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Abstract

At early design phases, taking into account uncertainty in the optimization of a multidis-
ciplinary system is essential to establish its optimal characteristics and performances. Uncer-
tainty Multidisciplinary Design Optimization (UMDO) methods aim at efficiently organizing
not only the different disciplinary analyses, the uncertainty propagation, the optimization, but
also the handling of interdisciplinary couplings under uncertainty. A new decoupled UMDO
formulation (named Individual Discipline Feasible - Polynomial Chaos Expansion) ensuring
the coupling satisfaction for all the instantiations of the uncertain variables is presented in
this paper. Coupling satisfaction in instantiations is essential to guarantee the equivalence
between the coupled and decoupled UMDO formulations and therefore to ensure the physical
relevance of the obtained designs. The proposed approach relies on the iterative construction
of Polynomial Chaos Expansions in order to represent, at the convergence of the optimization
problem, the coupling functional relations between the disciplines. The performances of the
proposed formulation is assessed on an analytic test case and on the design of a new Vega
launch vehicle upper stage.
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I. Introduction

Multidisciplinary Design Optimization (MDO) is a set of engineering methodologies to optimize systems
that are modeled as a set of coupled disciplinary analyses. For example, a launch vehicle is customarily de-
composed into interacting submodels for propulsion, aerodynamics, trajectory, mass and structure. Taking
into account the different disciplines requires to model and manage the interactions between them all along
the optimization process. Martins et. al.3° explained that the designers can improve system design and
decrease design cycle cost and time by using MDO in the early design phases of a system. In these phases,
the system architecture is not defined and the exploration of the design space requires repeated discipline
simulations. In order to find the optimal conceptual design at an affordable computational cost, low fidelity
disciplinary analyses are mostly employed, introducing model (epistemic) uncertainties. Handling the un-
certainties at early design phases is essential to efficiently characterize the optimal system design and its
performances because it can reduce time and cost of the next design phases.’® Uncertainty Multidisciplinary
Design Optimization (UMDO) aims at solving MDO problems in the presence of uncertainty. This induces
several new challenges compared to deterministic MDO: uncertainty modeling, uncertainty propagation, op-
timization under uncertainty and the interdisciplinary coupling satisfaction under uncertainty. In this paper
we focus on the last issue as it is essential to ensure the system physical consistency.

In deterministic MDO, different strategies have been developed to manage disciplinary couplings. The
interactions are handled through coupling variables and the system consistency is described as a set of inter-
disciplinary equations that have to be satisfied. Two types of problem formulations can be distinguished?:
the coupled versus the decoupled formulations. The coupled formulations® ensure system consistency by
repeating interdisciplinary equation solving (MultiDisciplinary Analyses or MDA) all along the optimiza-
tion process. In the coupled formulations, the decision variables handled by the system optimizer are the
design variables. The decoupled formulations® 1259 relax interdisciplinary couplings during optimization
and satisfy the system consistency only at the optimal design. The system optimizer handles the design
variables and the coupling variables. The decoupled approaches have been proposed to avoid repeated time
consuming MDA.

UMDO formulations have to efficiently organize the different disciplinary analyses, the uncertainty propaga-
tion, the optimization, but also the handling of interdisciplinary couplings under uncertainty. In the design
of a launch vehicle for example, uncertainties can arise from low fidelity models to estimate the stage dry
mass or from a wind gust during the vehicle launch. The introduction of uncertainty in MDO problems
increases the number of required discipline evaluations due to the uncertainty propagation. Among the
different formalisms (probability theory®? | interval analysis?*' | evidence theory'” , possibility theory®” |
etc.) that can model the uncertainty, we adopt here the probability formalism. Within this framework,
coupled UMDO formulations have been proposed®? 4% in which Monte Carlo (MC) method combined with
MDA is used to propagate uncertainty. For each instantiation of the uncertain variables, the interdisci-
plinary equations are solved (MDA). Whereas in MDO there is only one value for the coupling variables that
satisfies the interdisciplinary coupling equations for a given design, in UMDO, the coupling variables have
to satisfy the interdisciplinary equations for each instance of the uncertain parameters. The computational
cost of the coupled approaches becomes prohibitive due to the required number of discipline evaluations (in
a straightforward implementation, it is the number of samples in MC multiplied by the number of disci-
pline evaluations needed for an MDA). In the literature, decoupled UMDO formulations have therefore been
investigated. The existing decoupled UMDO formulations ensure the system consistency for the statistical
moments of the coupling variables®”4% | at the Most Probable failure Point (MPP)?! or by constructing the
coupling variable probability densities?” .

