantities features. For a path made by a single customer i, features are initialized as follows:

T (i) = S i , T W (i) = 0, E(i) = E i , L(i) = L i , D(i) = 0, Q(i) = Q i .
Given two paths ρ 1 and ρ 2 , the following relations hold (see Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] for formal proofs):

T (ρ 1 ⊕ ρ 2) = T (ρ 2) + T (ρ 1) + T v 1 n 1 ,v 2 1 + ∆ W T ; (4)
T W (ρ 1 ⊕ ρ 2) = T W (ρ 1) + T W (ρ 2) + ∆ T W ; (5) E(ρ 1 ⊕ ρ 2) = max {E(ρ 2) -∆, E(ρ 1)} -∆ W T ; (6) L(ρ 1 ⊕ ρ 2) = min {L(ρ 2) -∆, L(ρ 1)} + ∆ T W ; (7) D(ρ 1 ⊕ ρ 2) = D(ρ 1) + D(ρ 2); (8) Q(ρ 1 ⊕ ρ 2) = Q(ρ 1) + Q(ρ 2); (9)
where

∆ = T (ρ 1) -T W (ρ 1) + T v 1 n 1 ,v 2 1 ; ∆ W T = max {E(ρ 2) -∆ -L(ρ 1), 0} ; ∆ T W = max {E(ρ 1) + ∆ -L(ρ 2), 0} .
Equations (4)-(9) allow evaluating classical LS moves in constant time. For example, relocate customer v i from trip σ 1 = (0, v 1 , . . . , v i-1 , v i , v i+1 , . . . , v n 1 , 0) to trip σ 2 = (0, w 1 , . . . , w j , w j+1 , . . . , w n 2 , 0) between customers w j and w j+1 can be evaluated applying Equations (4)-(9) to (0, v 1 , . . . , v i-1) ⊕ (v i+1 , . . . , v n 1 , 0) and (0, w 1 , . . . , w j) ⊕ (v i) ⊕ (w j+1 , . . . , w n 2 , 0).

Features defined in Equations (4)-(9) need to be available for all the paths and their reverse present in the current solution. Reverse paths come into play, for example, in the evaluation of 2-opt moves. Moreover, these quantities need to be updated each time a move is implemented. Straightforward update takes O(N 2), but it can be done in O(N 8/7) using speed up techniques proposed by Irnich [START_REF] Irnich | A unified modeling and solution framework for vehicle routing and local search-based metaheuristics[END_REF].

We use this approach (except for the little modification introduced by the release dates, Section 4.3.2) to evaluate local variations due to a move. By local we mean a cost variation that occurs in the trips affected by the move itself. It is noteworthy that this variation can affect successive trips in the same journey (Section 4.3.2).

Local search: introduction of release dates and application to the multi trip case

The MTVRPTW-R has two more attributes to consider compared to the VRPTW: vehicles can perform several trips, and merchandise can be non-available at the depot at the beginning of the horizon.

We introduce a new feature R(ρ) as the greatest release date of customers served in ρ. We define R(i) = R i and Equation [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] holds

R(ρ 1 ⊕ ρ 2) = max {R(ρ 1), R(ρ 2)} . (10)
Then, given two paths ρ 1 and ρ 2 , the quantity R(ρ 1 ⊕ ρ 2) can be calculated in constant time from values R(ρ 1) and R(ρ 2).

It is observed that in VRP it is always possible to start a new trip σ at time t, with E(σ) ≤ t ≤ L(σ), because all the vehicles are available at the depot at t = 0 and are assigned to only one trip. Then, the minimum travelling duration time T (σ) and the minimum TW violation T W (σ) can always be obtained. On the other side, this cannot be possible when vehicles are allowed to perform more than one trip or in the presence of release dates. In the first case it can be L(σ) < T σ because of previous trips, in the second case, it can be that L(σ) < R(σ) (that means trip σ is infeasible). We, then, need to calculate T (σ) and T W (σ) based on the effective time t a vehicle leaves the depot to perform σ. To do that, we can use the following relations proved by Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] that provide the value of these quantities as functions of the starting time t:

T (ρ)(t) = T (ρ) + max {0, E(ρ) -t} ; (11) T W (ρ)(t) = T W (ρ) + max {0, t -L(ρ)} . (12)
Finally, the time T σ i a vehicle is available at the depot to perform trip σ i can be recursively calculated as follows

T σ 1 = 0; (13) T σ i+1 = T (σ i)(max{R(σ i), T σ i }) -T W (σ i)(max{R(σ i), T σ i }). (14)
The Figure 1 introduces an example (data are given in tables, travel times and distances coincide) that illustrates a consequence of using Nagata et al. [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows[END_REF] penalization scheme for TW violations in the multi-trip context. In particular Figure 1 depicts a journey formed by four trips:

σ 1 = (v 0 , v 5 , v 3 , v 0), σ 1 = (v 0 , v 1 , v 0), σ 3 = (v 0 , v 4 , v 0) and σ 4 = (v 0 , v 2 , v 0)
where v 0 represents the depot. It can be noticed that 115 = T σ 4 < T σ 3 = 125 and 95 = T σ 5 < T σ 4 . This means that the vehicle can be available at the depot to perform trip σ i+1 before the time it was available to perform trip σ i . Indeed, it travelled back in time and it is the consequence of a deep use of the time warp, i.e., a deep time window violation.

One needs also to observe that the effect of a move on trip σ i ∈ Σ can modify T σ i+1 , that in turn can modify T (σ i+1) and T W (σ i+1). Hence, the effect of the move on trip σ i can be propagated to the following trips.

When loading times at the depot are constant and not trip-dependent, evaluation of the TW violation can be done in constant time, considering a journey as a unique segment with multiple visit at the depot. Conversely, the calculation requires O(Σ max), where Σ max indicates the maximum number of trips among all journeys.

Local search: general scheme and penalty adaptation

We consider the move 2-opt and the move ex ρ that exchanges two segments ρ 1 and ρ 2 of successive customers, where ρ 1 and ρ 2 are respectively subsequences of trips σ 1 and σ 2 . Let v 1 and v 2 be two customers. In particular, it can be observed that if: • ρ 1 = (v 1 , . . . , 0) and ρ 2 = (v 2 , . . . , 0), or ρ 1 = (0, . . . , v 1) and ρ 2 = (0, . . . , v 2), and σ 1 = σ 2 , ex ρ is the classical 2-opt * ;

• ρ 1 = v 1 and ρ 2 = ∅, ex ρ is the classical relocate; • ρ 1 = v 1 and ρ 2 = v 2 ,
S i Q i E i L i R i v 0 20 0 0 200 0 v 1 5
• ρ 1 = σ 1 and ρ 2 = ∅, ex ρ relocates a full trip;

• ρ 1 = σ 1 and ρ 2 = σ 2 , ex ρ exchanges trips.

