S. D. Akyol and G. M. Bayhan, A Particle Swarm Optimization Algorithm for Maximizing Production Rate and Workload Smoothness, Third World Congress on Nature and Biologically Inspired Computing (NaBIC), 2011.

D. Angeli, A. Casavola, and E. Mosca, On feasible set-membership state estimators in constrained command governor control, Automatica, vol.37, issue.1, pp.151-156, 2001.
DOI : 10.1016/S0005-1098(00)00133-3

K. Arminski and M. A. Brdys, Robust Monitoring of Water Quality in Drinking Water Distribution System, Procs. 13 th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, 2013.
DOI : 10.3182/20130708-3-CN-2036.00030

K. Arminski, T. Zubowicz, and M. A. Brdys, Biochemical multi-specie quality model of drinking water distribution system for simulation and design, Int. J. Appl. Math. Comput. Sci, vol.233, pp.571-585, 2013.

K. J. Åström, M. , and R. M. , Feedback Systems: An Introduction for Scientists and Engineers, 2008.

T. Aydinliyim and G. L. Vairaktarakis, Sequencing Strategies and Coordination Issues in Outsourcing and Subcontracting Operations. Planning Production and Inventories in the Extended Enterprise, pp.269-319, 2011.

A. D. Baker, A survey of factory control algorithms that can be implemented in a multi-agent heterarchy: Dispatching, scheduling, and pull, Journal of Manufacturing Systems, vol.17, issue.4, pp.297-320, 1998.
DOI : 10.1016/S0278-6125(98)80077-0

G. Barbarosoglu, An integrated supplier-buyer model for improving supply chain coordination, Production Planning & Control, vol.29, issue.8, pp.732-741, 2000.
DOI : 10.1080/095372800750038337

J. J. Bartholdi and D. D. Eisenstein, A Production Line that Balances Itself, Operations Research, vol.44, issue.1, pp.21-34, 1996.
DOI : 10.1287/opre.44.1.21

R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine Learning: Parallel and Distributed Approaches, 2012.
DOI : 10.1017/cbo9781139042918.002

A. Bemporad, A. Casavola, and E. Mosca, A predictive reference governor for constrained control systems, Computers in Industry, vol.36, issue.1-2, pp.55-64, 1998.
DOI : 10.1016/S0166-3615(97)00098-5

A. Bemporad and E. Mosca, Fulfilling Hard Constraints in Uncertain Linear Systems by Reference Managing, Automatica, vol.34, issue.4, pp.451-461, 1998.
DOI : 10.1016/S0005-1098(97)00213-6

J. Berners-lee, O. Hendler, and E. Lassila, The Semantic Web. ScientificAmerican, pp.34-43, 2001.

O. Blanchard, The Production and Inventory Behavior of the American Automobile Industry, Journal of Political Economy, vol.91, issue.3, pp.365-400, 1983.
DOI : 10.1086/261154

V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. Tsitsiklis, Convergence in Multiagent Coordination, Consensus, and Flocking, Proceedings of the 44th IEEE Conference on Decision and Control, pp.2996-3000, 2005.
DOI : 10.1109/CDC.2005.1582620

D. L. Boccelli, M. E. Tryby, J. G. Uber, and R. S. Summers, A reactive species model for chlorine decay and THM formation under rechlorination conditions, Water Research, vol.37, issue.11, pp.2654-2666, 2003.
DOI : 10.1016/S0043-1354(03)00067-8

P. F. Boulos, K. E. Lansley, and B. W. Karney, Comprehensive Water Distribution Systems Analysis Handbook, 2004.

R. Branzei, D. Dimitrov, and S. Tijs, Models in Cooperative Game Theory, 2008.

A. Bratcu and . Dolgui, A survey of the self-balancing production lines (?bucket brigades?), Journal of Intelligent Manufacturing, vol.42, issue.8, pp.139-158, 2005.
DOI : 10.1007/s10845-004-5885-7

URL : https://hal.archives-ouvertes.fr/hal-00387629

A. Bratcu and . Dolgui, Some new results on the analysis and simulation of bucket brigades (self-balancing production lines), International Journal of Production Research, vol.42, issue.2, pp.369-388, 2009.
DOI : 10.1080/09511920600667358