The objective of this paper is to propose a new decoupled UMDO formulation to satisfy the interdisciplinary
couplings under uncertainty at the optimal design in instantiations. By instantiations we mean that the sys-
tem couplings must be consistent for all uncertain variable instances and not just for some particular values
(e.g., statistical moments, MPP, etc). The approach relies on an iterative construction of surrogate models
of the coupling functional relations. At the optimum, the surrogate models represent these mappings as
would do an MDA under uncertainty, ensuring the equivalence between the proposed decoupled and coupled
formulations. The rest of the paper is organized as follows. Section 2 introduces MDO and UMDO problem
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formulations, notations and key concepts. Section 3 provides an overview of the existing methods to satisfy
interdisciplinary couplings under uncertainty, highlighting advantages and drawbacks. Section 4 presents
the proposed decoupled UMDO formulation, named IDF-PCE (Individual Discipline Feasible - Polynomial
Chaos Expansion). In section 5, the proposed method is illustrated with an analytic test case and with the
design of a new Vega launch vehicle upper stage.

II. Mathematical formulation of MDO and UMDO problems
A. MDO problem formulation
A general MDO problem can be formulated as follows:

Minimize F(z,y) (1)
with respect to zZ,y
subject to g(z,y) <0 (2)
h(z, y) =0 (3)
Vi # j, yij = €ij(2i,¥.i) (4)
Zmin < 2 < Zmag (5)

z is the design variable vector. We note z; the input design variable vector of the discipline i € {1,..., N}
and z = Ufil z; without duplication. F is the multiobjective function (also called performance) to be
optimized, g is an inequality constraint vector and h is an equality constraint vector. In a multidisciplinary
environment, the disciplines exchange coupling variables, y. The latters link the different disciplines to
model the interactions enabling to evaluate the multidisciplinary system consistency. c¢;;(z;,y.;) are coupling
functions to calculate the output coupling variable vector which is calculated by discipline 4 and input to
discipline j. y; refers to all the input coupling variable vector of discipline i and y;; is the input coupling
variable vector which is input to discipline 7 and output from discipline j. We note y = Uz[il Yi= UZJ\; Yi.
without duplication. From the design variables and the input coupling variables of the discipline i, the output
coupling variables are computed with the coupling function: c; (z;,y ;). The couplings between the disciplines
1 and j are said to be satisfied (also called feasible or consistent) when the following interdisciplinary system
of equations is verified:

Yij = Cij(2i,y.i) (6)
Yji = €ji(Z5,¥ ;)
When all the couplings are satisfied, i.e. when Eqs.(6) are satisfied Vi € {1,..., N},Vj € {1,..., N}, j # i,

the system is said to be multidisciplinary feasible. The satisfaction of the interdisciplinary couplings is
essential as it is a necessary condition for the system model to be physically realistic.