The last two moves, take into account the multi-trip aspect. Relocations and swaps of trips are intervehicle (resp. intra-vehicle) moves if σ 1 and σ 2 belong to a different (resp. the same) journey. No limitation on the segment size is considered. Different neighbour structures considering a maximum segment size could speed up the search against a payback due to the possible lower quality of the obtained solutions. Initially, a neighbourhood defined by one of the listed move is randomly chosen and deeply explored. The best improving move is then executed, if it exists. In this case, another neighbourhood is randomly chosen. The LS terminates when all the neighborhoods are fully explored without finding any improving move.

When the population reaches the dimension of π + µ, the values of each penalty factor P = θ, λ is adjusted as follows:

P = 1.25 × P if ζ P > ζ + ref ; max{1, 0.85 × P } if ζ P < ζ - ref ,

A Split algorithm for the multi trip problem with TW and release dates

The split procedure, indicated with AdSplit, is an adaptation of the procedure proposed by Prins [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF]. It turns a permutation of the N customers into a solution for the MTVRPTW-R. It works on an acyclic graph H whose nodes represent customers, and arcs represent trips. The graph construction is illustrated in Section 4.4.1, while Section 4.4.2 presents the AdSplit procedure.

Auxiliary graph construction

The auxiliary graph H = (V , A) is defined with N + 1 nodes indexed from 0 to N . Node i represents customer Ψ i in the chromosome Ψ = (Ψ 1 , . . . , Ψ N). Arc (i, j), i < j, represents trip σ j i+1 serving customers from Ψ i+1 to Ψ j in this order, i.e., σ j i+1 = (0, Ψ i+1 , . . . , Ψ j , 0). Cost c ij of arc (i, j) is given by the following equation

c ij = D(σ j i+1) + θT W (σ j i+1) + λ max{0, Q(σ j i+1)
-Q}, that is the sum of the travelled distance in trip σ j i+1 plus the penalized TW and capacity violations. Figure 2 depicts graph H for the example in Figure 1, where Ψ = (1, 2, 3, 4, 5). Cost of arc (0, 1) is twice the travelling distance needed to go from the depot to customer 1, i.e., 10. Cost of arc (0,2) is the travelling distance needed to reach customer 1 from the depot, then visit customer 2 and to conclude the trip at the depot, i.e., 40. The penalization 50 • θ is added since the vehicle arrives at customer 2 at 125 and its time window closes at 75. Then, for θ = 2, arc (0, 2) costs 140. Other costs are computed similarly.

It is noteworthy that the arc cost does not take into account the position of the trip in the journey, but it is the (penalized) cost of the trip when it is performed at t = 0. Therefore, the (contingent) TW violation due to later departure is not taken into account.

Assignment of trips to vehicles

In the MTVRPTW-R context in particular and in the MTVRP context in general, more than one trip can be assigned to the same vehicle. TW penalization deeply depends on the time trips leave the depot and this aspect cannot be considered by the constant costs associated with arcs on H.

Due to the correspondence between arcs and trips in H and to simplify the presentation, in this section we will indifferently refer to arc or trip. Consequently, the assignment of arcs to a vehicle, will mean that the trips represented by these arcs are assigned to this vehicle.

Each path that goes from node 0 to node N , represents a set of trips, that need to be assigned to vehicles to form a solution. Arcs are assigned to a vehicle in the order they appear in the path. For each arc, M assignments (one for each vehicle) are possible. In each case, the trip is positioned after the trips already assigned to the vehicle. Hence, the order of trips in vehicles meets the order in Ψ.

The aim of the AdSplit procedure is to find the path whose optimal assignment of trips to vehicles results in the best solution. It can be shown that the problem solved with the AdSplit procedure in N P-hard.

Let us consider the problem SP LIT that consists in finding the optimal solution for an auxiliary graph H (constructed as explained in Section 4. Proof. We perform a reduction from the Bin Packing Problem (BPP). The decision version of the BPP is defined given M BP P bins of size Q BP P and N BP P objects of size Q BP P i , i = 1, . . . , N BP P . We need to answer the question: can the N BP P objects be inserted in the M BP P available bins respecting capacity constraints?

The key idea of the reduction is to define an instance of the SP LIT problem such that each arc (i, j) corresponds to the selection of objects {i + 1, . . . , j} of the BPP.

Given an instance I BP P of the BPP, an instance of the MTVRPTW-R problem is defined with the following parameters: N = N BP P , T ij = Q BP P j for all i, j = 1, . . . , N , and

T 0i = Q BP P i , T i0 = 0, [E i , L i] = 0, Q BP P , R i = 0
, for all i = 1, . . . , N and Q = +∞. We call I SP LIT the instance of the decision version of problem SP LIT obtained when applying AdSplit to the chromosome (1, . . . , N) for this instance.

The graph H associated with the I SP LIT instance is constructed such that the cost on each arc (i, j) is given by c ij = j k=i+1 Q k for all i, j = 0, . . . , N , i < j. We can notice that all paths from 0 to N in this graph have the same cost (N k=1 Q k). From the definition of I SP LIT , it is obvious that the instance I BP P can be polynomially transformed into an I SP LIT instance.

We show that the answer for instance I BP P is positive if and only if there exists a feasible solution of the SP LIT problem that uses at most M BP P vehicles.

If I BP P is a positive instance, then there exists an assignment of objects to bins such that the number of used bins is lower than or equal to M BP P . Considering the path in H that corresponds to all the arcs (i -1, i), i = 1, . . . , N and assigning trips (0, i, 0) to the k th vehicle if the i th object is into the k th bin, constructs a feasible solution for I SP LIT .

On the other side let suppose that I SP LIT is a positive instance. There exists a path ρ from 0 to N and an assignment of arcs to the M BP P vehicles such that the sum of the duration of the trips assigned to a vehicle does not exceed the time limit Q BP P . A solution for the I BP P instance is constructed assigning object i to bin k if customer i is assigned to the k th vehicle in ρ. The number of used bins is lower than or equal to M BP P and their capacities are satisfied, which concludes the proof.

We propose a labelling procedure that selects arcs on H and assigns them to vehicles, in order to obtain the solution with minimum cost with respect to Equation [START_REF] Battarra | An adaptive guidance approach for the heuristic solution of a minimum multiple trip vehicle routing problem[END_REF].

Labels are associated with nodes in the graph. Each label associated with node i represents a partial path that goes from node 0 to node i in H and, then, a partial solution that serves all customers Ψ 1 , . . . , Ψ i . Trips of this partial solution are represented by the arcs in the corresponding partial path.

Each label L has M + 3 fields. Each field j, with j = 1, . . . , M records the availability time T j (L) of vehicle j, namely, the time the vehicle is available at the depot for starting the next service trip. Availability times are stored in decreasing order to better take advantage of the dominance rules introduced in the following. The (M + 1) th field memorizes the total load infeasibility, and the (M + 2) th the predecessor node. The last field stores the cost c(L) of the partial solution represented by L. When extending a label, M new labels are constructed, one for each possible allocation of the new trip to a vehicle. Extending a label L i associated with node i through arc (i, j) means assigning trip (0, Ψ i+1 , . . . , Ψ j , 0) to a certain vehicle. Identical labels associated with the same node are discarded.

