Towards a Reliability Diagnosis for Servitization Decision-making Process
Sarra Dahmani, Xavier Boucher, Didier Gourc, Sophie Peillon, François Marmier

To cite this version:

HAL Id: emse-01053048
https://hal-emse.ccsd.cnrs.fr/emse-01053048
Submitted on 31 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards a reliability diagnosis for servitization decision-making process

Sarra Dahmania, Xavier Boucher, Didier Gourc, François Marmier, Sophie Peillon

Abstract
Servitization decision process is characterized by a high degree of complexity and uncertainty. We propose a diagnosis approach applied to servitization decision making process in industrial companies. We introduce a decision model to formalize the servitization process and a decision reliability assessment approach. This reliability assessment is interpreted from three viewpoints, to help decision-makers in managing

Keywords: servitization; decision process; reliability

Introduction
During recent decades, we have witnessed a development and an expansion of servitization and Product Service System (PSS) concepts in industrial and economic fields. Servitization involves the substitution of a product offering by a service offering. In many advanced economies, servitization is thought of as a development approach capable of providing opportunities for achieving sustainability, improving enterprise competitiveness, and better satisfying customer needs [1]. Nevertheless, turning to this new paradigm requires questioning business and organization roles and goals. In addition to technical and functional aspects, PSS are also based on organizational aspects, which introduce an additional difficulty in the implementation of this concept in businesses [2]. Consequently, transitioning from a product manufacturer into a service provider constitutes a risky managerial challenge [3]. It involves the company in a dynamic and complex decision-making process. This research work focuses on the transition in industrial companies towards the integration of service strategies. Previous state of the art and research developed in [4] have underlined the lack of methods or approaches to support the management of servitization from a decisional point of view. This paper intends to address this issue, with a contribution aiming at modeling, then diagnosing the way a servitization decision process is managed within a company. To build this contribution we introduce below a formal method of describing the servitization decision process, and we introduce a decision reliability assessment procedure. This decision reliability assessment will be further used to help decision-makers in managing the servitisation process. The diagnosis methodology will be illustrated through a case study of a French SME which is currently conducting a servitization transition. This paper consists of three main parts. First, we introduce the basics of the servitization process and reliability notion. In the second part, we explain the decision modelling we propose, and introduce the illustrative case study. Finally, the aim of the third part is to illustrate our approach to reliability assessment and diagnosis in the servitization decision process though conceptual and practical analysis.

I. Preamble : servitisation decision-process and notions of reliability

1.1 Servitization decision process
Servitization can be understood and formalized as a
To define the concept of decision reliability, we refer to Simon’s researches on procedural rationality. In this approach, Simon has identified procedural rationality as an important information processing and decision-making approach. Procedural rationality is “problem solving by recognition, by heuristic search, and by pattern recognition and extrapolation [...]”. They are not optimizing techniques, but methods for arriving at satisfactory solutions with modest amounts of computation” [7]. Dean and Sharfman [8] later redefined procedural rationality as “the extent to which the decision process involves the collection of information relevant to the decision, and the reliance upon analysis of this information in making the choice.” [9].

In the context of servitization decision process, we evaluate decision reliability according to the concept of procedural rationality. Our aim is to evaluate the procedural rationality of the decision maker through evaluating the reliability of the decisions made; our final purpose is to identify the least reliable areas of the decision process.

In order to evaluate the decision reliability we consider a theoretical reference model (i.e. a reference model providing a representation of the whole servitization decisonal process) which reflects a “reference optimal procedural rationality”, and which is complete in terms of:

- Presence of decision activities and their "state results" respectively;
- Presence of the essential elements of the decision activity, “objective” and “decision variables”;
- Presence of the Support elements of the decision activity "information", "necessary resources" and "constraints";
- And, presence of the trigger / origin status of the decision activity "input".

Thus, decision reliability is considered here as an estimator of the proximity between (i) a reference decision-making process known and modeled a priori and (ii) an effective decision-making process, followed by decision-makers according to a real case study.

II. Servitization decision process model

Before introducing the formalization of evaluation of decision reliability, it is necessary, first of all, to introduce the formalism used to represent the servitization decision process. This model has been fully explained in [4]; we simply provide here a short summary (section 2.1). In section 2.2 we introduce the industrial case study further used in the paper.

2.1 Decision process model

We propose a model that considers the complexity of the servitization decision process. This approach is inspired by the GRAI modeling formalism [10] and is represented through the servitization grid (in figure.1). To build this model, we represent the decision making process along two axes. The vertical axis represents the decision horizons: long, medium and short terms. This aspect of the decision clarifies crossing from high strategic-decision levels to tactical and operational ones. The horizontal axis is related to three decision macro-processes described above: MP1, MP2, and MP3.