URL : https://hal.archives-ouvertes.fr/hal-00387689

DOI : 10.3182/20020721-6-ES-1901.00575

M. A. Brdys, T. Chang, K. Duzinkiewicz, and W. Chotkowski, Hierarchical Control of Integrated Quality and Quantity in Water Distribution Systems, Building Partnerships, 2000.
DOI : 10.1061/40517(2000)193

M. A. Brdys, M. Grochowski, T. Gminski, K. Konarczak, and M. Drewa, Hierarchical predictive control of integrated wastewater treatment systems, Control Engineering Practice, vol.16, issue.6, pp.751-767, 2008.
DOI : 10.1016/j.conengprac.2007.01.008

M. A. Brdys, X. Huang, and Y. Lei, Two Time - Scale Hierarchical Control of Integrated Quantity and Quality in Drinking Water Distribution Systems, Procs.13 th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, 2013.
DOI : 10.3182/20130708-3-CN-2036.00002

M. A. Brdys, H. Puta, E. Arnold, K. Chen, and S. Hopfgarten, Operational control of integrated quality and quantity in water systems, Procs.. IFAC/IFORS/IMACS Symposium. on Large Scale Complex Systems: Theory and Applications, 1995.

M. A. Brdys and P. Tatjewski, Iterative Algorithms for Multilayer Optimizing Control, 2005.
DOI : 10.1142/p372

M. A. Brdys, V. N. Tran, and W. Kurek, Safety zones based robustly feasible model predictive control for nonlinear network systems Invited session on Advances in Intelligent Monitoring, Control and Security of Critical Infrastructure Systems, Procs.18th IFAC World Congress, 2011.

M. A. Brdys and B. Ulanicki, Operational Control of Water Systems: Structures, Algorithms and Applications, 1995.

DOI : 10.3182/20050703-6-CZ-1902.00508

M. A. Brdys and T. Chang, Robust model predictive control of chlorine residuals in water systems based on a state space modelling, Water Software Systems: Theory and Applications, 2001.

S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent systems for manufacturing control: A design methodology, 2004.
DOI : 10.1007/978-3-662-08872-2

E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, Distributed Model Predictive Control, pp.44-52, 2002.

T. Chang, K. Duzinkiewicz, and M. A. Brdys, Bounding approach to parameter estimation without priori knowledge on model structure error, Procs. 10th IFAC Symposium on Large Scale Systems: Theory and Applications, 2004.

T. Chang, M. Brdys, A. Duzinkiewicz, K. Chauvet, F. Levner et al., Decentralised robust model predictive control of chlorine residuals in drinking water distribution systems Online scheduling in a surface treatment system, Procs. World Water & Environmental Resources Congress - EWRI2003 European Journal of Operational Research, vol.120, pp.382-392, 2000.

L. Chisci, J. A. Rossiter, and G. Zappa, Systems with persistent disturbances: predictive control with restricted constraints, Automatica, vol.37, issue.7, pp.1019-1028, 2001.
DOI : 10.1016/S0005-1098(01)00051-6

G. Chryssolouris, Manufacturing Systems: Theory and Practice, 2006.
DOI : 10.1007/978-1-4757-2213-0

W. Chung and S. Leung, Collaborative planning, forecasting and replenishment: a case study in cooper clad laminate industry. Production Planning and Control, pp.563-574, 2005.

P. I. Cowling and M. Johansson, Using real time information for effective dynamic scheduling, European Journal of Operational Research, vol.139, issue.2, pp.230-244, 2002.
DOI : 10.1016/S0377-2217(01)00355-1

B. Csáji, . Cs, and L. Monostori, Adaptive Stochastic Resource Control: A Machine Learning Approach, Journal of Artificial Intelligence Research, vol.32, pp.453-486, 2008.

B. C. Ding, L. H. Xie, W. Cai, and J. , Distributed model predictive control for constrained linear systems, International Journal of Robust and Nonlinear Control, vol.34, issue.10, pp.1285-1298, 2010.
DOI : 10.1002/rnc.1512

A. Dolgui and J. M. Proth, Supply chain engineering: useful methods and techniques, 2010.
DOI : 10.1007/978-1-84996-017-5

URL : https://hal.archives-ouvertes.fr/emse-00675734

M. Drewa, M. A. Brdys, and A. Ciminski, MODEL PREDICTIVE CONTROL OF INTEGRATED QUANTITY AND QUALITY IN DRINKING WATER DISTRIBUTION SYSTEMS, Procs. 8 th International IFAC Symposium on Dynamics and Control of Process Systems, 2007.
DOI : 10.3182/20070606-3-MX-2915.00134

A. B. Dunbar and R. M. Murray, Distributed receding horizon control for multi-vehicle formation stabilization, Automatica, vol.42, issue.4, pp.1249-1263, 2006.
DOI : 10.1016/j.automatica.2005.12.008

W. B. Dunbar, Distributed receding horizon control of dynamically coupled nonlinear systems, IEEE Trans. on Automatic Control, vol.527, pp.1249-1263, 2007.