Graph H is implicitly generated. Arc and solution costs are computed using relations introduced in Section 4.3. In particular, the cost of an arc (i, . . . , j +1) is calculated concatenating path (0, Ψ i+1 , . . . , Ψ j) with path (Ψ j+1 , 0), while label costs are updated using Relations (11)-(14) since vehicle availability times are stored in labels. The label L with minimum cost c(L) associated with node N is selected and the related solution is constructed (going backwardly through the graph).

To speed up the procedure, dominated labels, accordingly with the following dominance rule, are discarded.

Dominance Rule 1 (Strong). Let L 1 and L 2 be two labels associated with the same node i. L 1 strongly dominates L 2 if and only if

c(L 1) + θ M j=1 δ j (L 1 , L 2) ≤ c(L 2); (15)
δ j (L 1 , L 2) = max{0, T j (L 1) -T j (L 2)}.
Roughly speaking, δ j (L 1 , L 2) represents the maximal additional penalization that can be introduce in the partial solution represented by L 1 compared to the one represented by L 2 . If Inequality (15) holds, L 2 cannot be extended in a better way than L 1 , and it is eliminated.

Table 1 shows all the labels generated by AdSplit when applied on the graph H depicted in Figure 2. The number of vehicles M is set to 2. Column dom indicates if the respective label is dominated in the sense of Dominance Rule 1. Only 3 labels associated with node 5 are non-dominated.

Label (120, 110) with cost c = 265 associated with node 5 corresponds to the solution made up of three trips: (0, 1, 0) assigned to one vehicle and trips (0, 2, 0) and (0, 3, 4, 5, 0) performed by the other vehicle (in this order). Travelled distance is 125, while late arrival at customers 3, 4 and 5 introduces a total TW violation of 70 • θ.

Preliminary tests showed that a huge number of labels needs to be treated, which does not appear to be viable in the heuristic context (see Section 5.3 for details). For this reason a heuristic version of the Dominance Rule 1 is introduced as follows: Dominance Rule 2 (Weak). Label L 1 weakly dominates L 2 if and only if

c(L 1) + θ M j=1 δ j (L 1 , L 2) ≤ γc(L 2), (16)
c(L 1) ≤ c(L 2). (17
)
where γ ≥ 1.

For γ = 1, the weak dominance rule is equivalent to the strong version. When γ > 1, Inequality (16) is easier to be satisfied and a bigger number of labels can be eliminated. Condition (17) is added because when γ > 1 label L 2 can be dominated by label L 1 even if c(L 2) < c(L 1). Using the weak relation one expects the solution to be obtained quicker. On the other side the best decomposition of the chromosome can be missed.

The value of γ is dynamically adapted during the process according to the number of labels associated with each node. Precisely the following scheme is adopted:

γ = γ + |L i | 1000L threshold if |L i | > L threshold γ -L threshold 1000|L i | if |L i | < L threshold (18)
where |L i | is the number of labels associated with node i and L threshold is a threshold parameter that indicates the number of labels that should be kept associated with each node. If after Relation (18) is applied, γ is lower than 1, it is set back to 1.

It is worth noting that the smaller L threshold is, the quicker AdSplit is. On the other side, the bigger L threshold is, the better the quality of the solution obtained is.

Survivor strategy

When the population Π contains π + µ chromosomes, the survivor procedure is launched. It selects µ chromosomes based on their quality and their diversification contribution to the population as suggested by Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF][START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems[END_REF]. Diversity contribution f (Ψ) is set as the average distance between a selected chromosome Ψ and its n c closest neighbours in Π (forming set N c). Distance D(Ψ, Ψ 1) between chromosomes Ψ and Ψ 1 is measured by the broken pair distance that is the number of pairs of adjacent customers in Ψ that are broken in Ψ 1 (Prins [START_REF] Prins | Two memetic algorithms for heterogeneous fleet vehicle routing problems[END_REF]). Formally we have:

f (Ψ) = 1 n c Ψ 1 ∈Nc D(Ψ, Ψ 1), (19)
A biased fitness bF (•) is calculated for each chromosome as follows:

bF (Ψ) = r F (Ψ) + (1 - n e |Π|)r f (Ψ); (20)
where r F (Ψ) and r f (Ψ) are the ranks of chromosome Ψ calculated based on fitness F and function f defined in Equation (19) respectively, and n e is a parameter that ensures elitism properties during selection (see Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm for multidepot and periodic vehicle routing problems[END_REF] for a formal proof).

Computation results

In this section we present the results obtained with our procedure A CAF . We start introducing a set of instances (Section 5.1) for benchmark purposes: due to the novelty of the problem, no instances are available in the literature. In Sections 5.2 we present the values of the parameters involved in the A CAF , determined using a meta-tuning procedure. Results obtained on the new set of instances are presented in Section 5.4, while in Section 5.5 results obtained by A CAF on instances proposed by Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF] for the MTVRPTW are given. A CAF is coded in C++ and compiled with Visual Studio 2010. All the experiments are run on a Intel Xeon W3550 3.07GHz with a RAM of 12 Gb.

Instances for the MTVRPTW-R

In this section we describe how we generate a set of instances for the MTVRPTW-R. We use the instances introduced by Solomon [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problem with time windows constraints[END_REF] for the VRPTW as base instances and adapt them to the MTVRPTW-R case.

In Solomon [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problem with time windows constraints[END_REF] six groups of instances are generated, named R1, C1, RC1, R2, C2, RC2. Groups R1 and R2 have customers randomly located in a region, while they are clustered in groups C1 and C2. RC1 and RC2 instances contain a mix of randomly located and clustered customers. The time horizon is shorter in instances of groups C1, R1, RC1 than in instances of C2, R2, RC2. There are 56 instances in total. Depot location as well as customer locations, demands, time windows and service times are set as in the original Solomon's instances. Release dates are calculated in three steps, based on the Algorithm 2 explained in the following, and given a rigidity parameter r.