B. MDO coupling satisfaction

In MDO, we can distinguish two categories of methods to satisfy the interdisciplinary couplings.'®
e Coupled formulations perform a MultiDisciplinary Analysis (MDA) (Figure 1) to ensure the interdis-
ciplinary couplings at each iteration of the system level optimization. In the rest of the paper, MDO
coupled formulations are defined by the optimization problem (Egs.(7-10)):

Minimize F (z,y(2)) (7)

with respect to Z
subject to g(z,y(z)) <0 (8)
h(z,y(z)) =0 (9)
Zmin < % < Zmag (10)

with y(z) the coupling variable vector satisfying the interdisciplinary equations.

e Decoupled formulations impose equality constraints on the coupling variables in the MDO formulation
at the system level (Eq. 4) to ensure the interdisciplinary couplings at the optimal design (Figure 2). In
the rest of the paper, MDO decoupled formulations are defined by the optimization problem described
by Eq.(1-5).

An overview of the two classes of methods is provided in the next paragraphs.
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MULTIDISCIPLINARY ANALYSIS (COUPLED FORMULATIONS). MDA is an auxiliary analysis aiming to find
an equilibrium between the disciplines by solving the system of interdisciplinary equations (Egs.(6)). Two
classical MDA methods are distinguished: either the Fixed Point Iteration (FPI) or an auxiliary optimization
process minimizing the residual of the interdisciplinary equations.'® FPI is an iterative procedure involving a
loop between the disciplines with no control on the coupling variables (excepted for the initialization) which
directly result from the discipline simulations. If the interdisciplinary set of equations defines a contraction
mapping, FPI converges to consistent couplings*® . Alternatively, MDA can be solved by minimizing the
discrepancy between the input coupling variables and the different coupling outputs'®:

Iyi —ci(zyq) I +.+ | yn. —en.(zy n) I (11)
with respect to y

Minimize

with y; the input coupling variables of all the disciplines linked to discipline i. An efficient auxiliary
optimization algorithm requires often fewer calls to the discipline 7 than FPI  as the optimization process
chooses the steps more freely than FPI#” . Newton-Raphson or staggered solution approach?® are examples
of optimization algorithms applied to MDA. More details on MDA can be found in3° .

DECOUPLED FORMULATIONS. Instead of performing the MDA optimization (Eq. (11)) at each MDO pro-
cess iteration in z, equality constraints can be imposed between the input and the output coupling variables
in the MDO formulation at the same level as the constraints g and h: Vi,Vj # i, y;; = ¢i;(2:,y.:) (Eq.(4)).
In the equality constraint approach, the system level optimizer handles both the design variables and the
input coupling variables. The equality constraints on coupling variables may not be satisfied at each iteration
but they participate to the convergence.

These two methods of interdisciplinary coupling satisfaction have been incorporated in various MDO formu-
lations that can be classified in four categories:

e Single level approaches by application of MDA: Multi Discipline Feasible (MDF),?
e Multi level approaches by application of MDA: Concurrent SubSpace Optimization (CSSO),*° Bi-Level
Integrated System Synthesis (BLISS),>!

e Single level approaches with equality constraints on the coupling variables: Individual Discipline Fea-
sible (IDF),% All At Once (AAO),°

e Multi level approaches with equality constraints on the coupling variables: Collaborative Optimization
(CO),'2 Analytical Target Cascading (ATC).5

The multi level approaches have optimization processes at the system level and at the disciplinary level.
MDO formulations satisfying the interdisciplinary equations with MDA ensure the system feasibility
at each system level optimization iteration. Among the formulations relying on MDA, MDF is the most
usual.® MDF is a single level optimization formulation in which the system performance is evaluated with a
disciplinary iterative process. CSSO and BLISS formulations use MDA to ensure interdisciplinary couplings
but enable decoupled discipline evaluations. IDF, CO, ATC and AAO are fully decoupled formulations
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with satisfaction of the couplings by additional variables and equality constraints in the formulations. The
decoupled MDO formulations offer several advantages compared to MDF® 39:

e The optimization process allows parallel analyses and/or disciplinary level optimizations,

e The multi-level methods facilitate the system optimization by distributing the problem complexity over
the different dedicated discipline optimizations,

e In the multi-level approaches, the discipline optimizers handle local design variables, decreasing the
system level design space size which handles the shared design variables between several disciplines,

e The number of calls to the computationally expensive discipline codes can be notably decreased by

avoiding expensive MDA calculations.

