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Sintering at Particle Scale: An Eulerian Computing Framework

to Deal with Strong Topological and Material Discontinuities

D. Pino-Muñoz · J. Bruchon · S. Drapier ·

F. Valdivieso

Abstract This work presents a numerical modelling
approach of particle packing consolidation, at the particle
scale, based on specific numerical methods implemented in a
high-performance computing framework. Typically, the sin-
tering process triggers several mass transport paths, ther-
mally activated, that are driven by geometrical as well as
physical gradients and laplacians. Computing precisely such
major characteristics is of paramount importance but rep-
resents a real scientific challenge, which have not been
fully solved yet but which must however be tackled to gain
precious insights into sintering mechanisms which are sel-
dom accessible at this scale. An Eulerian-based formulation
is then proposed here to deal with the strong topological
changes related to particle sintering. Also, a specific attention
is paid to the precise and robust computation of high-order
derivatives which are known to control the physics of surface
solid diffusion, namely the surface laplacian of the curvature.
Besides, the hydrostatic pressure gradient is known to con-
trol the volume diffusion path, it results from the coupled
fluid-solid mechanical equilibrium, including surface ten-
sion, which must be solved precisely. Furthermore, a mesh
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adaptation technique allows the particles surface descrip-
tion to be improved, while the number of mesh elements is
kept reasonable. Once verified on test-cases, this numerical
approach is applied to several 3D granular packings under-
going micro-structural changes under combined surface and
volume diffusion.

Keywords Eulerian frame · Stabilized finite elements ·
Level-set method · Materials discontinuities · Topological
changes · Sintering

1 Introduction

Sintering process is, nowadays, a very important industrial
process used for the manufacturing of countless materials
and solid parts. Considerable attention has been paid to the
understanding of the physical mechanisms responsible of the
morphological changes that occur during sintering. Regard-
ing the complexity of the parameters combination controlling
sintering, it may be somehow difficult to extract pertinent
information from experimental data.

Numerical simulations can help in providing meaningful
information about the phenomena controlling sintering pro-
vided robust methods can be settled. Classically the macro-
scopical behavior is usually approximated by using phenom-
enological models accounting for the evolution of the micro-
tructure. Conversely, modeling the sintering process at the
microscopic scale can bring very local information. Con-
sidering new numerical approaches, in a high-performance
computing framework could help bridging the gap between
these two scales, provided hundreds of particles can be inves-
tigated to establish micro-macro scale transitions.

A consolidated powder is a porous packing of particles
which presents a surface free energy excess, directly related
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to the specific surface of the compact. Reduction of this free
energy excess is achieved by diffusional transport between
the particles, i.e. sintering, leading to a reduction of the sur-
face. The complexity of the geometry of a consolidated pow-
der combined with both the topological changes that can
appear during sintering and with all the physical phenom-
ena, make simulation of sintering at the microscopic scale a
very challenging task. In the present work, the sintering of
ceramic materials is modeled and investigated numerically at
the microscopic scale. The main underlying physical mech-
anisms responsible of the microstructural evolution during
solid state sintering process are surface diffusion, volume dif-
fusion and grain boundary diffusion. Several challenges have
to be addressed in order to integrate those physical mecha-
nisms into a continuum formulation leading to a numerical
approach capable of simulating the sintering process. In this
work the solid state sintering by surface and volume diffu-
sion will be studied. There are several unanswered questions
about the underlying physical phenomena on sintering, this
work represents a step toward a better understanding on the
sintering process through surface and volume diffusions, and
to a least extent the effects of the grain boundary diffusion.

This approach at the local scale is conceivable also because
the frame of high performance computing was considered
from the onset. This development could be the starting point
for embedding microstructural evolution into macroscopic
models. Moreover, a Eulerian level-set (LS) approach is used
to integrate the diffusion mechanisms into a finite element
continuum mechanics framework. It specially permits to
deal, simultaneously, with severe topological changes which
characterize powder sintering. All this is possible because
of the power of computers has dramatically been increased
by parallel computing techniques allowing the simulation of
larger systems.

The generalities of the sintering process will be presented
along with the Fick’s laws used to describe the diffusion phe-
nomena in Sect. 2. Concerning the sintering simulation at the
particles scale, different numerical approaches are available
in literature. Among those models there are some analytical
laws which allow to predict the growth of the neck between
two particles. Those analytical models as well as more elabo-
rated numerical approaches will be presented in Sect. 3. The
lack of a numerical strategy able to handle simulation of sin-
tering in 3D by different diffusion mechanism is evident. For
this reason a numerical approach for the simulation of sinter-
ing at the particles scale will be proposed. The computational
framework, based on the LS method, will be set in Sect. 4.
Next, a method allowing to simulate sintering by surface dif-
fusion will be presented in Sect. 5. In order to introduce the
volume diffusion into the numerical approach proposed, the
pressure field inside the particles has to be computed. Taking
into account this pressure computation, the numerical strat-
egy for the sintering simulation for volume diffusion will be

presented in Sect. 6. Finally the coupling between the vol-
ume diffusion and the surface diffusion will be presented in
Sect. 7, as well as the bases for the grain boundary diffusion.

2 Sintering and Diffusion Phenomena

Even if the use of powder metallurgy has started from the
beginning of human civilization, it was only after the 1940s
that sintering phenomena were studied scientifically. Since
then, a large number of scientific publications have appeared,
leading to remarkable developments in the sintering science
along with advances from the practical point of view. How-
ever, understanding in depth the underlying physical phe-
nomena is still a bottle neck, meanwhile today’s challenge
is to produce sintered parts with reproducible and controlled
microstructure through the control of the process variables.

In Sect. 2.1 a short general introduction to the manufactur-
ing process by sintering of consolidated powder is presented.
This manufacturing process presents several stages, but the
present work will be concerned essentially with sintering
stage which will be shown to be controlled by matter diffu-
sion phenomena, the theory of which is developed in Sect.
2.2. Finally the conclusions are presented in Sect. 2.3.

2.1 Manufacturing Process by Sintering

From the physical point of view, sintering is a thermally acti-
vated phenomenon driven by the excess of free energy of the
system and which allows the passage from a compact powder
to a coherent material, where the solid body acquires some
specific mechanical or functional properties. Today, sinter-
ing is a widely used manufacturing process and its appli-
cations are widespread: high performance structural parts,
porous materials for multiple applications, carbides for cut-
ting tools, biocompatibles materials and medical devices are
some examples of such applications.

Different types of sintering technics exist, such as hot iso-
static pressing sintering, microwave sintering, spark plasma
sintering, free sintering, . . .. Their applications as well as
their modelling are very different. The present research is
concerned by the free sintering. Even if in this work the
emphasis will be placed on the study of the sintering stage
itself, it is important to know the preliminary stages. Indeed,
several studies in literature show that the preliminary opera-
tions have an important impact on the properties of the fin-
ished part or material [73].

In order to produce a sintered part it is necessary to follow
the stages reported in the flow chart of Fig. 1:

1. Powder preparation The powder characteristics of great-
est interest are the particle size and size distribution, par-
ticles shape, degree of agglomeration, chemical compo-
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Fig. 1 General flow chart of the sintering process

sition and purity, which all depend on the preparation
method used (mechanical or chemical).

2. Mixing The powder is dispersed into a liquid to create a
colloidal suspension to improve the homogeneity of the
material. Some additives (solvents, dispersants, binders,
plasticizers, etc.) are introduced during this step, and are
usually removed by heating the green body at tempera-
tures around 500 ◦C or by dissolution in a solvent.

3. Shaping This stage, also known as forming, is used to
shape the powder into a particular geometry, resulting
in the green body of the part. One of the most important
variables to be controlled in this stage is the packing den-
sity. A high packing density is favorable to the fabrication
of fully dense materials associated with reduced sinter-
ing durations. This packing density depends on multiple
parameters such as process parameters (forming pres-
sure, temperature, etc.) and morphological parameters
(particle size, etc.). It can be defined as

Packing density = Volume of the particles

Total volume : particles + voids
(1)

4. Sintering The main goal of this stage is to heat the consol-
idated powder to obtain the desired packing density and
microstructure. Raise on temperature triggers some diffu-
sion mechanisms that are responsible for the microstruc-
tural evolution of the structure. Two main sintering cate-
gories can be identified wether one phase, at least melts:
solid state and liquid phase sintering. The present work
is dedicated to the study of the solid state sintering at
the particle scale and will focus on this specific stage of
sintering of consolidated powders.

5. Finishing According to the application, additional oper-
ations are performed to get the final product.

2.1.1 Sintering Step

As a function of the packing density, it is possible to iden-
tify three sequential stages during the sintering process (see
Fig. 2):

1. In the first stage (Fig. 2—green), the neck bridging the
particles is rapidly created and the particles of the powder
system are still distinguishable (see Fig. 3). This stage
is supposed to last until the radius of the neck between
the particles has reached a value about 0.4–0.5 of the

Fig. 2 Packing density during the sintering stages

Fig. 3 Neck between the particles created during sintering ([33], p.
71)

particle radius. From the macroscopic point of view, this
is equivalent to a packing density of about 0.65 [2,73].

2. At the beginning of the intermediate stage the poros-
ity is still open, i.e. pores are interconnected and their
shape is roughly cylindrical. As matter diffusion takes
place porosity shrinks (Fig. 2—blue), some isolated pores
appear and the packing density continues raising up to a
value of about 0.92. This stage covers the major part of
the sintering process.

3. The final stage (Fig. 2—magenta) leads to the final
microstructure of the material. Pores, which have become
isolated and spherical keep on shrinking to finally end up
by almost disappearing. The final relative density of the
material can raise up to 0.999.

It is possible to distinguish at least six mechanisms lead-
ing to the necks growing and/or the densification of the solid
[2]. Those six matter transport paths shown in Fig. 4, have a
common driving force: the reduction of the total free surface
area which is directly related to the surface free energy of
the system—of the order of 0.1–100 J/mol for coarse to fine
powders [28,39]. These six diffusion mechanisms shown in
Fig. 4 correspond to surface diffusion (1), volume diffusion
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Fig. 4 The six different diffusion paths, from [2]

Table 1 Matter transport paths

Diffusion path Source Sink Densif.

1 Surf. diff. Surface Neck

2 Vol. diff. Surface Neck

3 Vapor transp. Surface Neck

4 Grain bd. diff. Grain bd. Neck �

5 Vol. diff. Grain bd. Neck �

6 Vol. diff. Dislo. Neck �

(2, 5 and 6), grain boundary diffusion (4) and vapor transport
(3). During diffusion the total free surface is reduced, but
in the meantime the grain boundary surface—the solid-solid
interfaces—increases. The grain boundary energies usually
are lower than surface energies. However the matter trans-
port can stop because of the establishment of local equi-
librium between grain boundary and free surface energy
[28,42].

All the paths presented in Fig. 4 contribute simultaneously
to the neck growth, but only some of them lead to densifi-
cation. Table 1 shows the sources and the sink of matter for
each diffusion path presented in Fig. 4. The “Densifying”
column indicates if the diffusion path leads whether or not
to densification.

At the particle scale, densification is defined as the rate
at which the particle centres approach each other. Consid-
ering an atom or a mole of material, according with its
position in/on the solid (surface, volume or grain bound-
ary) an associated chemical potential can be defined and
the matter flux is shown to be proportional to the gradient
of this chemical potential. This will be further detailed in
Sect. 2.2.

Fig. 5 Schematic diagram showing the configuration of a set of atoms
when one of them changes its position (a–c) and the corresponding free
energy of the lattice (d)

2.2 Diffusion Phenomena

The Fick’s laws describe the movement of chemical species
as a function of the gradient of concentration. In cases
where the concentration is independent on time, the diffu-
sion process can be described by using Fick’s first law [44],
which states that the flux of diffusing species is proportional
to the gradient of concentration as follows:

j = −D∇ C (2)

where D is the diffusion coefficient and is assumed to be
independent on concentration [73]. This expression can be
extended easily to orthotropic cases, and diffusion is in this
case characterized by a second order diffusion tensor D.

It is very important to recall that diffusion is thermally
activated. This means that an activation energy should be
supplied to the system to trigger diffusion. For example, con-
sider the three (a, b, and c) states presented in Fig. 5. In order
to induce the change in position of the interstitial atom shown
in Fig. 5a–c, the lattice should be distorted in the interme-
diate position (Fig. 5b). As the energy in the intermediate
state is higher than in the initial one, this distortion can only
be achieved by supplying some supplementary energy to the
system. As the level of energy of the atoms is different, only
a certain fraction of atoms will have sufficient energy to be
able to move from one position to another. Considering this
fact, the diffusion coefficient D is expected to depend on the
temperature as follows [44,73]:

D = D0 exp

(−Q

RT

)

(3)

where Q is the activation energy, R is the gas constant and
T is temperature.