In the first step (lines 1-7 of Algorithm 2) release dates R (2) are calculated based on Equation (21)

Algorithm 2 Instances creation 1: for all i = 1, . . . , N do 2:

if L i + T H (r -1) ≥ 0 then 3: end if 7: end for 8: for all i = 1, . . . , N do

R i = L i + T H (r -1) 4:
9: if R i + T 0i > L i then 10: R i = 0 11:
end if 12: end for 13: Initialize Λ with customers with strictly positive release date and ranked with respect to non-decreasing release dates: end if 32: end while

u < v ⇒ R u ≤ R v 14: Γ = ∅; L Γ -T Γ = ∞; R Γ = 0 15: while Λ = ∅ do 16: Get v * first customer in Λ 17: Λ = Λ \ {v * } 18: if Γ = ∅ then 19: Γ = {v * }; L Γ -T Γ = κL v * -T 0v * ; R Γ = R v * 20: else 21: L Γ -T Γ = min{κL v * -T 0v * , L Γ -T Γ } 22: if R v * ≤ L Γ -T Γ then 23: Γ = Γ ∪ v * ; R Γ = R v * 24:
r = 1 - L i -R (2) i T H . (21)
Equation (21) (instead of Equation (1)) allows to univocally determine the value of R

(2) i once r is given. This is done in order to make instance replication easier. Inverting Equation (21) we obtain

R (2) i = L i + T H (r -1); from which follows that R (2) i ≥ 0 ⇔ L i + T H (r -1) ≥ 0 ⇔ r ≥ 1 - L i T H .
Then, when r < 1

-L i T H , R (2)
i is negative. We fix the release date to zero in this case. Moreover, the decimal parts are truncated in order to work with integer values. Thus, the following scheme is adopted

R (2) i = L i + T H (r -1) if 1 -L i T H ≤ r; 0 otherwise.
In the second step (lines 8-12 of Algorithm 2), we guarantee that each customer can be served by a round trip, then R

(1) i is calculated as follows

R (1) i = R (2) i if R (2) i + T 0i ≤ L i , 0 otherwise.
In the third step (lines 13-32 of Algorithm 2) the final release date values R i , i = 1, . . . , N are determined. Customers are clustered with respect to the release dates with the purpose to represent different truck arrivals at the depot. All the customers that belong to the same cluster Γ will be associated with the same release date R Γ .

A list Λ is initialized with all the customers ordered by non-decreasing values of R (1) , i.e., such that i < j implies R

(1) i ≤ R

(1) j . Clusters Γ are constructed starting with a single customer v 1 and successively adding the following customers in Λ. A customer v 2 is added if and only if each customer v ∈ Γ can be served by a round trip even if the merchandise is available at the depot at time R

(1) v 2 (≥ R (1) v), namely, if and only if R (1) v 2 + T 0v ≤ L v ∀v ∈ Γ. (22
)
The final release date R v of each customer v in Γ is set to R

v 2 . When the next customer v 2 to be inserted in Γ does not satisfy Relation [START_REF] Neri | Memetic algorithms and memetic computing optimization: A literature review[END_REF], a new cluster is initialized and the procedure restarted.

In order to create different classes of instances, a parameter κ ≤ 1 is introduced in Equation (22). Hence, it becomes R

(1)

v 2 + T 0v ≤ κL v ∀v ∈ Γ.
Different values of κ produce instances with different rigidity. In particular the higher is κ, the higher is the rigidity r.

The first step release dates R

i , i = 1, . . . , N are determined setting r = 0.5. Then, for each Solomon instance, three instances are created using Algorithm 2 with values κ = 0.25, 0.5, 0.75. A fourth instance has all the release dates equal to zero and will be referred by κ = 0 for simplicity. There are in total 224 new instances.

Finally, vehicle's capacities are half of the original values, while the number of vehicles M is set in order to have feasible or quasi-feasible solution for the κ = 0.75 instance group. Since we force some release dates to be zero and we use different values of κ, the final rigidity of instances differs from 0.5. Values of the number of vehicles, actual rigidity r and tightness tigh are reported in Table 2.

κ = 0 κ = 0.25 κ = 0.5 κ = 0.75 M tigh

Tuning

The procedure makes use of some parameters that need to be set to values chosen into sensible ranges.

After conducting preliminary tests we decided to fix the values of ζ + ref and ζ - ref to 0.35 and 0.25 respectively, while θ and λ are initially set respectively to 20 and 2.

In order to determine the values of the remaining parameters, we run the Evolutionary Strategy with Covariance Matrix Adaptation proposed by Hansen and Ostermeier [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] on a limited set of instances. In particular A CAF is run on C108, R104, RC106, RC208, obtained with κ = 0.75, and we obtained the values reported in Table 3.

Parameter

Range Final value π Dimension of population

Setting of L threshold

The value of L threshold is important to achieve the best compromise between solution quality and computational efficiency. To find a suitable value, we evaluate the impact of L threshold on a set of 100 chromosomes.

In order to avoid completely random chromosomes, we proceed as follows. A chromosome is randomly generated for instances C101 and C201 of group κ = 0. AdSplit first evaluates them with L threshold = 10, then they are improved by LS. The resulting chromosomes are re-evaluated by AdSplit with different values of L threshold . Average results obtained on the 100 evaluations are reported in Table 4. The value of In this case, computational times are huge implying also that splitting chromosomes using the Strong Dominance Rule 1 is not time efficient. The Weak Dominance Rule 2 allows a quick evaluation preserving solution quality even with a few labels kept associated with each node. Symbol ≈ 0 means the value is approximately zero. Results show that for instance C201 a small cost deterioration is achieved when the value of L threshold is very small. This can be explained by the fact that C201 is characterized by a low number of vehicles, that reduces the possible assignment of trips. Finally, it has been decided to set L threshold = 15.

C101 κ = 0 C201 κ = 0 L threshold time (

Results on MTVRPTW-R instances

A CAF is run 5 times over the 224 instances. Each run is stopped after 5 minutes of computation time.

Complete results are reported in Tables 56, each table being divided in two parts, exhibiting results for instances with κ = 0, 0.25, 0.5, 0.75. Column instance contains the name of the original Solomon instance.

Columns best report the distance (dist) and the number of trips (#trips) of the best solution found on the 5 runs. Columns average report average distances and trips on the five found solutions. Column #feas indicates the number of runs the procedure found a feasible solution. A dash means no feasible solution has been found for the respective instance. It can be noticed that the best solution can be formed by a number of trips higher than the average. Result analysis is reported on Table 7 and in Figure 3. Table 7 reports average results per group of instances. Columns best report average distance and number of trips of the corresponding best solution found by the procedure, while columns average report the average of the average values on instances of the same group. Column % feas indicates the percentage of feasible solutions found on the total number of runs (that is 5 times the instances forming a specified group). 5 and7). This validates the generation scheme presented in Section 5.1.

Rigidity and tightness of instances averagely describe the difficulty of solving an instance: considering results grouped by type of instances and value of κ, it can be noticed (Figures 3a-3c, Table 7) that when the tightness and rigidity grow, the travelled distance and the number of trips per vehicle grow, while the number of feasible solutions found by the algorithm decreases. On the other side, there is no evident punctual correlation between rigidity and tightness, and the results obtained on a specific instance: for example instance R103 with κ = 0.25 has higher tightness and rigidity than instance RC102 (see Robustness of procedure A CAF is proved by the small differences between best values and average values reported in Tables 5-6 and in Table 7.