K. Duzinkiewicz, M. A. Brdys, and T. Chang, Hierarchical model predictive control of integrated quality and quantity in drinking water distribution systems, Urban Water Journal, vol.119, issue.2, pp.125-137, 2005.
DOI : 10.1109/87.701351

K. Duzinkiewicz, M. A. Brdys, and T. Chang, Hierarchical model predictive control of integrated quality and quantity in drinking water distribution systems, Urban Water Journal, vol.119, issue.2, pp.125-137, 2005.
DOI : 10.1109/87.701351

W. Elmaraghy, H. Elmaraghy, T. Tomiyama, and L. Monostori, Complexity in engineering design and manufacturing, CIRP Annals - Manufacturing Technology, vol.61, issue.2, pp.61-793, 2012.
DOI : 10.1016/j.cirp.2012.05.001

G. Ewald and M. A. Brdys, Model Predictive Controller for Networked Control Systems, Procs.12 th IFAC Symposium on Large Scale Complex Systems: Theory and Applications
DOI : 10.3182/20100712-3-FR-2020.00046

G. Ewald, W. Kurek, and M. A. Brdys, Grid implementation of parallel multi-objective genetic algorithm for optimized allocation of chlorination stations in drinking water distribution systems: Chojnice case study, IEEE Trans. on System, Man and Cybernetics ? Part C: Applications and Reviews, vol.384, pp.497-509, 2008.

A. E. Fallah-seghrouchni and A. Suna, CLAIM: A Computational Language for Autonomous, Intelligent and Mobile Agents, Lecture Notes in Computer Science, vol.3067, pp.90-110, 2004.
DOI : 10.1007/978-3-540-25936-7_5

W. Findeisen, F. N. Bailey, M. A. Brdys, K. Malinowski, P. Tatjewski et al., Control and Coordination in Hierarchical Systems, J.Wiley&Sons, 1980.

K. Fregene, D. Kennedy, and D. Wang, Toward a Systems- and Control-Oriented Agent Framework, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.35, issue.5, pp.989-999, 2005.
DOI : 10.1109/TSMCB.2005.848491

T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear Methods, 2000.

P. Grieder, P. A. Parrilo, and M. Morari, Robust receding horizon control - analysis & synthesis, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 2003.
DOI : 10.1109/CDC.2003.1272688

D. Grundel, R. Murphey, P. Pardalos, and O. Prokopye, Cooperative Systems: Control and Optimization, Lecture Notes in Mathematics and Mathematical Systems, vol.588, 2007.
DOI : 10.1007/978-3-540-48271-0

V. Hadeli, P. Kollingbaum, M. Brussel, and H. V. , Multi-agent coordination and control using stigmergy, Computers in Industry, vol.53, issue.1, pp.75-96, 2004.
DOI : 10.1016/S0166-3615(03)00123-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Haugen and R. K. Runde, Enhancing UML to Formalize the FIPA Agent Interaction Protocol. Procs. Agent-Based Technologies and Applications for Enterprise Interoperability (ATOP), pp.154-173, 2008.

J. Holland, Complex Adaptive Systems, Daedalus, vol.121, pp.17-30, 1992.

J. Holland, Hidden Order: How Adaptation Builds Complexity, 1995.

T. Holvoet, D. Weyns, and P. Valckenaers, Delegate MAS patterns for large-scale distributed coordination and control applications, Proceedings of the 15th European Conference on Pattern Languages of Programs, EuroPLoP '10, p.25, 2010.
DOI : 10.1145/2328909.2328940

J. L. Hougaard, An Introduction to Allocation Rules, 2009.
DOI : 10.1007/978-3-642-01828-2

H. Ito, Z. Jiang, S. Dashkovskiy, and B. Rüffer, Robust Stability of Networks of iISS Systems: Construction of Sum-Type Lyapunov Functions, IEEE Transactions on Automatic Control, vol.58, issue.5, pp.1192-1207, 2013.
DOI : 10.1109/TAC.2012.2231552