As outlined earlier, the diffusion phenomena occuring dur-
ing sintering can be studied by using Fick’s first law (Eq. 2)
where the matter flux is proportional to the concentration gra-
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dient. However in literature [2,28,39,44,53,73], sintering is
considered as a chemical diffusion process and it is usually
studied in terms of chemical potential. Instead of using the
concentration gradient for modeling the matter flux, this flux
is considered to be proportional to the chemical potential
gradient as detailed below in Sect. 2.2.1.

2.2.1 Chemical Potential

The chemical potential measures the tendency to diffuse of a
substance, and the coresponding matter flux goes downward
the chemical potential gradient, described through a classical
first gradient law.

In order to introduce the chemical potential, let us con-
sider a pure solid substance in which vacancies are the only
kind of point defect present. If the local equilibrium between
vacancies and atoms is assumed, the Gibbs-Duhem relation
holds [39,73]:

G = μa Na + μv Nv (4)

where μa is the chemical potential of the atoms, μv the chem-
ical potential of the vacancies, Na is the number of atoms,
Nv is the number of vacancies and G is the Gibbs free energy
which is defined as a function of temperature T , pressure p

and internal energy U as follows:

G = U + pV − T S (5)

with V the volume and S the entropy of the system.
The chemical potentials which represent the energy

brought by an atom, μa , and by a vacancy, μv , can be derived
from the previous equation:

μa =
(

∂G
∂ Na

)

Nv,T,p
(6)

μv =
(

∂G
∂ Nv

)

Na ,T,p
(7)

The change in internal energy U can then be written as a
function of the change of the extensive quantities1 S, V, Na

and Nv:

dU = T d S − pdV + μad Na + μvd Nv (8)

Temperature T , pressure p, chemical potential of the atoms
μa and vacancies μv , are the intensive quantities of the sys-
tem (that do not depend on the amount of material).

Equation (8) tells that the energy of a system can change
in different ways: by changing its entropy S, its volume V ,
the amount of atoms Na or the amount of vacancies Nv . The
intensive quantities (T, p, μa, μv) determine the magni-
tude of the energy change related to the change of the corre-
sponding extensive quantities (S, V, Na, Nv). For exam-
ple, given a change of the system entropy d S, the energy

1 That depend on the amount of material of the system.

Fig. 6 Schematic diagram showing the rearrangement of the lattice
around a vacancy

increase is large if the temperature is high, and is small if the
temperature is low [51]. Indeed, the change of the free energy
of the system is given by the sum of two contributions, the
change in internal energy δU and the change of the surface
free energy.

Finally a set of thermodynamical expressions that will be
useful for future reference can be introduced:
(

∂μa

∂p

)

Nv,T

=
(

∂2G

∂p∂ Na

)

Nv,T

= Ω (9)

(

∂μv

∂p

)

Na ,T

=
(

∂2G

∂p∂ Nv

)

Na ,T

= f Ω (10)

where the volume of a vacancy is supposed to be the frac-
tion f of the atomic volume Ω [30,39]. A physical sense of
the dependence of these chemical potentials upon mechan-
ical state, namely pressure here, is easily seized in Fig. 6
which shows how the lattice is distorted because of the swap
between a vancancy and an atom, i.e. atom diffusion.

In addition, the change in chemical potentials μa and μv

with respect to the change in vacancies concentration Cv is
mainly due to the entropy mixing of atoms and vacancies
[39]. The vacancies concentration is defined as a function of
the number of atoms Na and the number of lattice sites NL

in a given volume: Cv = (NL − Na)/NL . Since Cv ≪ 1, it
is possible to write:
(

∂μv

∂Cv

)

p,T

= kT

Cv

+ O(1) (11)

(

∂μa

∂Cv

)

p,T

= −kT + O(Cv) (12)

The diffusional transport can take place only by migration
of interstitial atoms or lattice vacancies and neither of these
processes changes the number of lattice sites in the region.
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Fig. 7 Schematic diagram showing a region ω of a solid Ωs with a
concave and a convex surface. a Initial shape ω0. b Final shape ω (the
dashed line represents the initial shape)

In other words the number of atoms Na and the number of
vacancies Nv change by equal and opposite amounts [39].
Under those conditions, the change of the free energy of a
region is therefore equal to the number of atoms entering or
leaving it multiplied by the difference of chemical potential
involved in the atom-vacancies switching (μa − μv). More-
over, the diffusional flux is given by:

j = − D

kT Ω
(∇µa − ∇µv) (13)

The previous expressions will be used in the following sec-
tions in order to establish the expression of the chemical
potential beneath a surface (2.2.2), on the volume (2.2.3)
and over the grain boundary (2.2.4).

2.2.2 Surface Diffusion

In order to introduce the chemical potential beneath a curved
surface, consider Fig. 7a, where a part ω of solid Ωs with a
concave and a convex surface is presented.

The specific surface free energy2 (γs f ) of a crystalline
solid is defined as the increase of energy when the area of the
free surface ∂ω of the crystal is increased by a unit amount.
The surface free energy Es of the system is then given by:

Es =
∫

∂ω

γs f d A (14)

In this work γs f is considered to be constant along the surface.
By considering Eq. (14), it is possible to show that the

solid in Fig. 7a has a higher surface free energy than the
solid presented in Fig. 7b. Therefore a way to reduce the
energy is to reduce the total surface of the solid, and this can
be achieved by transporting matter from the convex region
to the concave region or globally to tend toward a surface of
lower curvature.

An expression of the chemical potential can be found by
establishing that the free energy is a minimum with respect

2 Sometimes also known as surface tension coefficient or for the sake
of simplicity just surface tension.

Fig. 8 Infinitesimal hump formed building up a curved surface. Full

line original surface. Dashed line built-up surface [39]

to any infinitesimal virtual change in which the local shape
of the surface is altered by removing atoms from the interior
and placing them on the surface [35,39], or vice versa (see
Fig. 8).

Considering a smoothly curved surface as shown in Fig. 8,
the change of the surface free energy is given by:

δ

(∫

∂ω

γs f d A

)

=
∫

∂ω0

δ
(

γs f

)

d A0 +
∫

∂ω

γs f δ (d A) (15)

where δ represents a small change of the quantity, d A0 is the
area of an element of the original surface and d A0 + δd A

the area of the element of the final surface. The term δγs f

vanishes since γs f is considered to be constant.
Considering Fig. 8, δ (d A) is given by:

δ (d A) =
(

1

cos �
− 1

)

d A0 + δZ

(

1

R1
+ 1

R2

)

d A0 (16)

where R1 and R2 are the two principal radii of curvature
at d A0. A principal radius of curvature is considered to be
positive for convex surface, e.g. R1 = R2 = R for a sphere
of radius R. If �y (Fig. 8) is small, then R1 and R2 may be
taken constant in the hump and (1/ cos � − 1) ≃ 0. Finally
Eq. (15) can be simplified as follows:

δ

(∫

∂ω

γs f d A

)

= γs f

(

1

R1
+ 1

R2

)

δV (17)

with δV the volume of the hump: δV =
∫

∂ω
δZd A0.

From Equ. (8) and considering an isothermal process
where only a vacancy is brought (no change on the number
of atoms), the change of the volume term of the free energy
due to the creation of the hump is:
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δU = −pδV + μv

δV

Ω
(18)

where p is the hydrostatic pressure beneath the surface ele-
ment being considered and δV

Ω
represents the number of

atoms which must be brought into this portion of the crys-
tal to build up the hump. As the shape of the surface should
be in equilibrium with respect to the creation or annihilation
of small humps, the internal and external energies variations
[sum of Eqs. (18) and (15)] must vanish [35,39,73]:

δU + δ

(∫

∂ω

γs f d A

)

= 0

⇒ −pδV + μv

δV

Ω
+ γs f

(

1

R1
+ 1

R2

)

δV = 0 (19)

From Eq. (19), the vacancies chemical potential beneath a
curved surface can be written as:

μv = pΩ − γs f

(

1

R1
+ 1

R2

)

Ω = pΩ − γs f κΩ (20)

where κ is the mean curvature. In order to get an expression
of the diffusional flux on surface js, the atom chemical poten-
tial should be computed. Since the vacancy concentration Cv

is always ≪ 1, Eq. (12) shows that variations in μa due to
variations of Cv will be negligible compared to the corre-
sponding variation of μv (Eq. 11) [39]. Therefore by using
Eq. (9) one can write:

μa = μa0 + pΩ (21)

where μa0 is the atoms chemical potential in a free-stress
state.

Finally, the surface atom flux js is given by:

js = − Dsγs f

kT
∇s κ (22)

where Ds is the surface diffusion coefficient. The surface
diffusion path will then depend mainly on the geometrical
representation of the particles, and mostly on their curvature
κ . And since the chemical potential is defined along the sur-
face of the particles, the gradient in this Fick’s law has to be
computed along the surface of the particles (∇s).

2.2.3 Volume Diffusion

Consider the solid presented in Fig. 6 (page 8) where the
lattice is deformed because of the presence of a vacancy. The
deformation of the lattice due to the presence of a vacancy
is supposed to be isotropic. This means that a vacancy that
has been brought into a portion of the crystal will induce a
virtual change of the volume δV . The number of vacancies
required to generate that volume change is given by δV/ f Ω .

Furthermore, as the system should be in equilibrium with
respect to this virtual volume change, the change of the inter-
nal energy δU must equate zero:

δU = −pδV + μv

δV

f Ω
= 0 (23)

From previous Eq. (23), it is possible to establish an expres-
sion for the vacancy chemical potential μv inside the volume:

μv = f pΩ (24)

Like in previous Sect. 2.2.2, the atom chemical potential μa

is considered not to depend on the vacancy concentration Cv

as Cv ≪ 1. Therefore the atom chemical potential μa will
be, again, given by Eq. (21). And the volume atom flux can
be written as follows:

jv = − (1 − f )
Dv

kT
∇ p (25)

where Dv is the volume diffusion coefficient. Conversely to
surface diffusion, the volume diffusion route will depend on
the local mechanical equilibrium of the particle, including its
surface in contact with the surrouding medium.

2.2.4 Grain Boundary Diffusion

Even if this work is mainly concerned by surface and vol-
ume diffusion, the grain boundary diffusion is a very impor-
tant path of sintering and the theory related to the matter
transport by this mechanism is presented. As in Sect. 2.2.2,
the change of the free energy of the system is given by the
sum of two contributions, the change in internal energy δU

and the change of the surface free energy. The main differ-
ence is related to the internal energy that can be lowered by
the migration of matter from one particle to its neighbor. If
the internal energy of one of the particles forming the grain
boundary is higher than the internal energy of its neighbor,
matter will migrate and the particle of lower energy will grow
at the expense of the other particle.

By making the same kind of development as those pre-
sented in Sects. 2.2.2 and 2.2.3, it is possible to show that the
chemical potential at the grain boundary between the par-
ticles can be written as a function of the normal stress σnn

[39,64,88]:

jgb = − Dgb

kT
∇gb σ nn (26)

where Dgb is the grain boundary diffusion coefficient. Like
in the surface diffusion, ∇gb corresponds to a gradient com-
puted along the grain boundary.

2.2.5 Diffusion Induced Velocity

According to the path followed by the diffusion flux, the
induced velocity should be computed in a different way. In
the case of the surface and grain boundary diffusions, mat-
ter is transported along the interfaces. For the surface diffu-
sion, the flux follows the free surface and for the case of the

7



Fig. 9 Elementary surface S under a matter flux due to: a Surface
diffusion j = js or grain boundary diffusion j = js . b Volume diffusion
jv

grain boundary, the flux appears along the grain boundary
between the particles. Those transport paths result in a depo-
sition or removal of material over the corresponding inter-
face (whether it is a free surface or a grain boundary), which
gives raise to a displacement rate assumed to be normal to
the interface: vn = vnn.