The intersection between a decision macro process and a decision horizon represents a decision center (DC). The model results in a matrix containing 12 decision centers (figure.1). Every decision center is composed of nets of decision activities, and every decision activity (DA) is represented through critical characteristics, which are differentiated according to the type of the decision activity considered. Two generic types of decision activities are distinguished: decisional activities (noted D-DA, with outputs constituted by decisions), or execution activity (noted E-DA with outputs constituted by simple information). This model enables understanding of the complexity of the overall transition process and identifying different interactions within the system. In addition, the servitization grid makes it possible to differentiate the granularity level of the decision process from strategic to operational level and from general to particular within each DC.

The reference model we propose has been built on the basis of an extensive literature study, then discussed and validated according to a qualitative approach of experiences feedback analysis with manufacturers and scientists from different fields. As part of a national consortium project (ServINNOV), we held regular workshops with scientists and business leaders, to revise and validate the reference model and to improve its flexibility.
We have defined reliability as the proximity of the reference decision making process to the actual process. To estimate this proximity, the proposed approach consists in:

- Characterizing in detail the servitization processes through decision-activities of the reference model;
- Assessing qualitatively whether the different features of the reference model are present or not in the actual decision making process;
- Aggregating the first level of assessment to measure the decision-making-reliability at the decision activities and decision centers of the grid.

As specified above, the servitization decision activities are formalized using GRAI modeling formalism [4] and include compounds of decision activities (D-DA and E-DA). In order to build the proximity measures mentioned, the decision-making activities are modeled in detail through a set of "decision-making characteristics" and "decision attributes", each attribute being associated with a "reliability coefficient". Thus the conceptual modeling of the reference decision-making activity is as follows:

\[D-DA_e, E-DA_e = \{ C_i \} \rightarrow \{ A_j \} \] with \(C_i = \) decision making reference characteristics
\[A_j = \) decision attributes
\[Coef_j = \) Reliability coefficient associated to \(A_j \)

Referring to the GRAI method, we describe the decision activities (D-DA) by seven reference characteristics and execution activities (E-DA) only by five characteristics. The specific attributes of each characteristic have been identified in the reference model by detailed analysis of each specific activity of the servitization model.

We construct descriptive detailed tables for every DA, this enables to determine the "reliability coefficients", which are fixed a priori for each attribute. These coefficients are determined in order to estimate an optimal reliability for each decision activity equal to 1, when effective decision activity has the same attributes as the reference decision activity (known by the servitization model). To determine these coefficients for each decision activity, the optimal reliability of 1 is equidistributed on the different characteristics \(C_i \); this distribution provides a reliability coefficient of 1/7 for each \(C_i \) of D-DA and 1/5 for each \(C_i \) of E-DA. This coefficient is itself equidistributed among all the "attributes" components of the "decision-making characteristic", which represents the "reliability coefficient".

For example, within the D-DA of PT2 (BM, MT1) "Developing the internal value chain," there are 17 attributes, each characterized by its reliability coefficient:

\[D-DA_{PT2} = \{ C_1, C_2, C_3, C_4, C_5, C_6 \} \]
\[C_1 = \) input, description of incoming information from the decision-making activity \((A_1 = \) characteristics of the internal value chain, Coef\[\text{input} \] = 1/14, \(A_1 \) = characteristics of the internal value chain, Coef\[\text{input} \] = 1/14)

Once the decision activities and the reliability coefficients are determined for the entire servitization reference model, they can be used to estimate the proximity between the
3.2 The servitization decision process diagnosis approach

This assessment requires collecting information from the decision makers involved, and describing fairly precisely how they work: first identifying whether each of the decision activities of the servitization reference model was performed or not, then in more detail depending on whether each of the attributes characterizing these activities is present or not in the actual process followed by the decision maker. We represent this measure through a binary indicator of presence (1) or absence (0) for every "decision reference attribute" in the firm’s effective decision making process: the proximity between the effective decision process and the reference one is estimated according to the absence or presence of these attributes that describe how to decide.

To formalize this notion, it is necessary to complete the conceptual model of the decision-making activity, first by adding an index of presence / absence for each decision attribute, and a reliability estimator F_k for the decision activity. For an effective decision-making process, the activity is described by:

$$D-DA_k \rightarrow E-DA_k = \{(C_i) = 1 \text{ to } n, F_k\} \text{ with } F_k = \text{reliability activity is described by:}$$

$$F_k = 1 \text{ if all decision reference attributes are present in the decision process and the reference one is estimated according to the absence or presence of these attributes that describe how to decide.}$$

$$F_k = 0 \text{ if no decision attribute is present; It is a lack of decision activities, within limits consistent with the goals of the decision maker.}$$

$$F_k = \frac{\text{index of presence / absence for each decision attribute}}{\text{number of decision attributes}}$$

The decision-making reliability F_k for DA_k is obtained by aggregating a simple sum of the reliability coefficients, taking into account the index of presence / absence for each of them:

$$F_k = \sum_{i=1}^{k} \left(\text{Ind}_{j} \times \text{Coef}_{j} \right)$$

$F_k = 0$ if no decision attribute is present; It is a lack of decision activity detected in advance normally.