However, compared to MDF, the decoupled MDO formulations require an appropriate interdisciplinary
coupling handling and involve an optimization problem with more variables in total (the design variables
plus the coupling variables that can be distributed among the system and the local disciplinary optimizers
in the case of multi-level approaches) and more constraints. If uncertain variables are considered in a MDO

problem, new formulations are required.

C. UMDO problem formulation

The introduction of uncertainty in a MDO problem leads to the new general UMDO problem®®:

Minimize
with respect to

subject to

E[F(z,0[Y],U)] (12)
7,0 [Y]

Kg(z,®[Y],U)] <0 (13)
Vi# j, Yi; = cij(zi, Y. (O [Y]), Uj) (14)
Zmin S zZ S Zmazx (15)

Besides the coupling equations (14), we consider only inequality constraints. Important differences exist
between the UMDO formulation and the classical MDO formulation:

e U is the uncertain variable vector. We note U;, the input uncertain variable vector of the discipline
iand U = Uf\;1 U, without duplication. In this paper, it is assumed that the uncertain variables are
modeled with the probability theory, and that the input variable distributions are known. Note that

other uncertainty modelings exist such as evidence theory,!” possibility theory®” or interval analysis.

41

Moreover, it is assumed that the design variables are deterministic variables, and all the uncertainties
are represented by U. We note (2,0, Pa) be a probability space with € the sample space for U, a
sigma-algebra og, and a probability measure Pg. We note fy the probability density function of the
uncertain variable vector U. A real-valued random variable U is a function:

U: Q>R (16)
w — U(w) (17)

To simplify the notation in the rest of the paper, for all the uncertain variables, the instantiation U (w)

is noted u.

e Because of the presence of the uncertain variable vector U, the disciplinary coupling variable vector Y
(Eq.(14)) is also an uncertain variable vector. In the decoupled formulations, coupling variables have to
be handled by the optimizer, however in presence of uncertainty the optimizer cannot directly handle
the coupling variables. © [Y] are parameters characterizing the uncertain coupling vector Y. These
parameters can be instantiations of the uncertain variables, the statistical moments, the parameters of

the probability density function, etc.

e = denotes the objective function measure vector. A performance measure reflects the uncertainty in
the objective function to be optimized due to the presence of the uncertain variables. Within the
probability formalism, the expected value E [F(z, Y, U)| or an aggregation of the expected value and
the standard deviation are commonly used to quantify the uncertainty in the objective function'® .
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e Two classical measures of uncertainty exist for the constraints in a UMDO problem and are formulated
as follows:

- Klg(z,Y,U)] =E[g(z,Y,U)]+ko [g(z,Y,U)]. E[g(.)] and o[g(.)] are the expected value and the
standard deviation of the constraint functions. The robust formulation is based on the statistical
moments of the inequality functions to ensure that despite the uncertainty, the system will stay
feasible. k indicates the restriction of the feasible region to k standard deviations away from the
mean values of the constraint functions.

- Kg(z,Y,U)] = Alg(z,Y,U) >0] — Ayeqa- Afg(.)] stands for the measures of uncertainty
for the inequality constraint functions. The uncertainty measures of the constraints have to
be at most equal to Areqd.2 It reflects the requirement for the optimized system to lie in the
feasible region with a given reliability despite the uncertainty. As we assume that the uncertain
variables are modeled within the probability theory, K;[gi(z,Y,U)] = Py, (z,v,u)>0] — Areqd; =
f]'-i fu(w)du — Ayeqa,, with g; the it component of the inequality constraint vector, F; = {U €
Q|g:(2z,Y,U) >0} and fy(.) the probability density function of U.