In order to find an expression for the normal velocity vn ,
consider either a surface diffusion flux or a grain bound-
ary diffusion flux j. A matter balance is considered over the
region S ⊂ ∂ω shown in Fig. 9a. Since the density of the
material is constant, the amount of matter transported by the
induced velocity vn is vn/Ω . Then mass balance is given
by:

∫

∂S

j · nld L = −
∫

S

1

Ω
vn · nd S

∫

∂S

j · nld L = −
∫

S

vn

Ω
d S (27)

where nl is the outward-pointing normal to ∂S (e.i. nl is
tangent to the surface S, see Fig. 9a). By using the divergence
theorem, Eq. (27) becomes:

∫

S

(

∇s · j + 1

Ω
vn · n

)

d S = 0
∫

S

(

∇s · j + vn

Ω
n · n

)

d S = 0 (28)

where ∇s· is the surface divergence operator. Since Eq. (28)
holds for any arbitrary surface S ⊂ ∂ω, the integrand must
be equal to zero. In this way, expressions for the diffuion
induced velocity for surface diffusion vs and grain boundary
diffusions vgb are:

vs = vsn ; vs = −Ω∇s · js (29)

vgb = vgbn ; vgb = −Ω∇gb · jgb (30)

with ∇gb· is the surface divergence operator over the surface
defined by the grain boundary.

In contrast with the surface and grain boundary diffusions,
matter flux due to volume diffusion is not transported along
the interfaces, but matter comes from the lattice (see Fig. 9b).
The matter balance writes:

∫

S

jv · n =
∫

S

1

Ω
vv · nd S (31)

where vv is the volume diffusion velocity.
Again, as Eq. (31) holds for any arbitrary surface S ⊂ ∂ω,

the normal velocity induced by volume diffusion vv is given
by:

vv = vvn ; vv = Ωjv · n (32)

2.3 Conclusions

From a macroscopic point of view, it is very difficult to
develop a model taking into account all the different variables
that have an impact on the evolution of the structure dur-
ing sintering. The complexity of the sintering process makes
very difficult the understanding of the underlying physical
phenomena and experimental approaches very often do not
allow to gather enough information.

The diffusion phenomena are responsible for the micro-
structural evolution of the structure. The Fick’s laws, which
relate the matter flux to the gradient of the chemical potential,
can be used for the modeling of these phenomena. The differ-
ent expression for the chemical potential in surface, volume
and grain boundary were developed and their corresponding
velocities were also found.

As a summary, regarding the three diffusion paths consid-
ered, the driving force for matter diffusion is related either
to geometrical changes for surface diffusion, or to surface-
tension related mechanical equilibria for volume and grain
boundary diffusion. The study of the sintering at the parti-
cle scale is of great interest to enhance the understanding of
the underlying physical phenomena. At this point, numerical
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approaches become mandatory to cope with both geometrical
and mechanical changes and discontinuities.

3 Sintering Modeling

In this section a general overview of different numerical sim-
ulations of the sintering process at the particle-size scale
is presented. The first computer simulations of sintering
appeared between 1955 and 1965. Those early attempts to
simulate the sintering process were developed to predict the
evolution of the neck and the shrinkage of two particles as a
function of time. With the development of computers, more
complex models of sintering appeared and the simulation of
more realistic powder packing became possible.

First in Sect. 3.1, some power laws used to study the
growth of the neck between two particles are presented. Even
if this kind of laws is limited to the study of the sintering
between only two particles, it still represents a very useful
tool concerning the validation of more complex models. Fur-
thermore, kinetics of the different diffusion mechanisms is
considered to be well represented by this kind of models (at
least during the first stages of sintering). In Sect. 3.2, more
elaborated numerical approaches are presented into two main
categories: stochastic and deterministic approaches. Finally
the conclusions are discussed in Sect. 3.3

3.1 Analytical Models

As presented in the previous section, matter transport by dif-
fusion is the underlying physical phenomenon during sinter-
ing. The main idea behind the analytical models established
in the 1950s is to solve a differential equation of matter trans-
port established through some hypotheses mainly related to
the geometry of the particles and the stress distribution.

Usually those models are developed to study the diffu-
sion phenomena between two spherical particles or between
a spherical particle and a plane by just one diffusion path.
Even in those simple cases, the exact quantitative descrip-
tion of the geometry of the contact area presents some ana-
lytical difficulties, therefore multiple geometrical hypothe-
ses should be made. In general, the geometry of the bodies
is assumed to remain unchanged and the real shape of the
contact area is replaced by a geometry were the curvature
of the neck is constant. The most used geometrical parame-
ters needed to develop this kind of models are shown in Fig.
10. All those geometrical approaches are complemented with
some hypotheses related to the diffusion path that is being
modeled. Nevertheless, those simplifications are generally
accepted [85].

Using the approximations underlying these simple
approaches of sintering, expressions for the neck growth can
be obtained as a function of time for the three main diffu-

Fig. 10 Geometrical parameters of two particles. a Geometry for two
particles without densification. b Geometry of two particles with den-
sification

sion paths. According to the hypotheses made in dedicated
literature, different results for the same diffusion mechanism
can be found. However those models are generally of the
power-law type:

(

x(t)

R

)n

= B R−m t (33)

where R is the radius of the particles, t is time and n, m and
B are constants. The value of those constants depends on the
hypotheses used to obtain the model. Table 2 lists the range
of values for m and n that can be found in literature and a
plausible set of values for the three constants presented by
[28].

The previous equations are based on some strong simpli-
fications and their validity is limited to neck radii X < 0.3 R,
and limited to the study of the sintering of two particles. As
the computational capabilities increased, the interest in per-
forming more elaborated sintering (particle packing) simula-
tion became an important research field. A trend toward the
simulation of more realistic powders sintering is presented
in Sect. 3.2.

3.2 Numerical Modeling of the Sintering Process

Concerning the numerical modeling of the sintering process
at the particles scale, it is possible to distinguish two main
categories which tend toward more realistic sintering simu-
lations but mostly in 2D at the moment. On one hand, the
deterministic models aim at studying the evolution of the
compact powder under some specific conditions by model-
ing the underlying physical phenomena. On another hand,
stochastic models are based on probabilistic considerations
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Table 2 Constants appearing in Eq. (33) and a set of plausible values [28]

Diffusion path Values range Plausible set of values from [28]
n m n m Ba

Surface diffusion 3–7 2–4 7 4
23γs f DsδsΩ

kT

Volume diffusion from surface 4–5 3 4 3
20Dvγs f Ω

kT

Vapor transport 3–7 2–4 3 2 3

√

2

π

υγs f pgΩ3/2ρ1/2

(kT )3/2

Grain boundary diffusion 6 4 6 4
96 Ω Dgbδgb γs f

kT

Volume diffusion from grain boundary 4–5 3 5 3
16Dvγs f Ω

kT

Volume diffusion from dislocations 2 1 2 1
3γs f

2η

a Where the symbols in the expression of B: Ds , Dv and Dgb are the diffusion coefficients for surface, volume and grain boundary, respectively.
γs f is the surface tension of the solid-vapor interface, δs and δgb are the thickness of the surface and grain boundary diffusion layers, Ω is the molar
volume, k is the Boltzmann’s constant, T is the absolute temperature, υ is an accommodation constant for gas transport, pg is the gas pressure, ρ

is the specific density and η is the viscosity

yielding several different solutions out of the same initial set
of conditions.

3.2.1 Stochastic Approaches

This kind of approaches are based on probabilistic consid-
erations and the Kinetic Monte-Carlo method is the main
method used. This method has been used to study the
grain growth and the microstructural evolution of struc-
tures [9,18,38,43,72,83,84,90,92]. Among those works, the
Potts’ model [92] is used to simulate sintering of particles.

The idea is to create a grid of grain sites which contains
the particles and the surrounding medium (pores). A particle
is built-up of several grid sites and each site can assume any
of Q distinct states. The state of a given site of a particle is
given by a value of the q : qparticle = [1, 2, 3, ... , Q] and a
grid site corresponding to the surrounding medium is given
by a value of q : qpore = −1.

The computational domain is given by a square in 2D or
by a cube in 3D. The particles are mapped on the grid sites,
each particle corresponding to a single state q . Contiguous
grid sites of the same state q (q > 0) form a particle and con-
tiguous empty sites (q = −1) form a pore. Grain boundaries
exist between neighboring particle sites of different states,
q, and pore-grain interfaces exist between neighboring pore
and particle sites. The total energy of the system is the sum of
the surface and grain boundary contributions. For a system
of N grid sites, the total energy is given by:

E = 1

2

N
∑

i

N
∑

j

J (qi , q j )wi, j [1 − δ(qi , q j )] (34)

where the term δ(qi , q j ) is the Kronecker delta function such
that δ(qi , q j ) = 1 if qi = q j and δ(qi , q j ) = 0 if qi �= q j .

This means that the term [1 − δ(qi , q j )] is only different
from 0 where an interface is present (a free surface or a grain
boundary). J (qi , q j ) is the energy between the states qi and
q j . wi, j is a weighting term for the nearest neighbors and the
next-nearest neighbors:

wi, j = w f = 1 i, j nearest neighbors

wi, j = ws i, j next-nearest neighbors

wi, j = 0 otherwise (35)

in some works [9,83,84], the weigth of the next-nearest
neighbors is not considered (ws = 0).

The value of the states energy J (qi , q j ) is given by:

J (qi , q j ) =
{

J if qi q j < 0
̺J if qi q j > 0

(36)

where J corresponds to the energy of the free surface inter-
face and ̺J corresponds to the energy of the grain boundary.

The effect of different phenomena is taken into account in
different ways. Concerning the grain-growth, a particle site
(q > 0) is chosen at random from the computational domain
and then a new state q is chosen from the Q possible states
in the system. Before the new state q was assigned the total
energy of the system (Eq. 34) was Ei , after the state q was
changed, the total energy of the system can be different (E f ).
The energy change is given by: �E = E f − Ei . Next the
standard Metropolis algorithm is used to perform the grain
growth step based in Boltzmann statistics. A random number
between 0 and 1 is generated. The transition probability (P)
is calculated using the following equation:

P(�E) =
{

exp −�E
kB T

if � E > 0
1 if � E ≤ 0

(37)

10



where kB is the Boltzmann constant and T is the temperature.
If a random number R is lower than P(�E), then the new
state q is accepted otherwise the original state is restored.

Other physical phenomena such as the surface diffusion
is considered by performing another procedure, this time an
empty grid site (q = −1) is chosen randomly, if this site has
a neighbor with a state q �= 0, then the sites are temporar-
ily exchanged. The exchange can lead to a change of the
total energy of the system. Again, the Metropolis algorithm
is used and the corresponding transition probability is com-
puted by using Eq. (34)3. After generating a random number
R between 0 and 1, if R ≤ P the exchange is accepted oth-
erwise the origial states are restored.

By using similar methods, other physical phenomena are
introduced into the Monte-Carlo simulation. Time (t) is usu-
ally set in terms of Monte-Carlo steps (MCS) such that 1 MSC
corresponds to N attempted exchanges or changes, where N

is the total number of grid sites of the computational domain.
Figure 11 shows the sintering of a set of about 20 particles

of different size at different time steps. The significant feature
of this result is the disappearance of some of the initially
presented particles and the increase in the average size of the
remaining particles.

The main drawback of this kind of approaches is related
to the high number of parameters that has to be set and very
often comparisons with experimental results are required.
Additionally, it is very complex to modify the parameters of
the model in order to take into account different mechanical
behaviors or different materials.

3.2.2 Deterministic Approaches

Within the deterministic approaches, one will find the finite
element methods, finite difference methods, phase field meth-
ods, etc. Very often, those methods are used to simulate the
sintering of a set of particles by multiple diffusion mecha-
nisms at the same time [19,64,88]. Even if almost all the
approaches developed are supposed to be used over an arbi-
trary number of particles, many of them are only used within
the framework of the sintering of two particles. Furthermore,
most of them are limited to simulations in 2D.

These numerical methods have been used to study the
underlying physical phenomena during the sintering process
by many research team around the world. An early attempt to
simulate the sintering process by coupled surface and grain
boundary diffusion at the particle scale was presented by
Bross and Exner [12] in 1979. This work, based on the model
developed by Nichols and Mullins [58], uses the finite dif-
ference method. The results obtained in [12] opened the way

3 The Boltzmann constant (kB ) present in this equation can be different
for every physical phenomenon, therefore it is a parameter that has to
be set.

toward the simulation of the sintering of more complex pow-
der compacts, and at the same time, greatly enhanced the
understanding of sintering processes. However, this model
was limited to 2D simulations and to rather simple geome-
tries.

Until recently, the simulation of processes involving
microstructural evolutions, such as sintering and recrystal-
lization, of large systems was not possible because of the
computational power limitations. Nowadays, the power of
computers has significantly increased and with the develop-
ment of parallel computing techniques, the simulation of this
kind of problems is becoming possible.