$F_k = 1$ if all decision reference attributes are present in the actual decision-making process; It refers to a situation when the decision maker proceeds by following closely the reference decision process.

3.2 The servitization decision process diagnosis approach

In the previous section, we proposed an approach by formalization and evaluation of the decision reliability concept. Systemic vision shows that the reliability of any system depends on the reliability of its components, and their relationships among others. Applied to the servitization decision-making context, we call servitization process reliability “the probability of achieving a set of decision activities, within limits consistent with the goals of the servitization process”. We also assume that an “unreliable” decision activity carries a failure potential for the whole process.

In our research context, we propose to carry out the reliability diagnosis of the servitization decision process, defining three stages corresponding to complementary perspectives for the diagnosis. These diagnosis stages are based on (table 1):
weaknesses in the decision process according to the defined horizons, and enable therefore to adopt different action measures. The purpose of the decision MP analysis is to highlight the vertical consistency of the servitization process. It reflects the relevance of the intra macro process exchanges in the grid. This will provide information on the internal consistency at each macro process and highlight the sources of internal failure of a specific MP.

This analysis perspective is about to provide the decision maker with a reliability estimation at each decision center of the grid. For that purpose, we provide the decision-maker with two useful indicators:

- F_{ij}^{DC}: Estimate the reliability of the decision center for the decision horizon i and Macro process j. This estimate is provided by the lowest reliability F_k for DA_k among all decision activities of a DC_{ij}.

$$DC_{ij} = \{ (DA_{k=1 \to n'} ; F_k ; F_{DC}) \}$$

$$F_{DC_{ij}}^{ij} = \min_{i=1 \to 3} \min_{j=1 \to 4} F_{k,i,j}$$

- $N_{ij;F_{0}}$: Number of decision activities not taken into account by the decision maker within a DC_{ij}.

Regarding the diagnosis of decision centers, we try to identify the decision centers that carry a potential risk of failure: by low reliability of one or more of the decision activities, or by not realizing some of the decision activities. The results interpretation in this analysis perspective is based on arbitration that takes into account simultaneously both of indicators (F_{ij}^{DC} and $N_{ij;F_{0}}$), and thus prioritizes the DC on which we must act according to the importance of the potential failure revealed by the indicators.

We proceed to the classification of all DC according to the pre-established reliability intervals and also emphasizing the DC with $N_{ij;F_{0}} > 0$. This classification shows that half of DC in the decision-making process accomplished by Ecobel are divided between ”very low reliability” and ”unreliable”. This locates the weaknesses previously identified in steps 1 and 2 more clearly.

DC with $N_{ij;F_{0}} > 0$ are considered as unreliable. For Ecobel, PT3 responsible for planning the organizational changes includes this category. DC with ”low” and ”very low reliability” represent DC whose essential elements attributes are marked by a considerable absence. These DC are for the most part concentrated within the tactical and operational decision horizon, which confirms the tactical problems identified in the second level of analysis, and focuses especially on the MP3 and MP2. DC with ”average reliability” represent DC whose decision support elements are very limited.

From this distribution, we proceed to prioritize the DC to deal with, and then to detail the analysis of each DC in terms of DA. Then we can draw three kinds of general conclusions / remediation according to the predefined reliability intervals for DC and to the importance given to each DA:

- First, for unreliable DC, which include ignored DA, remediation would be turned to awareness raising and training effort for the decision maker with respect to the issues ignored. This may have significant impact on the long-term performance of the firm.
As for DC with “very low reliability” and “low reliability”, they show that DA were actually treated, but decision maker often referred to an intuitive decision-making process strongly influenced by the initial organizational model. Moreover, in order to improve the reliability of these DA, remediation would demand efforts to analyze, anticipate, and in particular to change dominant decision models in the business.

Finally, DC with average reliability show that DA have been processed and analyzed, but the problem lies in the lack of resources for carrying out these decisions. The remediation effort will be directed more towards an allocation of resources in terms of competencies and investment for providing the additional information necessary for these decisions.

Conclusion

This diagnosis approach we propose aims at assisting decision makers to control the servitization process through recommendations. The diagnosis highlights areas of weakness in the accomplished decision process in order to make recommendations in terms of actions and improvements of the process. The decision-maker remains the only one who can take appropriate decisions: the method merely enables guidance for these choices and facilitates their prioritization. The main perspective of this work is to integrate the reliability assessment method and diagnosis within a risk analysis approach applied to servitization decision process. When the full risk analysis will be available, one of the perspectives is to develop a benchmark of the approach to compare it with the results of other decision supports provided in the literature, in the field of servitization.

Acknowledgements

The authors would like to thank all the members of the Servinnov ANR project for their support and insightful comments. We would also like to thank Mr. Bosles (Ecobel’s leader) for his time and for making his experience available to us in our research.

References