D. Ivanov and A. Dolgui, Applicability of optimal control theory to adaptive supply chain planning and scheduling, Annual Reviews in Control, vol.36, issue.1, pp.73-84, 2012.
DOI : 10.1016/j.arcontrol.2012.03.006

URL : https://hal.archives-ouvertes.fr/emse-00674869

K. Iwata, M. Onosato, and M. Koike, Random Manufacturing System: a New Concept of Manufacturing Systems for Production to Order, CIRP Annals - Manufacturing Technology, vol.43, issue.1, pp.379-383, 1994.
DOI : 10.1016/S0007-8506(07)62235-5

F. Jovane, Y. Koren, and C. R. Boer, Present and Future of Flexible Automation: Towards New Paradigms, CIRP Annals - Manufacturing Technology, vol.52, issue.2, pp.453-560, 2003.
DOI : 10.1016/S0007-8506(07)60203-0

J. Kennedy and R. C. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, pp.1942-1948, 1995.
DOI : 10.1109/ICNN.1995.488968

E. C. Kerrigan and J. M. Maciejowski, Robust feasibility in model predictive control: necessary and sufficient conditions, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), 2001.
DOI : 10.1109/CDC.2001.980192

V. Kreng and F. Chen, Three echelon buyer-supplier delivery policy ? a supply chain collaboration approach. Production Planning and Control, pp.338-349, 2007.

. W. Kurek and M. A. Brdys, Adaptive multiobjective model predictive control with application to DWDS, Procs.12 th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, 2010.
DOI : 10.3182/20100712-3-FR-2020.00052

R. Langowski and M. A. Brdys, Monitoring of Chlorine Concentration in Drinking Water Distribution Systems Using an Interval Estimator, International Journal of Applied Mathematics and Computer Science, vol.17, issue.2, pp.199-216, 2007.
DOI : 10.2478/v10006-007-0019-y

W. Langson, I. Chryssochoos, S. V. Rakovic, and D. Q. Mayne, Robust model predictive control using tubes, Automatica, vol.40, issue.1, pp.125-133, 2004.
DOI : 10.1016/j.automatica.2003.08.009

P. Leitão and F. Restivo, ADACOR: A holonic architecture for agile and adaptive manufacturing control, Computers in Industry, vol.57, issue.2, pp.121-130, 2006.
DOI : 10.1016/j.compind.2005.05.005

D. Liberzon, Switching in Systems and Control, Birkhuser, 2003.
DOI : 10.1007/978-1-4612-0017-8

L. Ljung, System Identification: Theory for the User, 1999.

B. L. Maccarthy and J. Liu, Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling, International Journal of Production Research, vol.40, issue.1, pp.59-79, 1993.
DOI : 10.1016/0377-2217(89)90412-8

A. Márkus, T. Kis, J. Váncza, and L. Monostori, A Market Approach to Holonic Manufacturing, CIRP Annals - Manufacturing Technology, vol.45, issue.1, pp.433-436, 1996.
DOI : 10.1016/S0007-8506(07)63096-0

D. Q. Mayne, M. M. Seron, and S. V. Rakovic, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, vol.41, issue.2, pp.41-219, 2005.
DOI : 10.1016/j.automatica.2004.08.019

P. Mccullen and D. Towill, Achieving lean supply through agile manufacturing, Integrated Manufacturing Systems, vol.12, issue.7, pp.6-7524, 2001.
DOI : 10.1108/EUM0000000006232

R. Mejía, A. López, and A. Molina, Experiences in developing collaborative engineering environments: an action research approach, Computers In Industry, pp.329-346, 2007.

S. Meyn, Control Techniques for Complex Networks, 2007.

A. Molina, R. Mejía, N. Galeano, T. Najera, and M. Velandia, The HUB as an enabling IT strategy to achieve Smart Organizations, Chapter III in Integration of ICT in Smart Organizations, Idea Group Publishing, pp.64-95, 2006.