Comparison with Hernandez et al. [12]

To evaluate the performance of A CAF we run the procedure on instances generated by Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF] for the MTVRP with TW. These instances are generated from Solomons's instances in groups C2, R2, RC2, considering the first 25 customers and M fixed to 2, and the first 50 customers and M = 4. Vehicle capacity is fixed to 100, loading time at the depot is trip dependent and in particular it is 0.2 times the sum of service times at customers in the trip. Travel times are the Euclidean distances rounded to the first decimal. Limitation into the number of customers is due to the exact nature of the algorithm proposed by Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF]. Due to the heuristic nature of our algorithm, we consider as well the instances with all the 100 customers. Following the instance generation system of Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF], we double the number of available vehicles used for instances with 50 customers. Then, 8 vehicles are available to serve the 100 customers.

Instances in groups C1, R1 and RC1 are not considered by Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF] due to short time horizon that, in their opinion, would not allow vehicles to perform different trips.

A CAF is run five times on each instance and it is stopped after 1 minute on instances with 25 customers and after 5 minutes on instances with 50 customers and with 100 customers. Results are reported in Tables 8910.

The first column reports the instance name, columns HRN report the optimal value (column opt) found by Hernandez et al. [START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF]. A blank indicates they could not find the optimal solution. In some cases their algorithm provides a feasible solution which value is indicated in column feas.

Columns best report the travelled distance (dist) and the number of trips (# trips) that characterize the best solution found by A CAF in the five runs. Columns average indicate average values over the five runs. Bold numbers indicate the best known solution has been improved by A CAF (we omitted the bold font when no solution value was available). Finally, column # opt reports the number of runs A CAF finds the optimal solution on the five runs. A dash is reported when the optimal value is not available.

It can be observed that on small instances A CAF finds the optimal solution on all the five runs on 23 out of 25 instances. It fails in finding the optimal on only 2 runs in total, one for instance C201 and one for instance RC206. The average gap from the optimal value is respectively 0.079% and 0.003%. Moreover, a new best solution is obtained for instance RC204. On instances with 50 customers, our procedure fails in finding the optimal solution only for instance RC202, while in the other four cases the optimal solution is retrieved 14 times out of 20 runs. 8 instances on the 9 with a feasible known solution are improved, while in the remaining case a same cost solution is got. The average percentage gap from the optimal value is 0.03%. Feasible solutions are found for all the instances, included those with the all 100 customers.

Conclusions and perspectives

In this paper we introduced a new problem, the Multi Trip Vehicle Routing Problem with Time Windows and Release Dates. It raises in city logistics context, where trucks deliver goods to city distribution centers (CDC) before they are delivered to final customers by eco-friendly vans. Optimization of van trips depends on the truck delivery plan to the CDC. Trucks arrive during the whole day, continuously bringing goods into the distribution system. Arrival of trucks to CDC is modelled associating a release date with each merchandise. It represents the moment the merchandise itself becomes available for final delivery.

We introduced a new set of instances on which we run the memetic algorithm we developed. Moreover, we run the algorithm on instances for the Multi performance evaluation purposes. Results show the efficiency of our procedure. An efficient labelling procedure is proposed to turn permutation of customers into solution that is an adaptation of the procedure proposed by Prins [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF] for the VRP. It is designed for the MTVRPTW-R case, but it can be used in the MTVRPTW context as well.

Associating a release date with each merchandise implicitly suppose the arrival of each truck to the depot is known in advance, at least before the operational planning is computed. Communication and organization between carriers and the management center is needed. Future studies could introduce some dynamism in the problem, considering part of the goods or the whole merchandise to arrive at the depot with no advanced notice. Optimization procedure needs to react to these events, reorganizing the planning quickly and efficiently.

 ex ρ is the classical exchange (or swap);

Figure 1 :

 1 Figure 1: The last two trips arrive at the depot before they have left it

 where ζ P is the percentage of infeasible chromosomes over the last µ individuals generated with respect to time window violation (P = θ) or capacity violation (P = λ), while ζ + ref and ζ - ref are reference values.

Figure 2 :

 2 Figure 2: The auxiliary graph for chromosome Ψ = (1, 2, 3, 4, 5), data as in Figure 1, Q = 60 and θ = λ = 2

Proposition 1 .

 1 4.1) defined by an instance I of the MTVRPTW-R and a permutation Ψ of customers in I. The objective of SP LIT is to find the optimal solution ξ Ψ associated with Ψ on graph H. In what follows we analyze the complexity of the SP LIT problem. The problem SP LIT is N P-Hard.

 Proportion of elite individuals n e = n e × Π (Eq. 19) [0.1, 1] 0.20 n c Proportion of close individuals n c = n c × Π (Eq. 20) [0.1, 1]

Figure 3 :

 3 Figure 3: Result analysis

Table 1 :

 1 Labels generated by AdSplit

		1				2				3				4				5		
	cost	label	p	dom	cost	label	p	dom	cost	label	p	dom	cost	label	p	dom	cost	label	p	dom
	10	(110,000)	0	no	40	(110, 70)	1	no	125	(110, 100)	1	no	190	(115, 110)	2	no	265	(120, 110)	2	no
					140	(95, 0)	0	no	180	(95, 75)	2	no	210	(115, 95)	3	no	285	(120, 95)	3	no
									230	(100, 70)	2	yes	250	(115, 75)	3	yes	300	(120, 115)	4	yes
									275	(100, 0)	0	no	250	(115, 100)	3	yes	300	(120, 100)	3	yes
													270	(115, 70)	2	yes	325	(120, 75)	3	yes
													295	(105, 100)	3	yes	345	(120, 70)	2	yes
													340	(115, 0)	2	no	370	(115, 70)	4	yes
													360	(105, 100)	3	yes	395	(120, 105)	4	yes
																	415	(120, 0)	2	no

Table 2 :