Optimizer ~
Designvariables:z | | Coupling variables:om
{Uncertainty simulation
""""" Uncertain variables: U :
Discipline \
1 Discipline Discipline Discipline
— Coupling variables: Y
cr. | 1 2 N
-~ Discipline
2 — ' =[F(z,Y(z,U),V)] lc‘ L lc»« _
Coupling variables: Y B Discipline Klg(z,Y(z,U),U)] i - 1 i
N i Calculation of F,g i iZ[F(z,0[YU)]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, & iK[g(z,0[Y,U)]
Multidisciplinary Design Analysis Y =C.(Z,O[Y],U)

) Figure 4: Uncertainty Multidisciplinary Design Op-
Figure 3: Uncertainty Multidisciplinary Design Op- timization decoupled process

timization coupled process

Incorporating uncertainty in MDO raises a number of additional challenges that need to be addressed
(uncertainty modeling, uncertainty propagation, optimization under uncertainty)®® . In this paper, we focus
on the interdisciplinary coupling satisfaction for the decoupled UMDO formulations. Similarly to the MDO
formulations, two approaches can be distinguished for the satisfaction of the interdisciplinary couplings in
UMDO: coupled approaches which perform MDA under uncertainty (Figure 3), or decoupled approaches
which impose equality constraints on the coupling variables (Figure 4). MDA under uncertainty has been
investigated to solve the UMDO problem?®® and is briefly discussed in the following.

D. UMDO coupled formulations (by performing MDA)

The most straightforward approach to ensure the coupling satisfaction in UMDO is to use Monte Carlo
simulations (MC) to propagate uncertainty in MDA3242 (Figure 3). The following formulation is a coupled
UMDO formulation:

Minimize 2 [F(z,Y(z U),U) (18)

with respect to z
subject to Kg(z,Y(z,U),U) <0 (19)
Zmin < Z < Zmax (20)

In MC, one sample corresponds to one instantiation of the uncertain variables. For a given design variable
vector zg, to evaluate the performance measures = [F(zg, Y (zo, U),U)], it is necessary to propagate the
uncertainty from the input discipline uncertainties characterized by U to the objective function. In the
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coupled formulations, Y is the coupling variable vector satisfying the following system of interdisciplinary
equations:

yji = iji(zja)’.jau)

Vue Qand Vi € {1,..,N}, Vj #i € {1,..., N}, with N the number of disciplines. We assume that for
a given instantiation of the uncertain variables ug, there exists a unique set of coupling variables such that
the couplings satisfy: Vi € {1,...,N},Vj € {1,...,N}, i # j, y,;| yi; = ¢ij(20,¥.i,u0). To compute the
uncertainty measure of the performance E[F(zg, Y (zo, U), U)], repeated MDA are performed for a set of un-
certain variable instantiations sampled by MC. This may be computationally expensive due to the repeated
evaluations of the disciplines. The computational cost of MDA under uncertainty corresponds to that of one
MDA multiplied by the number of uncertain variable instantiations®® . To overcome the computational cost
barrier introduced by the repetitive MDAs, Du et al.'® propose to replace the MDA by a surrogate model.
The surrogate model is obtained by a first order Taylor series expansion and serves to estimate the first two
statistical moments (the mean and the variance). This approach allows to model the coupling variables as a
function of the uncertain variables. The method enables to find the optimal design while ensuring interdisci-
plinary couplings for all the uncertain variable instantiations. However, the method has several limits: first
order Taylor approximation is only valid for functions that can be locally approximated as linear functions
and the method requires to perform a MDA to locally build the surrogate model.

An alternative way to avoid to perform MDA under uncertainty is to use the same approaches as in
deterministic MDO and to perform UMDO on the decoupled multidisciplinary system (Figure 4). It would
allow to benefit from the same advantages as the deterministic decoupled MDO formulations highlighted
in the previous section. To guarantee the interdisciplinary coupling satisfaction at the UMDO problem

optimum, three approaches are distinguished in the literature:

e Coupling satisfaction by moment-matching for the uncertain coupling variables3” 40

e Coupling satisfaction at the Most Probable Point of failure (MPP) for the uncertain coupling vari-
ables?0:21

e Coupling satisfaction "in instantiations” by constructing the coupling variable probability distribution
densities*” .