As an important remark, the chemical potential associated
with the volume and grain boundary diffusions is related to
stress, specifically pressure p and normal stress σnn . How-
ever most of the studies concerning the sintering simulation
by either of those mechanisms do not take into account the
mechanical behavior of the particles. Instead, the stress is
supposed to evolve following a known distribution [76,88]
which is then used to compute the matter flux. To the author’s
knowledge, there exists only one study where the matter flux
is computed by explicitly taking into account the mechanical
behavior of the material [26,27].

Some important works concerning the sintering simula-
tions will be presented in the following Sections.
Pan & Cocks model [64] In that work, the surface and
the grain boundary diffusions are coupled to study the
microstructural evolution involving these two diffusion
paths. A rigorous treatment of the continuity conditions at
the junction between the surface and the grain boundary is
presented. This method has been successfully applied to sim-
ulate the microstructural evolution in 2D systems.

The computational domain is shown in Fig. 12. Grain
boundaries are assumed to be formed by straight lines and the
grains are supposed to be rigid. The matter flux is modeled
by using the Fick’s law presented in Sect. 2 (Eqs. 22 and 26
for surface and grain boundary diffusions, respectively).

The mass conservation at a triple point formed by two free
surfaces and a grain boundary (as in Fig. 13) is written as a
function of the grain boundary matter flux jgb and matter
fluxes at the free surfaces js:

jgb = −(j+s ) + (j−s ) (38)

where + and − indicate the two free surfaces at the triple
point and the sign convention for these fluxes is defined in
Fig. 13.

If the triple point is formed by n grain boundaries, the
mass conservation imposes:

n
∑

i=1

jgb,i · ti = 0 (39)
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Fig. 11 Sintering of a set of particles at different time steps. Using: kB T/J = 0.5, K B T/̺J = 1 and ws = 0.5 [72]

Fig. 12 Polycrystalline material with pores [64]

where ti is a unit vector pointing away from the ith grain
boundary.

Concerning the momentum conservation, another condi-
tion can be written. The surface tension γs f and the grain
boundary tension γss lead to a discontinuity of the tangent at
the triple point which is referred to as the dihedral angle 2θ

(Fig. 13):

cos θ = γss

2γs f

(40)

Finally, the chemical potential should be continuous and
therefore a relationship between the normal stress σnn and

Fig. 13 A triple point: junction between a grain boundary and a free
surface [64]

the “curvature” at the triple point κ tp is established:

σ
tp
nn = γs f κ

tp (41)

It is important to say that the curvature κ is undefined at
the triple point. Therefore, it is considered as an additional
unknown of the problem.

Grain boundary matter diffusion is discretized using finite
elements while surface diffusion flux is computed by using
a finite differences approach. In order to compute the mat-
ter flux by grain boundary diffusion, consider the following
functional Π :
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Π = Π0 −
∑

tp

(

λ

n
∑

i=1

ti · ji
gb

)

⇒ Π = 1

2

∫

Γgb

jgb · jgbd A −
∫

ST

T · Vd S

+
∑

tp

σtp t · jgb

+
∑

tp

γs f ‖ vgb ‖ sin θ −
∑

tp

(

λ

n
∑

i=1

ti · ji
gb

)

(42)

where
∑

tp is a summation performed over all the triple

points,
∑n

i=0 corresponds to the n grain boundaries that meet
at a given triple point, t is the unit vector along the grain
boundary toward the triple point, ST is the surface where
the traction T is applied, V is the velocity of ST , θ is the
dihedral angle and λ represents a set of Lagrange multipli-
ers introduced to ensure the mass conservation at the triple
points. Among all the kinematically admissible fields jgb the
true field makes the functional Π0 minimum [64,65].

Concerning the surface diffusion, since all the simulations
performed were in 2D, the free surface is discretized by using
straight segments. From the coordinates of the nodes of the
surface and from Eq. (41), the curvature on each node is
computed. Next the matter flux and the associated velocity
is computed in the same way.

The coupling between the grain boundary and the surface
diffusion is established by using the mass conservation at the
triple points (Eq. 38). Figure 14 shows the evolution of two
particles during sintering.

Several works using this approach have been presented by
the team of Pan [20,21,52,63,65,66]. In [65], a fully finite
element formulation is used to solve the variational princi-
ple presented in Eq. (42). All the simulations are performed
in 2D, therefore the computational domain is discretized by
using straight line elements. Concerning the surface diffusion
and in contrast with the finite differences approach used in
[64], a finite element approach is used to compute the surface
flux and the induced velocity. In this case, special elements
are used to establish the junction between the free surfaces
and the grain boundary.

An enhancement to the coupled finite element formula-
tion presented in [65] is developed in [20]. The main idea
is to represent the structure by using classical cubic spline
elements. One of the advantages of this method is related
to the smoothness of the interface that is enforced in such a
way that second order derivatives are continuous at any point
of the interface. This smoothness allows to reduce the high
frequency oscillations of the interface during their migration
and focuses the numerical solution on the global evolution
of the microstructure.
Phase field model [89] When using finite element methods
or finite difference methods within a Lagrangian continuum

Fig. 14 Sintering of two cylinders of different radii [64]

mechanics framework, the free surfaces of the system as well
as the grain boundaries are used to apply boundary conditions
to the problem. This kind of approaches are very useful when
dealing with 2D problems and very often are used to validate
the hypotheses made. Nevertheless, it is very complicated to
enhance that kind of models in order to deal with 3D problems
over complex geometries.

Alternative methods allowing to describe microstructural
evolutions over complex geometries have been developed.
The phase field methods is among those alternative methods
and has been used by Wang in [89] within the context of
sintering simulation.

The phase field model uses several field functions (the so-
called phase fields) which correspond to well-defined phys-
ical parameters such as the composition. In the case of the
sintering simulation, the field functions take specific values
in each particle and change smoothly but rapidly across the
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Fig. 15 Diffuse interface of the field function F : on top a field function
F is plotted over a square domain and at bottom the value of the field
function across the line A–A is shown

interfaces (the so-called diffuse interfaces) [19,89]. Figure
15 shows a field function F , equal to F0 inside the particles
and equal to 0 outside the particles. The bottom of Fig. 15
shows the evolution of the field function along the horizon-
tal line A–A shown in the top. As it can be seen, there is a
smooth transition of F across the interfaces.

The total free energy of the system is a functional of the
field functions and the microstructural evolution is driven by
the reduction of this total free energy. In [89], a parameter
field ηi is defined to describe each particle, ηi is equal to 1
inside the ith particle and equal to 0 outside. An additional
mass density field ρ is defined, this field allows to identify
the particles from the surrounding media.

The change in the structure is given by the mass conser-
vation equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (43)

where v is the local instantaneous velocity. Let define a mass
flux density j = ρv. The flux can be written as a sum of the
contribution of two distinct processes:

j = j di f + j adv (44)

where j di f and j adv are the diffusion and advection4 flux
densities, respectively. The advection flux is supposed to be
induced by a rigid body motion characterized by a translation
and a rotation of each particle, computed in such a way that
the mass is conserved. All the details of its computations are
presented in [89].

The diffusion flux takes into account all the diffusion paths
at the same time and is computed as a function of a global
chemical potential:

j di f = −Dgl∇µgl = −Dgl∇
δF

δρ
(45)

where Dgl is the diffusion coefficient function of the phase
fields ρ and ηi because its value depends on the region of
the solid being considered (surface, grain boundary, volume,
etc.). F is the total free energy of the system also computed
by using the field functions ρ and ηi as follows:

F =
∫

ω

( f (ρ, {ηi }) . . .

. . . + 1

2
βρ ‖ ∇ρ ‖2 +

∑

i

1

2
βη ‖ ∇ηi ‖2

)

dV(46)

where βρ and βη are constant coefficients of the model,
f (ρ, {ηi }) corresponds to the energy associated with the vol-
ume and the last two terms correspond to the energy at the
free surface and the grain boundaries, respectively.

Equations (43)–(46) are solved by using a finite difference
scheme. Figure 16 shows the evolution of a compact powder
during sintering.

3.3 Conclusions

Sintering is a very complex process and several challenges
should be handled in order to simulate the sintering process
at the particle scale. However, important developments have
been proposed and today it is possible to think about the
simulation of the sintering of a packing of particles in 3D.

The analytical models presented at the beginning of this
section are limited to very simple cases. Nevertheless, they
represent the most useful way to validate the results of more
complex numerical approaches because, it is still very tricky
to use experimental setups to validate those results. Further-
more, analytical models allow to study the kinetics of the
process that is mainly based on the driving force selected for
a given sintering mechanism.

More complex approaches allowing to simulate the sin-
tering of more complex particle packs are usually limited to
2D and even if the numerical methods should work in 3D,

4 This kind of flux path is considered in order to ensure the mass con-
servation; if only the diffusion paths were considered, the mass could,
in some cases, not be conserved [88,89].
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Fig. 16 Simulated microstructure evolution in a powder compact dur-
ing sintering. a initial green compact. b–d Typical snapshots of the
simulated sintering process. The highlighted area shows the removal of
two pores and the subsequent grain boundary migration [89]

none of them are used to perform simulations of sintering
over realistic sets of particles in 3D.

As it has been presented in Sect. 2, the chemical potential
in volume and grain boundary is computed as a function of
the state of stress state of the particles. However, the mechan-
ical response of the material to the external loading and the
surface tension acting on free surface is usually neglected.
A numerical approach taking into account the mechanical
behavior of the particles and allowing to perform simulations
in 3D has to be developed.

4 Numerical Strategy

The numerical simulation of processes involving strong topo-
logical changes is a major field of research, and differ-
ent approaches have been developed to cope with these
processes. Sintering, as it was presented in the previous sec-
tions, is one of these processes and considering its simulation
at the particle scale remains a challenging task. Considering
this, a classification of the numerical methods can be made
depending on the nature of the computational grid for spa-
tial discretization: (1) deformable grids and (2) fixed grids,
where an additional strategy is needed to describe the internal
change in the structure.

The use of deformable grids leads to an explicit descrip-
tion of the compact powder, and therefore the boundary con-

ditions at the surface of the particles can be represented
in a more accurate way. In counterpart, when representing
the strong topological changes that can appear during the
process, large deformations of the grid can occur. To deal with
those large deformations, complete re-meshing is required
which is very complex from the computational point of view
and is usually quite expensive, especially for 3D problems.
For those reasons, the evolution of the structure will be prefer-
ably handled by using a fixed grid.

The use of a fixed grid usually requires a surrounding
medium if the first phase is not physically bounded. In this
way, the interface between the two phases (the compact pow-
der and the surrounding medium which in this case is the
air) should be described in a separate way. According to
the method used to describe the interfaces, the numerical
approaches can be divided into two different categories. The
“Front tracking” methods and the “Front capturing” methods.
Front tracking methods are based on a Lagrangian description
of the interface where some markers are used to locate and
follow the interface over the time. On the other hand, in front
capturing methods the interface is implicitly represented by a
phase function discretized on the fixed grid. This phase func-
tion allows to identify to which phase a given point belongs
and the interface is defined by using the phase function.

In this section, some front tracking and front capturing
methods are presented in Sects. 4.1 and 4.2, respectively. The
choice of the LS method is also supported in Sect. 4.2. All
the generalities of the LS method are discussed in Sect. 4.3.
The LS approach used in this work is slightly different from
the classical LS method. The modified LS approach as well
as a mesh adaptation strategy backed on this modified LS
approach are presented in Sect. 4.4. Finally the conclusions
of the section are discussed in Sect. 4.5.

4.1 Front Tracking Methods

Front tracking methods are based on the use of markers
which make a Lagrangian description of the interface. The
main advantage of this kind of approaches is the straight-
forward interface definition. A high degree of accuracy can
be achieved by extracting the interface geometry with high-
order polynomial interpolations [23,71]. Nevertheless, as
for deformable grids, front tracking methods require regu-
lar redistribution of the markers on the interface to ensure a
proper representation of the moving front.

The earliest numerical technique developed to deal with
problems involving two phases was the well-known marker
and cell (MAC) “volume tracking” method and was initially
used within the framework of free surface flow [37]. This
technique uses marker particles that are convected with the
local fluid velocity and the markers distribution allows the
current fluid configuration to be known. Figure 17a shows a
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Fig. 17 Front tracking methods in a fix grid. a MAC technique [37].
b Front markers method [77]

set of markers distributed over a fixed grid where each black
point is a marker.