 2 Instance details

				r	tigh	r	tigh	r	tigh	r
	C101	12	0	0.606	0.085 0.664	0.129 0.690	0.161 0.709
	C102	10	0	0.493	0.164 0.629	0.201 0.651	0.225 0.666
	C103	11	0	0.350	0.261 0.576	0.290 0.595	0.311 0.609
	C104	13	0	0.227	0.350 0.540	0.361 0.548	0.380 0.561
	C105	11	0	0.579	0.098 0.647	0.152 0.678	0.190 0.702
	C106	11	0	0.563	0.105 0.638	0.152 0.667	0.203 0.697
	C107	11	0	0.553	0.102 0.627	0.151 0.656	0.206 0.689
	C108	10	0	0.522	0.116 0.607	0.158 0.632	0.225 0.674
	C109	10	0	0.467	0.139 0.573	0.192 0.605	0.257 0.644
	R101	22	0	0.537	0.093 0.605	0.099 0.609	0.135 0.632
	R102	19	0	0.424	0.179 0.571	0.185 0.574	0.222 0.601
	R103	18	0	0.332	0.258 0.548	0.261 0.550	0.311 0.589
	R104	17	0	0.241	0.332 0.522	0.334 0.523	0.387 0.566
	R105	17	0	0.492	0.111 0.575	0.122 0.582	0.181 0.619
	R106	15	0	0.391	0.192 0.548	0.201 0.553	0.260 0.594
	R107	16	0	0.311	0.266 0.533	0.272 0.536	0.346 0.590
	R108	16	0	0.231	0.335 0.514	0.336 0.515	0.382 0.550
	R109	15	0	0.427	0.137 0.531	0.147 0.537	0.212 0.577
	R110	15	0	0.362	0.204 0.517	0.223 0.527	0.299 0.575
	R111	15	0	0.328	0.241 0.521	0.249 0.526	0.320 0.575
	R112	18	0	0.283	0.289 0.500	0.314 0.515	0.469 0.618
	RC101	19	0	0.492	0.104 0.569	0.120 0.577	0.175 0.611
	RC102	17	0	0.406	0.179 0.546	0.187 0.551	0.244 0.587
	RC103	18	0	0.332	0.249 0.532	0.257 0.537	0.325 0.584
	RC104	19	0	0.256	0.317 0.514	0.317 0.515	0.391 0.570
	RC105	18	0	0.430	0.153 0.542	0.167 0.550	0.220 0.584
	RC106	16	0	0.427	0.141 0.531	0.156 0.540	0.227 0.584
	RC107	18	0	0.365	0.202 0.514	0.212 0.520	0.280 0.563
	RC108	18	0	0.302	0.268 0.501	0.280 0.508	0.380 0.571
	C201	3	0	0.519	0.151 0.634	0.199 0.664	0.258 0.702
	C202	4	0	0.393	0.239 0.600	0.274 0.623	0.318 0.651
	C203	5	0	0.277	0.318 0.570	0.339 0.584	0.364 0.601
	C204	5	0	0.147	0.405 0.530	0.416 0.538	0.431 0.548
	C205	3	0	0.495	0.159 0.619	0.210 0.652	0.262 0.685
	C206	3	0	0.469	0.175 0.607	0.225 0.639	0.287 0.679
	C207	3	0	0.452	0.185 0.603	0.233 0.634	0.283 0.666
	C208	3	0	0.445	0.183 0.592	0.237 0.626	0.290 0.660
	R201	4	0	0.493	0.133 0.600	0.162 0.617	0.215 0.651
	R202	2	0	0.365	0.222 0.567	0.247 0.581	0.284 0.606
	R203	3	0	0.252	0.312 0.546	0.328 0.555	0.355 0.575
	R204	3	0	0.141	0.395 0.519	0.397 0.521	0.420 0.540
	R205	3	0	0.430	0.177 0.571	0.236 0.607	0.297 0.645
	R206	3	0	0.318	0.262 0.548	0.313 0.578	0.365 0.612
	R207	3	0	0.222	0.337 0.533	0.368 0.551	0.405 0.578
	R208	3	0	0.126	0.409 0.514	0.410 0.514	0.456 0.548
	R209	3	0	0.370	0.211 0.537	0.283 0.580	0.380 0.640
	R210	3	0	0.334	0.250 0.540	0.310 0.578	0.381 0.623
	R211	4	0	0.303	0.276 0.517	0.390 0.582	0.541 0.673
	RC201	4	0	0.488	0.142 0.600	0.183 0.624	0.240 0.660
	RC202	5	0	0.366	0.232 0.569	0.264 0.588	0.314 0.621
	RC203	3	0	0.257	0.320 0.549	0.344 0.563	0.385 0.594
	RC204	4	0	0.147	0.393 0.519	0.394 0.519	0.440 0.554
	RC205	4	0	0.426	0.176 0.566	0.254 0.610	0.334 0.658
	RC206	3	0	0.424	0.172 0.562	0.227 0.594	0.293 0.638
	RC207	4	0	0.362	0.212 0.531	0.282 0.571	0.388 0.638
	RC208	4	0	0.291	0.276 0.508	0.379 0.568	0.537 0.666

Table 4 :

 4 Setting L threshold L threshold is indicated in the first column of the table. A maximum of 500 labels is considered for L threshold .

Table 2)

 2 ,

					κ = 0						κ = 0.25
	instance	dist	best	#trips	average dist #trips	#feas	dist	best	#trips	average dist #trips	#feas
	C101	1529.66	20	1568.27	20.8	5	1565.24	21	1585.29	21.0	5
	C102	1675.75	22	1715.14	21.8	5	1759.23	22	1778.12	22.4	5
	C103	1452.69	19	1524.98	19.6	5	1748.96	22	1810.23	22.6	5
	C104	1384.78	19	1407.10	19.2	5	1774.75	22	1834.28	22.6	5
	C105	1550.02	21	1709.18	22.2	5	1552.38	21	1601.48	21.4	5
	C106	1592.13	20	1624.38	21.4	5	1594.68	21	1621.70	21.6	5
	C107	1513.19	20	1527.41	20.0	5	1511.36	20	1536.45	20.0	5
	C108	1545.94	21	1659.66	21.6	5	1518.79	20	1548.04	20.2	5
	C109	1496.65	21	1538.70	20.2	5	1536.90	21	1547.45	20.4	5
	R101	1671.77	22	1678.46	20.6	5	2102.53	32	2160.65	31.4	5
	R102	1498.23	18	1502.58	18.0	5	2133.22	31	2146.89	32.5	2
	R103	1288.44	16	1298.49	16.0	5	1924.76	27	1990.82	29.0	5
	R104	1177.88	15	1190.59	15.0	5	1632.43	24	1711.13	25.6	5
	R105	1421.19	16	1433.05	16.4	5	1848.76	25	1913.50	26.6	5
	R106	1361.02	16	1365.95	16.2	5	1882.07	27	1959.79	28.4	5
	R107	1235.15	16	1245.09	16.0	5	1830.08	26	1861.37	27.2	5
	R108	1187.36	15	1193.28	15.0	5	1565.98	22	1622.82	23.0	5
	R109	1307.25	17	1316.19	16.4	5	1750.73	25	1835.34	26.0	5
	R110	1246.99	15	1253.13	15.0	5	1741.20	25	1779.37	26.6	5
	R111	1236.23	17	1244.99	16.2	5	1803.39	26	1833.50	26.4	5
	R112	1182.72	15	1191.47	15.6	5	1323.48	17	1329.28	17.0	5
	RC101	1805.40	19	1828.30	19.0	5	2304.70	26	2398.29	28.6	5
	RC102	1746.02	18	1759.63	18.2	5	-		-	-	-	0
	RC103	1637.38	18	1641.92	18.0	5	2161.58	25	2319.11	28.0	5
	RC104	1582.81	18	1583.46	18.0	5	1884.44	22	1963.69	22.8	5
	RC105	1752.66	19	1759.14	18.4	5	2291.55	28	2367.93	29.0	2
	RC106	1750.52	19	1764.37	18.8	5	2249.39	29	2266.68	28.0	3
	RC107	1615.05	18	1618.37	18.0	5	1911.32	21	1980.79	22.8	5
	RC108	1581.78	18	1587.03	18.0	5	1706.06	20	1737.62	19.4	5
	C201	777.48	6	777.48	6.0	5	781.76	7	781.76	7.0	5
	C202	718.69	6	724.85	6.0	5	913.97	7	914.23	7.0	5
	C203	700.20	6	711.06	6.0	5	949.71	8	949.71	8.0	5
	C204	695.12	6	698.17	6.0	5	966.98	7	977.18	7.2	5
	C205	767.55	7	770.21	6.8	5	755.45	7	755.45	7.0	5
	C206	747.14	6	750.42	6.0	5	796.57	7	797.31	7.0	5
	C207	746.62	6	748.66	6.0	5	786.64	7	788.08	7.0	5
	C208	741.58	6	742.09	6.0	5	820.57	8	828.71	7.8	5
	R201	1272.47	4	1287.21	4.2	5	1403.33	8	1444.78	9.0	5
	R202	1272.72	4	1278.20	4.2	5	1400.45	6	1452.05	6.6	5
	R203	966.35	5	976.30	4.2	5	1140.24	6	1162.86	6.0	5
	R204	779.22	3	787.31	3.6	5	1018.57	5	1027.23	5.8	5
	R205	1074.75	5	1089.24	4.6	5	1141.30	8	1163.15	7.2	5
	R206	944.58	4	962.93	4.2	5	1018.97	6	1034.26	6.0	5
	R207	849.64	4	862.07	4.0	5	981.61	6	993.27	6.0	5
	R208	735.49	4	738.52	3.8	5	905.53	4	912.03	4.6	5
	R209	944.06	3	961.83	3.6	5	1050.79	6	1127.31	6.8	5
	R210	985.66	4	1001.98	4.2	5	1149.92	7	1178.50	7.0	5
	R211	772.99	5	779.80	4.2	5	891.09	6	900.95	6.6	5
	RC201	1424.18	5	1459.26	5.2	5	1637.82	9	1690.93	9.8	5
	RC202	1171.86	4	1196.66	4.4	5	1423.40	8	1508.23	9.4	5
	RC203	1108.21	4	1150.94	5.0	5	1441.46	6	1485.27	8.2	5
	RC204	806.44	4	809.59	4.2	5	1076.24	7	1082.30	6.8	5
	RC205	1321.64	4	1354.18	4.6	5	1543.24	11	1585.42	10.4	5
	RC206	1325.01	5	1385.87	5.4	5	1493.13	9	1554.81	9.8	5
	RC207	1042.03	4	1050.24	4.6	5	1185.78	8	1228.64	8.2	5
	RC208	803.59	4	818.23	4.0	5	1001.06	6	1060.34	7.0	5