These three approaches are further discussed in the next section, highlighting the main characteristics,
advantages and drawbacks.

III. Existing approaches for interdisciplinary coupling satisfaction in
decoupled UMDO formulation

In the presence of uncertainty, the coupling variables become uncertain variables and several methods have
been introduced in order to enable the optimizer to handle these uncertain variables. One of the earliest
proposition was done by Gu et al.2” propagating worst case linearized uncertainty estimates of coupling
variables. The worst case approach provides conservative results?” and consequently degrades the objective
function due to an overestimation of the uncertainty effects. The moment-matching approach has been
introduced to evaluate the uncertainty encountered in the design process of multidisciplinary systems37:40 .
This method is detailed in the next paragraph.

A. Moment-matching approach for interdisciplinary coupling satisfaction

In reference*® , the authors investigated hierarchical frameworks for the uncertainty propagation in MDO.
The authors developed a Robust Collaborative Optimization (RCO) formulation in which the mean and
the variance of the random coupling variables are used to establish the subsystem-level objectives and the
interdisciplinary compatibility constraints. By handling the statistical moments of the coupling variables
Y, the optimizer controls a finite number of parameters that describe an infinite number of variable values.
This approach has been used in reference®® and adapted in other UMDO formulations such as Probabilistic
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ATC37 . The general UMDO formulation with a matching-moment approach is:

Minimize E[F(z,M;[Y],...,M,[Y],U)] (22)

with respect to z, M, [Y], ..., M, [Y]
subject to K [g(z,M; [Y],...M,[Y],U)] <0 (23)
Vi, Vj # 4,V e {1,...,q}, My [Y;] =M [ci;j(z, M1 [Y], ... Mg [Y;],U;)]  (24)
Zmin < 2 < Zimaz (25)

with M; the I*" statistical moment vector. Most of the formulations®*° consider the first two moments

of the coupling variables. Eq.(24) imposes equality constraints between the statistical moments of the
input coupling variables Y;; and the output coupling variables computed with the discipline simulations
cij(zi, Y ;,U;). These constraints ensure the interdisciplinary compatibility for the statistical moments of
the uncertain coupling variables. The statistical moments can be computed by different methods: Taylor
series expansion, Monte Carlo simulation, quadrature rules. These moment-matching UMDO formulations
are closed to the deterministic MDO formulations and present some advantages. First, they allow to decouple
the discipline simulations in the MDO way. Second, at the optimum the statistical moments of the couplings
are satisfied. Third, if Taylor approximations are used to compute the first two statistical moments, the
computational cost is reduced compared to MDA with MC uncertainty propagation. Fourth, this formulation
introduces a limited number of new coupling variables handled by the optimizer. The principal drawback
of these formulations is that they do not ensure the interdisciplinary coupling satisfaction for all possible
instantiations of the uncertain variables, i.e., they do not match the probability density function of the
coupling variables. To be equivalent to MDF under uncertainty in terms of coupling satisfaction, a decoupled
approach has to ensure the coupling satisfaction for each uncertainty variable instantiation.

B. Coupling satisfaction based on the Most Probable failure Point in UMDO

In the context of UMDO formulation involving probability constraints, several approaches have been pro-
posed to allow the evaluation of the UMDO objectives and constraints. They require Multidisciplinary
Reliability Analysis (MRA) to estimate the inequality constraint Ag [g(z,Y,U) > 0] — Areqa, < 0. Again,
an appropriate incorporation of MRA in the UMDO formulation is essential as the MRA is the most com-
putationally expensive step® 2! . Several approaches UMDO formulations exist”:

e Nested loop approach®® : at each iteration of the system level optimizer, MRA is performed,
o Single loop approach®'® : the nested loop is replaced by a single loop by transforming the reliability
constraints with the Karush-Kuhn-Tucker optimality conditions,

o Sequential approach®®?! : the system level optimization and the evaluation of the constraints with
MRA are performed sequentially.