Although the MAC method allows to represent an arbi-
trary region over a fixed grid, heavy computations are induced
to properly use it. First to enforce boundary conditions on
a “staggered” interface [77], and second to redistribute the
markers which will localise in highly sheared regions. To
avoid this latter phenomenon, Daly and Pracht in 1968 [24]
proposed to use markers only over the interface instead of
having them all over the concerned region, a so-called “Sur-
face tracking” method. The motion of the interface is simply
computed by moving the marker according to the local veloc-
ity interpolated from the fixed grid velocities. The interface
is explicitly defined by interpolating a curve (2D) or a sur-
face (3D) across the markers (Fig. 17b), but there still remain

Fig. 18 Surface markers coalescence (a, b) and detachment (c, d)

some issues of markers concentrations which must be redis-
tributed.

More generally, the fixed grids approaches are supposed to
handle topological changes with ease. However, in this case
the coalescence or detachment of a section of the surface can
be very difficult to represent as illustrated in Fig. 18. Figure
18a shows two different interfaces that should be merged,
markers then should be removed (dashed gray ellipse) to
obtain a single interface as in Fig. 18b. In the same way,
Fig. 18c shows an interface that should be split into two sep-
arated interfaces (Fig. 18d), inducing a strong modification
of the connectivity between the markers to obtain the detach-
ment of a part of the interface. Additionally, those operations
become a burden for 3D problems.

4.2 Front Capturing Methods

In this category of methods the interface is implicitly
described within a fully Eulerian approach. Here an addi-
tional phase function is required and the motion of the inter-
face is studied by solving the convection problem under a
given velocity field (this will be further discussed in the next
Sect. 4.3). The main advantage of these approaches is that all
the topological changes are taken into account naturally by
the numerical technique. However, the computation of inte-
grals over the interface is usually more complex compared
with the front tracking methods, because the interface is nei-
ther defined by markers nor by the computational grid. The
most common numerical methods of front capturing are the
volume-of-fluid (VOF) and the LS methods.

4.2.1 Volume-of-Fluid Method

This method, introduced in the early 1980s by Hirt and
Nichols [40] relies on the main idea that a fractional volume,
or “color” function C , will be used to indicate the fraction of
a mesh cell that is filled with a particular phase. In particular,
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Fig. 19 Schematic representation of interface reconstructions of the
actual phase configuration shown in a; b, c SLIC (x- and y-sweep
respectively); d Hirt-Nichols’ VOF; e Y-VOF method [77]

VOF methods have been developed to solve the advection
Eq. (47) in such a way that interfaces remain sharp [77]:

∂C

∂t
+ ∇ · (vC) = 0 (47)

Geometry of the interface can be reconstructed from the val-
ues of the color function C and there are many schemes
allowing to perform this interface reconstruction. Several of
these reconstruction schemes have been reviewed by Rider
and Kothe in [75]. The most basic schemes are : the “Sim-
ple Line Interface Calculation (SLIC)” presented by Noh
and Woodward [60] where interface is reconstructed using
straight lines in 2D or planes in 3D aligned with one of the
coordinate directions, the “Hirt-Nichols” method presented
in [40] where neighbors are considered during reconstruc-
tion, and the “Y-VOF” method presented by Youngs in [93]
where a local direction is computed which corresponds to a
minimum gradient of the color function ∇C. Figure 19 shows
a schematic representation of different interface reconstruc-
tions of the actual geometry shown in Fig. 19a.

The main advantages of VOF approaches are related to
the simplicity of the method and the volume conservation
capability. Considering their application to the sintering sim-
ulation at the particles scale, the main drawback concerns the
description of the interface which is not reconstructed in a
very accurate way. Also the computation of the curvature of
the interface and high order derivatives can be difficult and,
very often, introduces numerical noise as the color function
is constant within every cell.

4.2.2 Level-Set Method

The LS method was first introduced by Osher and Sethian
in 1988 [62]. Initially the method was presented to study
fronts propagating with curvature-dependent velocity. Since
its introduction it has been used in wide range of applica-

tions such as multiphase flow, Stefan problems, kinetic crys-
tal growth, etc [61]. The main idea behind the method is to
represent the interface Γ as the zero iso-value of a smooth
function α(x, t):

Γ (t) = {x ∈ R
n, α(x, t) = 0} (48)

α is usually computed as a signed distance function to the
interface Γ (positive from one side of the interface and neg-
ative from the other one). One of the main advantages of
the method is related to the ease of computation of geo-
metrical quantities such as the curvature and the normals.
Additionally, it has been shown that the approach allows to
deal easily with problems in 3D and its implementation is
simple [61,68]. The aim of the LS method is to represent
the motion of an interface Γ under a velocity field v which
can depend on position, time, geometry of the interface, and
external physical laws [61]. Its main drawback is related to
the volume conservation which can not be ensured just by
transporting α (see Sect. 4.3 for further details).

4.2.3 Choice of the Method

As it has been presented previously in Sects. 2 and 3, during
the simulation of the sintering process at the particle scale
strong topological changes must be handled. Therefore fixed
grid methods are good candidates since they are more likely
to handle properly this kind of structural evolution.

Matter diffusion play the main role in the structural
changes of the system. The direct simulation of these phe-
nomena require a very accurate interface representation as
the result highly depends on geometrical quantities such as
the normal and, even more importantly, the curvature for the
computation of the matter flux by surface, volume and grain
boundary diffusion. Additionally, one of the goals of this
work is to carry out simulations in 3D, hence the numerical
method must allow to perform simulations either in 2D or in
3D with equal ease.

VOF approaches do not allow to have a precise descrip-
tion of the interface, moreover, it is difficult to have a good
estimation of the curvature and the normals and 3D simula-
tions seem to be carry out. On the other hand, the LS method
allows to have an accurate description of the interface and
both curvature and normal can be directly computed with
this approach. For these reasons, the LS method represents
a better option. A general introduction to this method is pre-
sented in the next Sect. 4.3.

4.3 Classical Level-Set Method

The classical LS method will be discussed in this section.
The LS function α will be first presented in Sect. 4.3.1, its
exploitation (Sect. 4.3.2) and motion description (Sect. 4.3.3)
will be discussed then. The necessity of the reinitialization
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step as well as the equations used to perform this operation
will be presented in Sect. 4.3.4.

4.3.1 Level Set Function

Let Ω be a bounded region of R
n (the computational domain,

and et Γ be the boundary of a subdomain Ωs ⊂ Ω (the set
of grains) which can deform along the time. At every time t ,
the description of Ωs and its boundary Γ is achieved through
a function α : R

n × R
+ → R which has the following

properties:

α(x, t)

⎧

⎪

⎨

⎪

⎩

< 0 if x ∈ Ωs

> 0 if x /∈ Ωs

= 0 if x ∈ Γ

(49)

with x the point in Rn where α is being evaluated and t is
time.

In the classical LS method, the LS function α is a smooth
function given by Eq. (50).

α(x, t) =

⎧

⎪

⎨

⎪

⎩

−dist(x, Γ ) if x ∈ Ωs

dist(x, Γ ) if x /∈ Ωs

0 if x ∈ Γ

(50)

where dist(x, Γ ) is the Euclidean distance from a point x

to the interface Γ . Contrary to the color function used with
a VOF-like method, the LS function α is smooth: at least
continuous and with ‖ ∇α ‖= 1 where this gradient exists.
These properties allow the use of continuous finite elements
for solving the transport equation (see Sect. 4.3.3), which
represents an advantage in terms of numerical developments.

Figure 20 shows the LS function corresponding to a circle
of radius R = 0.3 centered in x = 0.5 and y = 0.5. The Z
axis represents the value of α.

4.3.2 Level-Set Features

One of the main advantages of this method is its capability of
computing some geometrical quantities such as the curvature
κ and the normal n. It is also possible to compute with ease
other functions that will be very useful regarding the sintering
simulation. The outward normal n and curvature κ can be
computed by using Eqs. (51) and (52), respectively.

nα = ∇α

‖ ∇α ‖ (51)

κα = ∇ · n (52)

As presented previously, when a front capturing method (e.g.
the level method) is used, a second phase is introduced into
the problem modeling. In the case of the sintering simula-
tion, the computational domain Ω will be composed of two
different phases: the compact powder and the surrounding

Fig. 20 LS function α of a circle. The black line represents the zero
iso-value of α

medium. It is also possible to compute the Heaviside func-
tions5 H corresponding to each phase (H s for the compact
powder and H f for the surrounding medium):

H s(α) =
{

1 if α ≤ 0

0 if α > 0
; H f = 1 − H s (53)

Those Heaviside functions H are used to compute volume
(3D problems) or surface (2D problems) integrals over just
a region of the computational domain Ω . For example the
integral of function f (x, t) over the solid phase (the compact
powder) can be computed as follows:

∫

Ω

f (x, t)H s(α)dV (54)

note here, that the computational domain Ω contains both the
compact powder and the surrounding medium, but by intro-
ducing the Heaviside function H s into the integral, the above
integral corresponds to the integral of a function p(x, t) over
the compact powder only.

4.3.3 Convection

As stated previously, the goal of the LS method is to represent
the motion of an interface Γ under a velocity field v. The
motion of the interface Γ (defined by the zero isovalue of α)
is given by the result of the convection equation:

5 Also known as characteristic functions.
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∂α

∂t
+ v · ∇α = 0 (55a)

α(x, t = 0) = α0(x) (55b)

α(x, t) = ginflow if x ∈ ∂Ω− (55c)

where Eq. (55) corresponds to the inflow boundary. This
equation sets the value of the LS function α over the inflow
boundary ∂Ω− to be equal to gin f low. The inflow boundary
is defined as: ∂Ω− = {x ∈ ∂Ω, v(x) · n < 0}.

The solution of Eq. (55) does not ensure that the norm
of the gradient of α remains equal to one: ‖ ∇α ‖= 1 [61,
62,68]. In fact, according to the velocity v the LS function
α can become very flat or very steep at the interface Γ . A
procedure, usually called reinitialization, is used to reset the
LS function α to be a signed distance function to Γ , this
procedure will be presented in the next section.

4.3.4 Reinitialization

The reinitialization procedure can be described simply as the
process of replacing the function α(x, t) by another function
α̃(x, t) that has the same zero iso-value but behaves better.
Then the new function α̃(x, t) is used until the next round of
reinitialization.

A way to find this new function α̃(x, t) is to find the loca-
tion of the interface Γ with some interpolation technique
and then compute a signed distance function out from the
interpolation, as presented in [56]. Some drawbacks of this
approach are related to the computational cost and the noise
that is introduced during the reinitialization that can have
an important impact on some geometrical quantities such
as the curvature [68]. An alternative strategy has been pre-
sented by Sussex et al. in [82]. A Hamilton–Jacobi equation is
implemented to reconstruct iteratively the LS function from
the zero iso-value of α(x, t). A virtual time τ is introduced
(τ < τ ∗):

∂α̃

∂τ
+ sgn (α̃0) (‖ ∇α̃ ‖ −1) = 0 (56a)

α̃ (x, 0) = α̃0 (x) = α (x, t) (56b)

where the signed function sgn(α) is defined below, but usu-
ally approached by ˆsgn(α):

sgn(α) =

⎧

⎪

⎨

⎪

⎩

1 if α > 0

−1 if α < 0

0 if α = 0

; ˆsgn(α) = α√
α2 + ǫ2

(57)

where ǫ is a parameter related to the spatial discretization
size.

For practical purposes Eq. (56) can be rewritten as a con-
vection equation and can be solved by using the same numer-
ical method used to solve Eq. (55) (i.e. using the SUPG finite

element technique described in Sect. 4.4.3):

∂α̃

∂τ
+ v r · ∇α̃ = ˆsgn (α̃0) (58a)

α̃0 (x) = α̃ (x, 0) = α (x, t) (58b)

since ∇α̃ · ∇α̃ =‖ ∇α̃ ‖2, the reinitialization velocity v r is
given by:

vr = ˆsgn (α̃0)
∇α̃

‖ ∇α̃ ‖ (59)

In contrast with the transport Eq. (55), there is no inflow
boundary condition. When using the LS method, the compu-
tational domain is usually given by a cube (3D) or a square
(2D) which contains the interface that is being tracked. In this
case, the reinitialization velocity is always pointing out of the
computational domain, and therefore the inflow boundary is
empty: ∂Ω− = ∅.

To summarize, the standard LS method resolution scheme
is presented in Algorithm 1.