Table 5 :

 5 Results on new instances, κ = 0 and κ = 0.25

					κ = 0.5						κ = 0.75
	instance	dist	best	#trips	average dist #trips	#feas	dist	best	#trips	average dist #trips	#feas
	C101	1579.19	22	1584.99	21.8	5	1591.91	22	1611.34	22.2	5
	C102	1746.59	22	1774.92	22.4	5	1766.15	22	1793.42	22.2	5
	C103	1842.84	24	1889.73	23.6	5	1900.10	23	1920.27	24.5	4
	C104	1773.04	21	1814.93	21.8	5	1805.55	20	1890.63	21.8	5
	C105	1603.96	22	1637.48	22.0	4	1600.94	21	1633.32	21.4	5
	C106	1587.25	22	1605.18	21.8	5	1663.38	22	1695.00	21.8	5
	C107	1518.75	20	1529.53	20.0	5	1538.41	20	1547.13	20.0	5
	C108	1556.50	20	1662.16	21.4	5	1546.53	20	1569.45	20.2	5
	C109	1506.85	20	1541.79	20.0	5	1512.26	20	1521.20	20.2	5
	R101	2135.93	32	2236.49	33.0	5	2372.83	35	2372.83	35.0	1
	R102	2102.70	31	2120.94	32.0	2	-		-	-	-	0
	R103	1879.98	27	1959.64	28.6	5	-		-	-	-	0
	R104	1637.50	22	1680.34	23.8	5	-		-	-	-	0
	R105	1964.79	27	1987.37	28.6	5	2046.53	31	2135.91	32.0	2
	R106	1900.14	28	1964.97	28.6	5	2043.12	30	2043.12	30.0	1
	R107	1853.74	27	1888.95	27.6	5	-		-	-	-	0
	R108	1562.17	22	1618.08	23.2	5	-		-	-	-	0
	R109	1730.47	24	1819.57	26.0	5	1898.65	28	1898.65	28.0	1
	R110	1682.08	24	1756.21	25.8	5	-		-	-	-	0
	R111	1784.27	26	1884.33	27.6	5	-		-	-	-	0
	R112	1320.07	17	1332.57	17.4	5	1540.39	23	1612.44	24.8	4
	RC101	2484.09	30	2484.09	30.0	1	-		-	-	-	0
	RC102	-		-	-	-	0	-		-	-	-	0
	RC103	2194.26	25	2270.77	26.8	5	-		-	-	-	0
	RC104	1896.29	22	1930.99	22.6	5	2175.03	27	2214.98	27.3	4
	RC105	-		-	-	-	0	-		-	-	-	0
	RC106	-		-	-	-	0	-		-	-	-	0
	RC107	1918.73	21	2024.90	24.0	5	2249.07	28	2290.20	28.6	5
	RC108	1718.04	19	1728.73	19.4	5	1985.12	24	2014.37	25.5	2
	C201	788.37	7	788.37	7.0	5	815.58	6	815.58	6.0	5
	C202	913.66	7	914.14	7.0	5	913.66	7	915.58	7.0	5
	C203	952.09	8	962.94	8.0	5	952.46	8	952.47	8.0	5
	C204	967.23	7	975.28	7.0	5	976.79	7	982.89	7.0	5
	C205	762.06	7	762.06	7.0	5	778.45	6	778.45	6.0	5
	C206	796.57	7	797.32	7.0	5	813.52	6	813.52	6.0	5
	C207	784.22	7	789.49	7.0	5	805.76	6	806.23	6.2	5
	C208	817.35	8	824.63	8.0	5	833.46	8	841.61	7.6	5
	R201	1443.84	10	1464.64	8.6	5	1430.19	9	1455.41	8.6	5
	R202	1425.40	9	1452.19	8.3	4	1452.75	9	1481.26	8.3	3
	R203	1214.24	7	1242.41	7.6	5	1255.53	8	1287.27	8.6	5
	R204	990.54	6	1022.97	5.8	5	987.98	6	1028.77	6.0	5
	R205	1183.48	8	1256.04	9.2	5	1242.05	9	1266.00	9.0	5
	R206	1069.98	7	1113.78	8.2	5	1111.86	8	1160.79	8.2	5
	R207	1004.76	6	1032.92	6.8	5	1034.82	7	1054.83	6.8	5
	R208	905.90	4	920.82	4.6	5	910.47	5	944.81	5.6	5
	R209	1188.91	9	1237.35	9.6	5	1320.07	9	1327.13	9.3	3
	R210	1228.73	9	1288.66	8.4	5	1268.23	8	1338.17	9.2	5
	R211	902.45	6	910.85	6.6	5	1074.15	8	1114.96	7.8	5
	RC201	1677.63	10	1784.00	11.8	5	1796.39	10	1874.02	11.4	5
	RC202	1427.31	10	1522.27	10.6	5	1539.80	13	1599.26	12.2	5
	RC203	1464.58	8	1480.79	8.8	4	1488.91	9	1493.40	9.0	2
	RC204	1084.93	7	1086.09	7.0	5	1103.65	7	1123.24	7.2	5
	RC205	1695.25	11	1734.99	11.4	5	1777.28	12	1808.49	11.4	5
	RC206	1445.43	9	1575.79	9.0	5	1493.88	9	1594.45	9.2	5
	RC207	1163.13	8	1328.49	9.6	5	1449.89	11	1502.53	10.6	5
	RC208	1107.69	8	1122.44	7.6	5	1297.58	9	1304.99	8.5	2