We focus in the next paragraphs on the sequential approach as it is the most used approach to solve decoupled
UMDO problems in the literature* '4-21,35,36,59

Coupling satisfaction at the Most Probable failure Point (MPP) with a sequential approach

Du et al.?! proposed the Sequential Optimization and Reliability Assessment (SORA) for UMDO. In this
approach, the optimization of the system level objective E[F(.)] and the MRA are performed sequentially.
The UMDO problem is decomposed in a sequence of deterministic MDO problems. SORAZC replaces the
probabilistic reliability constraints by a deterministic approximation of the reliability constraints evaluated
at the MPP. MRA is performed by First Order Reliability Method (FORM)?*¢ to find the MPP (noted u*).
The MPP is the closest failure point to the origin in the standard normalized space in which the variable U
are transformed into U. The MPP is noted 4* in the standard space. To distinguish the original and the
transformed inequality constraint vector, we denote by g the transformed constraint vector such that with
FORM!' :

E(2,y, %) = Ag [g(7,y, 1) > 0] — Aveqa (26)
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In SORA?! | four steps are distinguished (Figure 5):

e Step 1: the first deterministic MDO problem is solved with the uncertain variables fixed at their
mean value. At the k** SORA iteration, the deterministic MDO problem is solved with the uncertain
variables fixed at the MPP found at the (k — 1)*" iteration.

e Step 2: MRA is performed to identify the MPP uw*® of all the inequality constraints by FORM with

(¥) found at the k' iteration of Step 1. The objective

the design variables fixed at the optimal design z,,,;

function is computed: F zg];)t,yc (z(()];)t, u*(k)) ,u*(k)}, with y. the coupling variable vector satisfying
interdisciplinary couplings (see Eq.33).

e Step 3: the convergence is checked. If the inequality constraints (Eq.26) are verified and the objective
function becomes stable?! | the solution is found.

e Step 4: if the convergence is not reached, or the inequality constraints are violated, a new deterministic
MDO problem is formulated for U = u*®,

The deterministic MDO problem of Step 1 can be solved with the classical decoupled MDO methods
(IDF, AAO, BLISS, ATC, etc). With the IDF method, the deterministic MDO problem at the SORA
kth-cycle, (k > 2), is formulated as follows?! :

Minimize F(z,y,u**1) (27)
with respect to z,y
subject to g(z,y,u** 1) <0 (28)
. . *(k—
Vi # j, Yij = €ij(2zi, ¥ i, Ui( 1)) (29)
Zimin < Z < Zmax (30)

Once converged, the deterministic IDF by SORA ensures the system feasibility for the coupling variables
at the MPP. After the design variables zg];)t have been found, MRA is performed based on FORM in the
standard uncertain space'® 2! :

Maximize g(zg’;&, v, ) (31)
with respect to u,y
[l
subject to (ﬁTﬁ> = —® " (Areqa) (32)
L, k o
Vi # j, yij = Cij(zz(;p)tay.iaui) (33)

with ®(.) the standard Gaussian cumulative distribution function. This optimization provides the MPP
value %**) for the uncertain variables at the SORA kth-cycle. MRA is performed on a decoupled multi-
disciplinary system and the interdisciplinary couplings are satisfied at the MPP in the standard normalized
space (Eq. (33)). By decoupling MRA from the deterministic MDO, SORA tends to decrease the number
of calls to the disciplinary functions compared to the nested approach?' . SORA with CO3%%9  CSS(Q?36:60
or BLISS?* has been implemented, but the coupling satisfaction relies on the same approach: satisfaction at
the MPP of the c