Algorithm 1 Classical LS method
t ← 0
α0(x, t = 0) ← Eq. (50) from a given geometry Ωs0 at t = 0
while t < t f do

v ← from physical phenomena, e.g. Eqs. (29), (30) and (32)
α(x, t + �t) ←from Eq. (55)
α̃(x, τ ) ← from Eq. (58) with α̃0(x, τ = 0) = α(x, t + �t)

α(x, t + �t) ← α̃(x, τ ∗)
t ← t + �t

end while

Equation (58) should be solved iteratively until the steady
state is reached (corresponding to the time τ ∗). When the
steady state is reached ∂α̃/∂τ = 0 and therefore ‖ ∇α̃ ‖= 1.
The terms involving ˆsgn (α̃0) are introduced to ensure the
zero isovalue of α̃ to be exactly α (x, t).

An important point should be highlighted concerning the
values of the physical velocity v: this velocity is only required
in the vicinity of the interface, to transport the zero-isovalue
of the LS function. Far from this interface, the LS function is
mainly set by the reinitialization velocity. In fact, the reini-
tialization procedure is an additional problem that should be
solved which leads to an increase of the computational cost.
For this reason an alternative procedure allowing to perform
both convection and reinitialization in a single step will be
presented in the next section.

4.4 Local Level-Set Approach and Mesh Adaptation
Strategy

One of the main drawbacks of the LS method is related to its
computational cost. By embedding the interface as the zero
iso-value of a higher dimensional function, a one dimen-
sional interface problem is transformed into a two dimen-
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sional problem. In three dimensions, considerable computa-
tional labor is required per time step [1]. Additionally, the
reinitialization procedure is computationally expensive. For
those reasons, in this sections some numerical approaches
aiming to reduce the computation time are presented.

4.4.1 Convective Reinitialization

The main idea is to couple the reinitialization procedure with
the convection step [22]. Let define a parameter λ relating the
virtual time τ and the real time t such that:

λ = ∂τ

∂t
(60)

Additionally, it is possible to write:

∂α̃

∂t
= ∂α̃

∂τ

∂τ

∂t
= λ

∂α̃

∂τ
(61)

By replacing Eq. (61) into the reinitialization Eq. (58), the
following expression can be found:

∂α̃

∂t
+ λ vr · ∇α̃ = λ ˆsgn (α̃0) (62)

The previous Eq. (62) corresponds to the reinitialization step
over the real time. Now if α̃ is considered to evolve under
the physical velocity v (Eq. 55) and the initial condition
of the reinitialization step establishes that α̃(x, τ = 0) =
α(x, t), then Eq. (62) can be rewritten as the convection-
reinitialization equation for α:

∂α

∂t
+ v · ∇α + λ v r · ∇α = λ ˆsgn (α) (63)

The term v · ∇α comes from the fact that α lives within an
Eulerian frame.

Now, consider a time marching scheme of physical time
step �t associated with the virtual time step �τ evaluated
as ‖ v r ‖ �τ ≈ h, with h being a typical characteristic of
the discretization. Since the gradient of the reinitialization
velocity v r (Eq. 59) is close to one (‖ ∇v r ‖≈ 1), the para-
meter λ will be chosen equal to h/�t . Finally, the convected
reinitialization equation can be written as follows:

∂α

∂t
+ (v + λ v r ) · ∇α = λ ˆsgn (α) (64a)

α(x, t = 0) = α0(x) (64b)

As stated previously, in practice the physical velocity v is
only necessary over a region close to the interface (the zero
isovalue of the LS function α) since it is responsible for the
motion of the interface. Away from the interface, the physical
velocity v is no longer required because the value of the
LS function is controlled by the reinitialization velocity v r

which also ensures that the gradient of α remains equal to
one: ‖ ∇α ‖= 1.

4.4.2 Local Level Set Function

One of the drawbacks of the LS method stems from the
required computational effort [1]. Considering that all the
geometrical useful information (the interface itself, the cur-
vature and the normal) of the LS function is present in a
narrow band close to the interface, the convection of the LS
function is not necessary over all the computational domain
Ω . Furthermore, it could be the cause of numerical insta-
bilities [86]. A way to reduce the computational cost and
avoid numerical instabilities is to cut off the LS function at
a thickness E using for example a sinusoidal filter [22,86].

A sinusoidal filter is applied to the LS function α given
by Eq. (49) to obtain the filtered LS function ᾰ(α):

ᾰ(α) =

⎧

⎪

⎨

⎪

⎩

2E
π

if α > E
2E
π

sin π
2E

α if − E ≤ α ≤ 0

− 2E
π

if α < E

(65)

The advantage of using this function is that its derivative is
continuous:

∂ᾰ

∂α
= cos

( π

2E
α
)

(66)

and thus, the reinitialization condition that has to be satisfied
is not any more ‖ ∇α ‖= 1, but:

‖ ∇ᾰ ‖=
√

1 −
( π

2E
ᾰ
)2

(67)

For simplicity, the notation α will be used from now on
instead of ᾰ. By using this modified LS function, the reinitial-
ization equation presented in Sect. 4.3.4 must be also mod-
ified. As a result the convective-reinitialization Eq. (64) is
transformed into the following expression:

∂α

∂t
+ (v + λ v r ) · ∇α = λ ˆsgn (α)

√

1 −
( π

2E
α
)2

(68a)

α(x, t = 0) = α0(x) (68b)

It is important to highlight that Eq. (68) is non-linear since
the reinitialization velocity v r is a function of the LS function
α and the right hand side term also depends on α. But it is
linearized by computing v r at the previous time step. This lin-
earization is valid as the aim of the convection-reinitialization
step is to perform the convection of the LS function α under
the physical velocity v, while keeping the smoothness of α.
However, the time step must remain small in order to ensure
the numerical stability of the method. Fortunately, this con-
dition is often satisfied because the time step needed to com-
pute the physical velocity is small enough to guarantee the
stability of the convection-reinitialization step [86].
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Fig. 21 Two different filters of
the signed distance LS funcion
α over a thickness E = 0.1. The
blue dotted line corresponds to a
sinusoidal filter (Eq. 65) and the
red dashed line corresponds to a
hyperbolic tangent filter
(Eq. 69)

The sinusoidal filter applied in Eq. (65) is one of the filters
that can be used. For example a hyperbolic tangent filter can
be used, and in this case the filter would be given by:

ᾰ(α) = E tanh
( α

E

)

(69)

It is important to recall that the reinitialization Eq. (58) has to
be modified accordingly to the LS filtered function gradient
∇ᾰ. As a consequence, the convective-reinitialization Eq.
(64) also has to be modified. Figure 21 shows a comparison
between a sinusoidal filter (Eq. 65) and a hyperbolic tangent
filter (Eq. 69). Thickness E is 0.1 for both filters.

4.4.3 Finite Element Discretization

In a finite element frame, this LS has to be implemented. Let
us consider the computational domain Ω discretized by using
an unstructured mesh Th(Ω) built up of simplex elements
K (triangles in 2D and tetrahedra in 3D). The discretized
domain is given by Ωh :

Ω̄h =
⋃

K∈Th(Ω)

K (70)

Equation (68) is a first-order hyperbolic equation and conse-
quently can not be discretized by using a Galerkin approxi-
mation. Indeed, Galerkin approximation based methods are
not stable for purely convective equations. Here, in a finite
element framework, the LS function is approximated by a
continuous piecewise linear function αh :

αh ∈ Wh ={wh ∈ C
0(Ω),wh ∈ P1(K ),∀K ∈ Th(Ω)} (71)

where C0 is the space of continuous functions over Ω .
Equation (68) is discretized by using the well-known

“Streamline Upwind/Petrov-Galerkin” (SUPG) method, pre-
sented in 1982 by Brooks and Hughes [11] (see also [45])
which leads to a stable formulation. The main idea of this
method is to add a diffusion term acting along the direction
of the convection velocity v. This is achieved by choosing
the weighting functions in a functional space different from

the one of the shape functions (Petrov-Galerkin method). The
stabilization is performed by using the SUPG method and the
weighting functions w̃h are given, on a mesh element K , by:

w̃h |K = wh + τSUPG v · ∇w h (72)

where the coefficient τSUPG is given by [86]:

τSU PG = 1

M |v · ∇w h | ≃ 1

2

hK

‖ v ‖ (73)

with M the number of nodes per element (M = n +1 in Rn),
| • | the absolute value operator and hK the element size.

The discrete weak formulation of Eq. (68) reads
∫

ΩK

∂αh

∂t
w̃hdV +

∫

ΩK

(vh + λ vh r ) · ∇αhw̃hdV

=
∫

ΩK

λ ˆsgn (αh)

√

1 −
( π

2E
αh

)2
dV

αh(x, t = 0) = α0(x)

(74)

It is important to highlight that a validation of the method
and its implementation in the finite element library CimLib®

[25] has been performed by Ville et al. in [86]. In that work,
several benchmark problems were considered, including the
convection of a circle in 2D and a sphere in 3D, the Zalesak’s
problem in 2D and 3D, and multiple applications to the jet
buckling problem also in 2D and 3D.

4.4.4 Mesh Adaptation Strategy

The LS approach presented in Sects. 4.4.1 and 4.4.2 should
be combined with an appropriate mesh adaptation strategy in
order to have a better description of the interface Γ . In this
work an anisotropic mesh adaptation is used. This strategy
has been developed by the team of Coupez [57]. The idea is
to create an orthotropic mesh, with different element sizes in
each spatial direction.

Very often, discontinuities must be handled across the
interface: different mechanical properties, different mechan-
ical behaviors, normal stress discontinuities, etc. Regarding
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Fig. 22 Mesh adaptation
strategy: a Geometry
description; b classical LS
function over the initial mesh; c

filtered LS function over the
initial mesh; d inter-particular
region from c; e filtered LS
function over the adapted mesh;
f inter-particular region from e

those discontinuities, a way to cope with those problems is
to solve them by using a mesh adapted in such a way that an
error estimation is minimized. The mesh adaptation is per-
formed by refining and coarsening the mesh based on a metric
which is a symmetrical positive defined tensor of order n in
Rn . This metric specifies the stretching in the space direc-
tions and is computed by using a posteriori error estimation.
The error estimation is based on the Hessian (second-order
spatial derivatives) of a given field. This mesh adaptation
strategy allows to capture discontinuities in a more accurate
way while keeping a -rather- reasonable number of nodes
and elements [57].

In the present work the filtered LS function (Eq. 65) is
chosen to compute the metric used for the mesh adaptation.

In fact, by using the filtered LS function for the computation
of the metric (error estimation), the obtained mesh is adapted
with respect to the geometry of the interface, allowing to
describe the interface in a very precise way. Furthermore,
the framework for the treatment of the discontinuities for
mechanical properties and normal stress (due to the surface
tension) is set.

As an example, consider two particles connected with
a neck, embedded in a computational square domain of
side 1 in 2D. The radius R of both particles is equal
to 0.2 and the initial neck radius between them is 10 %
of R. The particles are centered respectively in c1 =
[0.3 , 0.5] and c2 = [0.7 , 0.5]. This geometry is shown in
Fig. 22a.
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The classical LS function is initialized from Eq. (50) and is
shown in Fig. 22b along with the initial mesh. The solid black
line corresponds to the zero iso-value of the LS function and
the other iso-values shown allow to see how the classical LS
function changes over all the computational domain. Then,
the classical LS function is filtered by using Eq. (65) with
E = 0.01, it is shown in Fig. 22c. As previously, the black
line corresponds to the zero iso-value, but this time all the
other iso-values are packed together near to the interface (nar-
row band of width 2E = 0.02). It is important to highlight,
that the interface is not modified when the filter is applied.
The mesh adaptation strategy presented is applied using the
filtered LS function to compute the metric. From this met-
ric the mesh is adapted and the result can be seen in 22e.
Finally, a close-up of the inter-particular region is shown in
Fig. 22d, f.

The initial mesh is made up of 19,800 triangles and the
adapted mesh has 17,654 triangles. Even if the adapted mesh
has less elements than the initial one, from Fig. 22d, f it is
clear that the interface representation is much more smooth
when the LS function is computed over the adapted mesh.
This more precise representation is obtained because the ele-
ment size near to the interface on the adapted mesh is about
hK ≈ 0.001 compared with hK = 0.006 on the initial mesh.
If an isotropic mesh was to be built with the equivalent ele-
ment size of the adapted mesh, it would have about one mil-
lion of elements. Even if the remeshing process may induce
extra computational costs, it will be shown in the next sec-
tions that the total computational efficiency (cost and con-
vergence rate) is improved by using mesh adaptation.