G. Morel, H. Panetto, M. B. Zaremba, and F. Mayer, Manufacturing Enterprise Control and Management System Engineering: paradigms and open issues, Annual Reviews in Control, vol.27, issue.2, pp.199-209, 2003.
DOI : 10.1016/j.arcontrol.2003.09.003

URL : https://hal.archives-ouvertes.fr/hal-00121506

F. Moyson and B. Manderick, The collective behaviour of ants: an example of self-organization in massive parallelism, Procs. AAAI Spring Symposium on Parallel Models of Intelligence, 1988.

J. Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 1953.

S. Y. Nof, G. Morel, L. Monostori, A. Molina, and F. Filip, From Plant and Logistics Control to Multi-Enterprise: Milestone Report of the Manufacturing & Logistics Systems Coordinating Committee, Annual Reviews of Control, issue.1, pp.30-55, 2006.

S. Y. Nof, Springer Handbook of Automation, 2009.
DOI : 10.1007/978-3-540-78831-7

J. Novas, R. Bahtiar, J. Van-belle, and P. Valckenaers, An Approach for the Integration of a Scheduling System and a Multi-Agent Manufacturing Execution System. Towards a Collaborative Framework., 14th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2012), pp.258-263, 2012.
DOI : 10.3182/20120523-3-RO-2023.00156

R. Olfati-saber, Design of Behavior of Swarms: From Flocking to Data Fusion using Microfilter Networks. Chapter of the book: Cooperative Control of Distributed Multi-Agent Systems, 2007.

A. Ostfeld, E. Salomons, and U. Shamir, Optimal operation of water distribution systems under water quality unsteady conditions, Procs. 1st Annual Environmental & Water Resources Systems Analysis (EWRSA) Symposium, A.S.C.E. Environmental & Water Resources Institute (EWRI) Annual Conference, 2002.

C. Pach, . T. Berger, Y. Sallez, T. Bonte, E. Adam et al., Reactive and energy-aware scheduling of flexible manufacturing systems using potential fields, Computers in Industry, vol.65, issue.3, 2014.
DOI : 10.1016/j.compind.2013.11.008

H. Panetto, A. Molina, and H. Panetto, Enterprise integration and interoperability in manufacturing systems: Trends and issues. Computers in Industry Towards a Classification Framework for Interoperability of Enterprise Applications, International Journal of CIM, vol.5978, issue.20, pp.641-646, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259678

H. Panetto, M. Dassisti, and A. Tursi, ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment, Advanced Engineering Informatics, vol.26, issue.2, pp.334-348, 2012.
DOI : 10.1016/j.aei.2011.12.002

URL : https://hal.archives-ouvertes.fr/hal-00650352

B. Peleg and P. Sudhölter, Introduction To The Theory Of Cooperative Games, 2004.
DOI : 10.1007/978-1-4615-0308-8

J. R. Perkins, C. Humes, and P. R. Kumar, Distributed scheduling of flexible manufacturing systems: stability and performance, IEEE Transactions on Robotics and Automation, vol.10, issue.2, pp.133-141, 1994.
DOI : 10.1109/70.282538

M. Pinedo, Scheduling Theory Algorithms and Systems, 2002.

. M. Polycarpou, J. Uber, Z. Wang, F. Shang, and M. A. Brdys, Feedback control of water quality, IEEE Control Systems Magazine, vol.22, issue.3, pp.68-87, 2001.
DOI : 10.1109/MCS.2002.1004013

T. D. Prasad, G. A. Walters, and D. A. Savic, Booster Disinfection of Water Supply Networks: Multiobjective Approach, Journal of Water Resources Planning and Management, vol.130, issue.5, 2004.
DOI : 10.1061/(ASCE)0733-9496(2004)130:5(367)

S. J. Qin and T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, vol.11, issue.7, pp.733-764, 2003.
DOI : 10.1016/S0967-0661(02)00186-7

J. Rawlings, B. Mayne, and D. Q. , Model Predictive control: Theory and Design, 2009.

W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass et al., Development and Specification of a Reference Model for Agent-Based Systems, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.39, issue.5, pp.572-596, 2009.
DOI : 10.1109/TSMCC.2009.2020507

A. Sakarya and L. W. Mays, Optimal operation of water distribution system pumps with water quality considerations, ASCE Journal of Water Resources Planning and Management, vol.1264, pp.210-220, 2000.

Y. Sallez, T. Berger, and D. Trentesaux, A stigmergic approach for dynamic routing of active products in FMS. Computers in industry, pp.204-216, 2009.