Table 6 :

 6 Results on new instances, κ = 0.5 and κ = 0.75

	Instance Group	dist	best #trips	average dist #trips	% feas tight rigidity
						κ = 0		
	C1	1526.76 20.33 1586.09 20.76	100	0.00	0.48
	R1	1317.85 16.50 1326.11 16.37	100	0.00	0.36
	RC1	1683.95 18.38 1692.78 18.30	100	0.00	0.38
	C2	736.80	6.13	740.37	6.10	100	0.00	0.40
	R2	963.45	4.09	975.04	4.07	100	0.00	0.30
	RC2	1125.37	4.25	1153.12	4.68	100	0.00	0.35
					κ = 0.25		
	C1	1618.03 21.11 1651.45 21.36	100	0.16	0.61
	R1	1794.89 25.58 1845.37 26.64	95.0	0.22	0.54
	RC1	2072.72 24.43 2147.73 25.51	75.0	0.20	0.53
	C2	846.45	7.25	849.05	7.25	100	0.23	0.59
	R2	1100.16	6.18	1126.94	6.51	100	0.27	0.54
	RC2	1350.27	8.00	1399.49	8.70	100	0.21	0.53
						κ = 0.5		
	C1	1635.00 21.44 1671.19 21.64	97.8	0.20	0.64
	R1	1796.15 25.58 1854.12 26.85	95.0	0.23	0.55
	RC1	2042.28 23.40 2087.90 24.56	52.5	0.21	0.54
	C2	847.69	7.25	851.78	7.25	100	0.27	0.62
	R2	1141.66	7.36	1176.60	7.60	98.2	0.31	0.57
	RC2	1383.24	8.88	1454.36	9.47	97.5	0.28	0.58
					κ = 0.75		
	C1	1658.36 21.11 1686.86 21.59	97.8	0.24	0.66
	R1	1980.30 29.40 2012.59 29.95	15.0	0.29	0.59
	RC1	2136.41 26.33 2173.18 27.12	27.5	0.28	0.58
	C2	861.21	6.75	863.29	6.73	100	0.31	0.65
	R2	1189.83	7.82	1223.58	7.95	92.7	0.37	0.61
	RC2	1493.42 10.00 1537.55	9.94	85.0	0.34	0.62

Table 7 :

 7 Statistics on new instances but 5 feasible solutions out of 5 runs are found for the former, while none for the latter.

Table 8 :

 8 Trip Vehicle Routing Problem with Time Windows for Results on Hernandez et al. [12] instances with N = 25 and M = 2

	Instance	HRN opt feas	best dist # trips	average dist # trips	#opt
	C201	380.8	380.8	3	381.10	5.4	4
	C202	368.6	368.6	5	368.60	5.0	5
	C203	361.7	361.7	5	361.70	5.0	5
	C204	358.8	358.8	5	358.80	5.0	5
	C205	377.2	377.2	5	377.20	5.0	5
	C206	367.2	367.2	5	367.20	5.0	5
	C207	359.1	359.1	5	359.10	5.0	5
	C208	360.9	360.9	5	360.90	5.0	5
	R201 554.6 RC201 660.0 554.6 660.0	6	660.00	6.0	5
	RC202 596.8	596.8	6	596.80	6.0	5
	RC203 530.1	530.1	6	530.10	6.0	5
	RC204	520.3 518.0	6	518.00	6.0	-
	RC205 605.3	605.3	6	605.30	6.0	5
	RC206 575.1	575.1	6	575.12	6.0	4
	RC207 528.2	528.2	6	528.20	6.0	5
	RC208	506.4 506.4	6	506.40	6.0	-

Table 9 :

 9 Results on Hernandez et al.[START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF] instances with N = 50 and M = 4

	Instance	dist	best # trips	average dist # trips
	C201	1488.9	19	1500.22	19.2
	C202	1479.3	19	1486.94	19.0
	C203	1467.3	19	1471.20	19.0
	C204	1453.6	19	1455.46	19.0
	C205	1477.1	19	1483.04	19.0
	C206	1464.7	19	1473.38	19.0
	C207	1464.2	19	1470.36	19.0
	C208	1459.4	19	1465.86	19.0
	R201	1449.7	16	1464.32	15.8
	R202	1343.3	16	1352.70	15.8
	R203	1222.2	15	1232.50	15.4
	R204	1165.6	15	1172.54	15.0
	R205	1292.2	15	1315.08	15.6
	R206	1239.9	15	1249.76	15.4
	R207	1194.3	15	1200.76	15.0
	R208	1159.8	15	1164.56	15.0
	R209	1234.5	16	1248.42	15.4
	R210	1247.5	15	1253.24	15.6
	R211	1170.5	15	1182.38	15.0
	RC201 1843.6	18	1862.40	18.8
	RC202 1733.9	18	1740.34	18.2
	RC203 1618.6	18	1624.24	18.2
	RC204 1579.1	18	1581.36	18.0
	RC205 1759.8	18	1776.68	18.0
	RC206 1731.1	18	1747.24	18.0
	RC207 1656.7	18	1662.96	18.0
	RC208 1580.9	18	1585.44	18.0

Table 10 :

 10 Results on instances with N = 100 and M = 8 created as in Hernandez et al.[START_REF] Hernandez | An exact algorithm to solve the multi-trip vehicle routing problem with time windows[END_REF]

The formula proposed for inter-route relocations provides incorrect results in particular cases and it has been corrected by Schneider et al.[START_REF] Schneider | A note on the time travel approach for handling time windows in vehicle routing problems[END_REF].

Acknowledgement

This work is supported by the French National Research Agency (ANR -Agence Nationale de la Recherche) and is part of project MODUM -Mutualisation et Optimisation de la distribution Urbaine de Marchandises.