4.5 Conclusions

Different numerical strategies allowing to deal with problems
involving topological changes have been presented. Among
those numerical strategies, fixed grids are more suitable to
be used for the sintering simulation at the particles scale.
Within the fixed grids approaches, the LS method and mul-
tiple VOF techniques were considered. Eventually, the LS
method has been chosen over the VOF approaches due to
its capability of handling strong topological changes while
having a good description of the interface. Also, the compu-
tation of some geometrical quantities is easier within a LS
context. The main drawback of the LS approach is related to
its computational cost, therefore some strategies allowing to
reduce the computational time were presented.

First, a modified LS approach, which allows to couple the
convection to the reinitialization step, is used. Furthermore,
a filtered LS function is used instead of a classical distance
signed function which avoids unnecessary convection of the
LS function away from the interface. Second, a mesh adap-
tation strategy is combined in order to have a good accuracy
of the solution while keeping a reduced number of nodes.

Fig. 23 Computational domain Ω = Ωs ∪ Ω f

In the next section, the simulation of sintering at the par-
ticles scale by surface diffusion is presented.

5 Sintering by Surface Diffusion

It was concluded in Sect. 2.3 that the mathematical descrip-
tion of sintering by surface diffusion can reduce to expres-
sion 29 of the velocity vs associated with this route, defined
over the grain free surface Γs f (Fig. 23) in terms of sur-
face quantities (normal vectors and curvature). However, it
has been seen in previous section that within a LS frame-
work, surfaces are embedded into a higher dimensional space
(Eq. (57)). Consequently, surface quantities and especially
the surface velocity, have to be expressed into a LS frame-
work, in order to be defined over the whole computational
domain Ω . It is only under this condition that the advection
Eq. (68) can be numerically solved. This issue, as well as
subsequent stability considerations, are detailed in Sects. 5.1
and 5.2. Next, comparison between two-grain geometrical
model and numerical simulations is presented in Section 5.4.

5.1 Level-Set Formulation of Surface Diffusion

Since surface diffusion velocity is normal to the free surface,
and regarding expressions (51)–(52), we can write

vsα = (Cs�sκα)nα (75)

where Cs = (1 − f )Ωa
0

Dsδs

kT
is assumed to be constant in

every particle. According to [16], the surface Laplacian oper-
ator can be expressed in the following LS form

�sκα = 1

‖∇ α‖ ∇ · (‖∇ α‖Pα(∇ κα)) (76)
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where

Pα = I − nα ⊗ nα (77)

is the projection matrix operator onto the planes tangential to
the isosurfaces ofα. Let a and b be two vectors of components
ai and b j respectively, ai b j are the components of the second
order tensor a ⊗ b.

Equations (75) and (76) give a complete description of
the surface diffusion phenomenon in a LS framework. More
precisely, these equations allow the velocity vsα to be defined
over the whole computational domain, and to correspond to
the surface diffusion velocity in the vicinity of the free surface
Γs f .

5.2 Mixed κα/Cs�sκα Formulation

Regarding Eqs. (75) and (76), the normal component of vsα ,
that is vsα = Cs�sκα is a function of the second-order deriv-
atives of the curvature κα , and consequently depends on the
fourth-order derivatives of the LS function. However, since
the LS function is approximated by a piecewise linear func-
tion, its first derivatives are piecewise constant, and all its
derivatives of higher order are null. Consequently, vsα can
not be calculated as a function of α in a straightforward way.

A first solution to this issue is to compute κα and vsα suc-
cessively in a decoupled way. More precisely, κα is first com-
puted as a piecewise linear quantity by considering Eq. (52)
in a weak sense. After that, the normal velocity can be com-
puted as a piecewise linear field by taking the weak formula-
tion of (76). However, it is shown in [13,15,69] that such a
scheme is not stable and leads to spurious oscillations of the
interface. It is possible to regularize the scheme by adding
a diffusion term in curvature equation as well as in veloc-
ity equation. But this artificial diffusion leads to a lost of
accuracy and involves consistency errors.

An alternative, proposed in [13,15,69] is to couple the
computation of curvature and normal velocity in a mixed
system. A stabilization term is then introduced, based on fol-
lowing considerations. Let us consider the first-order Taylor’s
expansion

αn+1/2 def= αn + �t
∂αn

∂t
(78)

Assuming the LS is transported by transport Eq. (55) with
the surface diffusion velocity (75), one gets

αn+1/2 = αn − �tvs
n
α · ∇ αn

= αn − �t‖∇ αn‖vn
sα (79)

since ∇ αn · ∇ αn = ‖∇ αn‖2. The mixed method consists
in defining the curvature κn

α not with respect to αn any more,
but with respect to αn+1/2:

κn
α = ∇ · ∇ αn+1/2

‖∇ αn+1/2‖

≈ ∇ ·
(

1

An

(

∇ αn − �t ∇ vn
sα

)

)

(80)

where

An = ‖∇(αn − �tvn−1
sα )‖ (81)

Hence, in this previous expression of the curvature (80),
two approximations are done: the norm of ∇ αn+1/2 is
evaluated explicitly with the normal velocity taken at the
previous time step, in order to keep a linear property of
the equation; the norm ‖∇ αn‖ has been removed from
the equation: we assume ‖∇ αn‖ = 1, which is true in
the vicinity of the interface. In fact, not removing this
term implies to compute its gradient, which is not an easy
task, and creates numerical noise when transporting the
LS function, as it has been verified by various numerical
tests [13].

To summarize, the mixed formulation in curvature κα

/ normal component of surface diffusion velocity vsα (or,
alternatively surface Laplacian of the curvature) writes, at
time tn

κn
α + �t ∇ ·

(

1

An
∇ vn

sα

)

= ∇ ·
(

1

An
∇ αn

)

Cs ∇ ·
(

‖∇ αn‖Pα(∇ κn
α)

)

− ‖∇ αn‖vn
sα = 0 (82)

where An is defined in Eq. (81)
The second term of the first equation in system (82) is a

coupling term between κn
α and vsα , introduced by αn+1/2. It

involves the second-order derivatives of vsα , and plays the
role of a stabilization term, adding a kind of numerical dif-
fusion controlled by the time step. The weak formulation of
system (82) is obtained by multiplying equations by scalar
weight functions ψ , integrating over Ω , and using the diver-
gence theorem:
∫

Ω

κn
αψ dv + �t

∫

Ω

1

An
∇ vn

sα · ∇ ψ dv

=
∫

Ω

1

An
∇ αn · ∇ ψ dvCs

∫

Ω

‖ ∇ αn‖Pα(∇ κn
α ) · ∇ ψ dv

−
∫

Ω

‖ ∇ αn‖vn
sαψ dv = 0 (83)

for any ψ smooth enough. We can note that κn
α , vn

sα and ψ

belong to the same functional space: these functions, as well
as their first-order derivatives must be square-integrable, and
consequently they belong to the H1(Ω) Sobolev space. Fur-
thermore, integrals over the computational domain boundary
(involved by the divergence theorem) do not appear in (83),
and are therefore equal to zero. Consequently, κn

α and vsα ,
solution of (83) satisfy Pα(∇ κn

α) · n and ∇ vn
sα · n = 0 on

∂Ω , where n is the unit vector normal to ∂Ω .
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Let us now consider the finite element discretization
of (83). The curvature κα and the normal velocity vsα

are approximated by continuous piecewise linear functions.
Approximating α by a piecewise linear function is now
allowed, since no derivatives of α of order higher than one
are involved in (83). Once vsα is known, the surface diffusion
velocity can be computed as a continuous piecewise linear
function

vsα(x) = vsα(x)Nα(x) (84)

where Nα is the piecewise linear vector obtained as the nor-
malized nodal average of the nα vectors (which are constant
per element).

5.3 Time-Stepping Strategy

Time-stepping strategy for the simulation of sintering by sur-
face diffusion is summarized in Algorithm 2. It consists in
initialising the LS A0 (Eq. 81), to solve for curvature κn

α and
normal surface velocity vn

sα and then update configurations
(convection-reinitialisation of the level-sets).

Algorithm 2 Time-stepping for surface diffusion

n ← 0, α ← α0 (Eq. 49), A0 ← ‖ ∇ α0‖ (Eq. 81)
Initial mesh adaptation
while tn ≤ � do

(

κn
α , vn

sα

)

← from Eq. (83)
vs

n
α ← from Eq. (84)

αn+1 ← from Eq. (55) with v ← vs
n
α

if necessary then

mesh adaptation step
end if

n ← n + 1
end while

5.4 Sintering Between Two Grains

The case under consideration involves two spherical
grains of equal radii R = 0.2, as depicted in Fig. 24 (see
references[13–15]). One single LS function α is used to rep-
resent both grains, meaning that the grain boundary is not
taken into account. This function is initialized at each mesh
node, as the maximum of the LS functions associated with
each spherical grain [because of the sign convention adopted
in Eq. (49)]. As shown in Fig. 24a, the grains are initially
nearly tangential. It has to be pointed out that there is no spe-
cial algorithm to deal with either the contact surface nor the
singularities of the LS function which is not differentiable on
the triple junction. However, despite the initial “roughness”
of the area of contact between the grains, and due to the mat-
ter diffusion, this area becomes quickly smooth as shown
in Fig. 24 b-c. This phenomenon is specifically outlined in

Fig. 24 Change in the free surface Γs f = {α = 0} during the sintering
by surface diffusion between two grains of equal size (radius R = 0.2).
a t = 0; b t = 10−2; c t = 3

Fig. 25 Triple junction (contour of the contact surface) at times t =
0, t = 10−2 and t = 2 × 10−2 respectively

Fig. 25: the triple junction (green line) appears to be very
irregular when the computation starts (its shape depends on
the mesh size), while it has been greatly smoothed after only
10 time steps, and it has become a perfect circle within 20
increments. Furthermore, the flow under Laplacian of cur-
vature has a physical meaning only if the curvature and its
second-order derivatives exist, that is, only if the triple junc-
tion is smooth enough. Hence, this early stage of the simu-
lation allows us to obtain a triple junction in a “natural” and
easy way. Our simulations and the study presented below
prove that this stage does not affect the subsequent evolu-
tion of the grain cluster. Furthermore, the rate of change in
grain volume is presented in Table 3. Of course, this rate
depends on the mesh size (and on the time step). However,
the results reported in Table 3 show that the formation of a
neck between the grains (for a time t < 0.05) do not change
the grain volume. Indeed, let us recall that surface diffusion
is a non-densifying mechanism, as stated earlier in Sect. 2
(Table 1). Here, the grain volume is well-preserved, with
a variation of 0.8 % in 1,000 increments. As expected, no
shrinkage phenomenon occurs since the grain centres do not
move.

As proposed in Sect. 3.1, well-known geometrical models
provide analytical relationships for the neck radius growth
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Table 3 Surface diffusion between two grains of radius R = 0.2: rate
of change in volume of grains (Cs = 10−6, �t = 10−3, hmin =
8.0 × 10−3)

Time 0 0.02 0.06 0.1 0.4 0.6 1

Change (%) 0 +0.023 +0.0005 −0.011 −0.18 −0.44 −0.79

upon time under the form of power laws (Eq. 33), with plau-
sible coefficients such as presented by [28] (Table 2). One of
these well-known geometrical models of the literature [73]
states
(

x(t)

R

)n

= A
δs Dsγs f Ω

a
0

kT R4 t = At∗ (85)

where R is the grain radius, A is a constant and n is a
parameter depending on the diffusion route, which can eas-
ily be related to other constants such as reported in Table
2. Figure 26 presents, in logarithmic scales, the growth of
the dimensionless neck radius x/R versus the dimensionless

time t∗ = δs Dsγs f Ω
a
0

kT R4 t , obtained by finite element simulation
for different grain radii, ranging from 0.1 to 2.5. The best
curve fitting these data, obtained by a least-square approx-
imation of the numerical results, is x/R = 1.3t∗1/7 and is
referred to as “Simulation, 1/7” in Fig. 26. The value n = 7
for the surface diffusion route corresponds to the value pro-
vided by the analytical model developed by Kuczynski in
1949 [53]. However, it has to be underlined that this value
corresponds here to a sort of average value which takes into
account the different stages of sintering. The same remark is
addressed in [32]. To illustrate that, a curve corresponding
to a 1/6-power-law, and referred to as “1/6 law”, has been
plotted in Fig. 26. It can be shown that this 1/6-law pro-
vides a better approximation of the first stage of the sintering
(0.025 ≤ x/R ≤ 0.053, obtained with R = 2.5). Further-
more, it can be observed in this figure a type of undercutting
effect in the early stage of each simulation. This effect, first
described in [59], can be explained in the present case by
the fact that when the simulation starts, the neck between
two grains is defined with an accuracy which depends on the
mesh size. When the neck size becomes “reasonable” com-
pared to the mesh size, this effect vanishes and no longer
affects the subsequent neck growth.