R. Scattolini, Architectures for distributed and hierarchical Model Predictive Control ??? A review, Journal of Process Control, vol.19, issue.5, pp.723-731, 2009.
DOI : 10.1016/j.jprocont.2009.02.003

B. Scholz-reiter and M. Freitag, Autonomous Processes in Assembly Systems, CIRP Annals - Manufacturing Technology, vol.56, issue.2, pp.712-729, 2007.
DOI : 10.1016/j.cirp.2007.10.002

G. Schuh, L. Monostori, B. Csáji, . Cs, and S. Döring, Complexity-based modeling of reconfigurable collaborations in production industry, CIRP Annals - Manufacturing Technology, vol.57, issue.1, pp.445-450, 2008.
DOI : 10.1016/j.cirp.2008.03.013

J. Shamma, Dimensions of Cooperative Control. Chapter of the book: Cooperative Control of Distributed Multi-Agent Systems, 2007.

J. Shamma, From Distributed Control Systems to Game Theory: There and Back Again, Procs. 52th IEEE Conference on Decision and Control, 2013.

H. A. Simon, The Sciences of the Artificial, 1969.

D. Song, Optimal Control and Optimization of Stochastic Supply Chain Systems, 2013.
DOI : 10.1007/978-1-4471-4724-4

J. Sterman, Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment, Management Science, vol.35, issue.3, pp.321-339, 1989.
DOI : 10.1287/mnsc.35.3.321

P. P. Stoop and V. C. Weirs, The complexity of scheduling in practice, International Journal of Operations & Production Management, vol.16, issue.10, pp.37-53, 1996.
DOI : 10.1108/01443579610130682

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

A. Tharumarajah, J. Wells, and L. Nemes, Comparison of the bionic, fractal and holonic manufacturing system concepts, International Journal of Computer Integrated Manufacturing, vol.9, issue.3, pp.217-226, 1996.
DOI : 10.1080/095119296131670

V. N. Tran and M. A. Brdys, Softly switched robustly feasible model predictive control for nonlinear network systems, Procs. 13 th IFAC Symp. on Large Scale Complex Systems: Theory and Applications, 2013.

D. Trawicki, K. Duzinkiewicz, and M. A. Brdys, Hybrid GA-MIL algorithm for optimisation of integrated quality and quantity in water distribution systems, Procs. World Water & Environmental Resources Congress - EWRI2003, 2003.

I. Trencansky, C. , and R. , Agent Modeling Language (AML): A Comprehensive Approach to Modeling MAS, Informatica, vol.29, pp.391-400, 2005.

K. Ueda, A. Márkus, L. Monostori, H. J. Kals, and T. Arai, Emergent Synthesis Methodologies for Manufacturing, CIRP Annals - Manufacturing Technology, vol.50, issue.2, pp.535-551, 2001.
DOI : 10.1016/S0007-8506(07)62994-1

K. Ueda, J. Vaario, and K. H. Ohkura, Modelling of Biological Manufacturing Systems for Dynamic Reconfiguration, CIRP Annals - Manufacturing Technology, vol.46, issue.1, pp.343-346, 1997.
DOI : 10.1016/S0007-8506(07)60839-7

P. Valckenaers and H. Van-brussel, Holonic Manufacturing Execution Systems, CIRP Annals - Manufacturing Technology, vol.54, issue.1, pp.427-432, 2005.
DOI : 10.1016/S0007-8506(07)60137-1

P. Valckenaers, H. Van-brussel, H. Bruyninckx, B. Saint-germain, J. Van-belle et al., Predicting the unexpected, Computers in Industry, vol.62, issue.6, pp.623-637, 2011.
DOI : 10.1016/j.compind.2011.04.011

F. Valencia, J. Espinosa, D. Schutter, B. Stankova, and K. , Feasible cooperation distributed model predictive control scheme based on game theory Invited session on Hierarchical and Distributed Model Predictive Control ? I. Fundamentals, Procs. 18th IFAC World Congress, 2011.

T. Vámos, Co-operative Systems -An Evolutionary Perspective, IEEE Continuous Systems Magazine, pp.9-14, 1983.

J. Van-belle, B. Saint-germain, J. Philips, P. Valckenaers, and D. Cattrysse, Cooperation between a Holonic Logistics Execution System and a Vehicle Routing Scheduling System, Proceedings 11th IFAC Workshop on Intelligent Manufacturing Systems, pp.184-189, 2013.

H. Van-brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters, Reference architecture for holonic manufacturing systems: PROSA, Computers in Industry, vol.37, issue.3, pp.37255-274, 1998.
DOI : 10.1016/S0166-3615(98)00102-X

J. Váncza, L. Monostori, D. Lutters, S. R. Kumara, M. Tseng et al., Cooperative and responsive manufacturing enterprises. CIRP Annals -Manufacturing Technology, pp.797-820, 2011.

A. Venkat, S. Rawlings, and S. Wright, Distributed Model Predictive Control, 2007.

P. Verstraete, P. Valckenaers, H. Van-brussel, B. Saint-germain, . Hadeli et al., Towards robust and efficient planning execution, Engineering Applications of Artificial Intelligence, vol.21, issue.3, pp.304-314, 2008.
DOI : 10.1016/j.engappai.2007.09.002

G. E. Vieira, J. W. Hermann, and E. Lin, Rescheduling manufacturing systems: A framework of strategies, policies and methods, Journal of Scheduling, vol.6, issue.1, pp.36-92, 2003.

J. Wang and M. A. Brdys, Supervised robustly feasible soft switching model predictive control with bounded disturbances, Procs. 6th IEEE Biennial World Congress on Intelligent Control and Automation -WCICA'06, 2006.

J. Wang and M. A. Brdys, SOFTLY SWITCHED HYBRID PREDICTIVE CONTROL, Procs. Applications of Large Scale Industrial Systems -ALSIS2006, 2006.
DOI : 10.3182/20060830-2-SF-4903.00006

J. Wang, M. Grochowski, and M. A. Brdys, ANALYSIS AND DESIGN OF SOFTLY SWITCHED MODEL PREDICTIVE CONTROL, Procs. 16 th IFAC World Congress, 2005.
DOI : 10.3182/20050703-6-CZ-1902.01553

H. J. Warnecke, Revolution der Unternehmenskultur - Das fraktale Unternehmen, 1993.
DOI : 10.1007/978-3-662-13405-4

V. C. Weirs, A review of the applicability of OR and AI scheduling techniques in practice, Omega, vol.25, issue.2, pp.145-153, 1997.
DOI : 10.1016/S0305-0483(96)00050-3

L. Whitman and H. Panetto, The missing link: Culture and language barriers to interoperability, Annual Reviews in Control, vol.30, issue.2, pp.233-274, 2006.
DOI : 10.1016/j.arcontrol.2006.09.008

URL : https://hal.archives-ouvertes.fr/hal-00022720

H. Wiendahl and P. Scholtissek, Management and Control of Complexity in Manufacturing, CIRP Annals - Manufacturing Technology, vol.43, issue.2, pp.533-540, 1994.
DOI : 10.1016/S0007-8506(07)60499-5

T. Wu, N. Ye, and D. Zhang, Comparison of distributed methods for resource allocation, International Journal of Production Research, vol.1, issue.3, pp.515-536, 2005.
DOI : 10.1111/0824-7935.00092

G. Zambrano-rey, C. Pach, N. Aissani, A. Bekrar, T. Berger et al., The control of myopic behavior in semi-heterarchical production systems: A holonic framework, Engineering Applications of Artificial Intelligence, vol.26, issue.2, pp.800-817, 2013.
DOI : 10.1016/j.engappai.2012.08.011

Y. Zheng and S. Li, The stabilisation of coordinated distributed model predictive control, Procs. 13 th IFAC Symposium on Large Scale Systems: Theory and Applications, 2013.

Y. Zheng, S. Li, and N. Li, Distributed model predictive control over network information exchange for large-scale systems, Control Engineering Practice, vol.19, issue.7, pp.757-769, 2011.
DOI : 10.1016/j.conengprac.2011.04.003

Y. Zheng, S. Li, and H. Qiu, Networked Coordination-Based Distributed Model Predictive Control for Large-Scale System, IEEE Transactions on Control Systems Technology, vol.21, issue.3, pp.991-1012, 2013.
DOI : 10.1109/TCST.2012.2196280

K. Zimmer, Supply chain coordination with uncertain just-in-time delivery, International Journal of Production Economics, vol.77, issue.1, pp.1-15, 2002.
DOI : 10.1016/S0925-5273(01)00207-9