The next case study is dedicated to the neck growth by
surface diffusion between two spherical grains of different
radii, say R1 and R2. References [66] and [55] state that the
neck growth obtained in this case is equal to the one obtained
for two grains of same equivalent radius R defined by

R = 2R1 R2

R1 + R2

A simulation involving two grains of different sizes (for
example R1 = 0.1 and R2 = 0.2 in Fig. 27) proves the
relevancy of this definition: the neck radius obtained by sim-

Fig. 26 Change in the dimensionless neck radius x/R over dimen-
sionless time t∗ (logarithmic scale) for different values of R, and with
Cs = 10−7

Fig. 27 Growth by surface diffusion of the dimensionless neck radius
x/R over dimensionless time t∗ (logarithmic scale) for two spherical
grains of different radii (R1 = 0.1 and R2 = 0.2) and for two spherical
grains of same equivalent radius (R = 0.133)

ulation with two grains of equivalent radius (here R = 0.133)
is shown to be in good agreement with the one computed for
two grains of radii 0.1 and 0.2 in Fig. 27.

5.5 Particle Packing Sintering

A sintering simulation by surface diffusion of a set of 154
spherical particles is presented here. As verified in the pre-
vious section, surface diffusion does not lead to shrinkage of
the compact powder. Figure 28a shows the initial geometry of
a powder compact of 154 particles. It can be seen that a mesh
adaptation strategy is used and the element size near to the
particle surface is smaller (hmin = 0.001) than the element
size far from the interface (hmax = 0.1). After 170�t the
neck between the particles has developed up to 50 % of the
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Fig. 28 Sintering simulation by surface diffusion of a set of 154 par-
ticles at the initial time (a, t = 0) and after 170�t (b, t = 105�t)

radius of some particles, however it can be seen in Fig. 28b
that the cluster of particles has not shrunk.

One of the main advantages of numerical approaches is
that they give access to some variables which would not be
accessible though experiments. More precisely, concerning
the sintering at the particle scale, the total surface or the
specific surface6 are really complex to assess experimentally
during sintering for a compact powder. Fig. 29 shows (dashed
green line) the change over time in both simulated total vol-
ume and total free surface for the compact powder.

6 Sintering by Volume Diffusion

The velocity associated with the volume diffusion route
depends on the gradient of the hydrostatic pressure as estab-
lished in Sect. 2, (see Eq. 25). In turn, pressure is solution
of the classical mechanical problem of momentum balance
within the solid grains :∇σ = 0 (Eq. 86). For example using
the properties of the isotropic solid, G the shear modulus and
K the bulk modulus, the internal equilibrium writes

6 The specific surface is the ratio between the total free surface of the
compact powder and its mass.

2G ∇ ·ε(u) −
(

1 − 2G

3K

)

∇ p = 0. (86)

where u is the displacement field. In the small strain frame-
work adopted here, the strain tensor is defined by ε(u) =
(∇ u + (∇ u)T )/2.

However, within the Eulerian context presented here, the
mesh boundary does not correspond to the grain free bound-
aries, and consequently a surrounding medium has to be taken
into account. Thus, as described in Fig. 23, the computa-
tional domain is filled with two immiscible phases, Ωs (the
set of solid grains) and Ω f , the surrounding medium. How-
ever, an accurate description of the dynamics of this fluid is
not required for sintering simulations: the surrounding media
modelling just aims at transmitting the external normal stress
applied over the computational domain boundary to the grain
free surface. Hence, this surrounding medium is modelled as
a incompressible Newtonian fluid with low viscosity. Sec-
tion 6.1 describes this solid–fluid interaction problem, and
the associated numerical methods. A special care has to be
paid to the treatment of the surface tension term, the pres-
ence of which is a specificity of sintering simulations. Once
the pressure field is known, the computation of its gradient
is not straightforward, and is explained in Sect. 6.4. Finally,
the case of sintering by volume diffusion between two grains
is investigated in 6.6.

6.1 Mechanical Problem: Elastic solid—Low Viscous Fluid
Coupling

Taking into account the surrounding medium, the mechanical
problem in the solid phase (86) is to be completed with a
Stokes system in Ω f (see Fig. 23). Assuming a newtonian
fluid (σ f (v) = 2ηε̇(v)− pI), the whole system to be solved
for the mechanical equilibrium writes:

2G ∇ ·ε(u) −
(

1 − 2G
3K

)

∇ p = 0 in Ωs

∇ ·u + p
K

= 0 in Ωs

2η ∇ ·(ε̇(v)) − ∇ p = 0 in Ω f

∇ ·v = 0 in Ω f

[σn]Γs f
= γs f κn over Γs f

[σn]Γgb
= γgbκn over Γgb

(2ηε̇ − pI)n = −pext n over ∂Ω

(87)

where η is the fluid viscosity, v the fluid velocity, and pext

the pressure applied on the boundary of the computational
domain. The strain rate tensor is defined by ε̇(v) = (∇ v +
(∇ v)T )/2.

In order to solve system (87) by a finite element method,
the variational formulation of this system is established
by summing up variational formulations obtained in fluid
domain and in each solid grains. Integrating by parts (diver-
gence theorem), the terms of jump of the stress vector over
Γs f (solid-fluid) and Γgb (grain-grain) are implicitly taken
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Fig. 29 Sintering simulation
by surface diffusion of a set of
154 particles. Variation of the
volume (green dashed line) and
total surface reduction (blue

line). (Color figure online)

into account in the final variational formulation through inte-
grals defined over Γs f and Γgb [69]. Let us recall that the
Laplace’s law which expresses this normal stress vector jump
writes, for an assumed constant surface tension over the solid-
fluid interface:

[ (σ · n) ]|Γs/ f
= γs f κn (88)

and a similar form can be written for interface Γgb. Hence,
the mixed coupled variational formulation consists in finding
(u, v, p) solutions of:
∫

Ωs

2Gε(u) : ε(�) dv +
∫

Ω f

2ηε̇(v) : ε̇(�) dv

−
∫

Ωs

(

1 − 2

3

G

K

)

p ∇ ·� dv −
∫

Ω f

p ∇ ·� dv

=
∫

Γs f

γs f κn · � da +
∫

Γgb

γgbκn · � da

+
∫

∂Ω

−pext n · � da (89)
∫

Ωs

ψ ∇ ·u dv +
∫

Ωs

ψ
p

K
dv = 0 (90)

∫

Ω f

ψ ∇ ·v dv = 0 (91)

for any scalar and vector weighting functions, ψ and �,
smooth enough. Pressure p and the corresponding weighting
function ψ just need to be square-integrable: they belong to
the L2(Ω) functional space. Each component of u, v and
�, as well as their first-order derivatives, need to be square-
integrable over their domain of definition: they belong to
the H1(Ωi ) Sobolev space, with i = s, f . Finally, note that
Eqs. (90) and (91) will be summed up only after the time
discretization step.

The pressure field is well-defined in the fluid part as well
as in the solid grains, with a discontinuity at the interface.
The velocity is well- defined in the fluid part, through the
Stokes’ equations, while the displacement is well-defined in
the solid part, through the relation between strain and dis-

placement. In order to remove to remove the displacement
from Eq. (89), we simply set v = du/dt in the solid part. This
relation involves a material derivative. However, as dealing
with solids, the convective term of this relation is neglected.
Using an Eulerian scheme, the displacement is then related
explicitly to the velocity. At a time tn , we have

un = un−1 + �tvn (92)

Introducing this time discretization into the variational for-
mulations (89), (90) and (91), leads to the mixed velocity–
pressure variational formulation of the mechanical prob-
lem (87), which is: at a time tn , assuming the displacement
un−1 to be known, find (vn, pn) solution of the system
∫

Ω

2(G�t Hs + ηH f )ε̇(v
n) : ε̇(�) dv

−
∫

Ω

((

1 − 2

3

G

K

)

Hs + H f

)

pn ∇ ·� dv =

−
∫

Ω

2G Hsε(u
n−1) : ε(�) dv +

∫

Γs f

γs f κn · � da

+
∫

Γgb

γgbκn · � da +
∫

∂Ω

−pext n · � da (93)

∫

Ω

ψ ∇ ·vn dv +
∫

Ω

Hs

K�t
ψpn dv =

−
∫

Ω

Hs

�t
ψ ∇ ·un−1 dv (94)

for any weighting functions ψ and vector � smooth enough.
In fact, the velocity field solution of system (93)–(94) is not
unique, and velocities corresponding to rigid bodies motions
have to be removed. For example, normal velocity can be
enforced to vanish on two (in two-dimensional cases) or three
plans of the computational domain boundary. In previous
system, Hs is a presence function equal to 1 in Ωs and to 0
elsewhere, and H f = 1 − Hs .

Note that the time discretization scheme (92) is the sim-
plest scheme that can be used. In particular, it involves a
minimum of additional terms in mixed variational formu-
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lations (93)–(94). However, this scheme is of first order in
time and is not so accurate. Consequently, when the elastic
body is not in a quasi-equilibrium state and deforms under
the velocity (or the displacement) solution of the mechanical
problem (93)–(94), a more accurate scheme should be con-
sidered, such as the Crank-Nicolson scheme used in [67].
However, the simulations presented in the following, have
been carried out by using the Euler’s scheme (92), because
in our particular case the motion induced by the mechanical
problem can be neglected regarding the one induced by the
matter diffusion.

6.2 Numerical Strategy

The mixed variational formulation (93)–(94) holding over the
whole domain is discretized by using a mixed finite element
method. Two issues occur for the choice of the mixed finite
element pair. First, it is well-known that the finite element pair
chosen for discretizing Stokes problem or elasticity problems
(or any mixed problem), must satisfy a compatibility condi-
tion, which can be expressed as an I n f − Sup condition, the
so-called Brezzi - Babuška condition [10]. If this condition is
not satisfied, the algebraic system is ill-conditioned, and the
method will not converge. Second, two kinds of discontinu-
ities at the interfaces are involved in Eqs. (93), (94): discon-
tinuities of material parameters, due to the fluid–solid tran-
sition; discontinuities of the pressure field, due to Laplace’s
law which expresses the normal stress jump across an inter-
face separating two media (Eq. 88). These discontinuities can
lead to spurious oscillations of the solution fields, especially
of the pressure, in the vicinity of the interfaces if no attention
is paid.

6.2.1 Stabilized Finite Elements

Still using a mesh made up of simplexes, regarding previous
considerations, and because it is suitable with our mesh adap-
tation strategy, velocity and pressure are approximated by
continuous piecewise linear functions, referred to as P1/P1
approximation. The P1/P1 pair does not fulfil the Brezzi–
Babuška condition for the Stokes problem and the quasi-
incompressible elasticity problem: the solution of the dis-
cretized problems is not unique in pressure. However, this
stability condition can be circumvented by adding stabiliza-
tion terms in the discretized variational formulation.

A theoretical framework to this stabilized finite element
approach, has been developed during the last two decades,
and is known as variational multiscale (VMS) methods [46–
48]. The basic idea of VMS methods, consists in splitting
the unknowns of a variational problem in resolvable terms
[the finite element (FE) solution] and unresolvable terms (the
fine-scale terms, which can not be captured by the finite ele-
ment mesh). Fine-scale terms are not accounted for by usual

FE methods, which possibly leads to spurious oscillations
in the FE solution. Consequently, VMS methods propose to
approximate the effects of the fine-scales on the resolvable
terms by adding terms in the discretized variational formu-
lation. These additional terms act as stabilization terms.

In concrete words, let V = H1(Ω)d be the velocity space.
Then, we write V = Vh ⊕ Ṽ , where Vh is the space of con-
tinuous piecewise linear vectorial functions. Consequently,
velocity and associated weighting functions can be split as
v = vh + ṽ, � = �h + �̃, with obvious notations. In the
stabilization method proposed here, only the velocity is split,
although methods splitting both velocity and pressure could
also be considered. For further details, we refer to [69,70].
Here, we just give some essential features. The discretized
velocity fine-scale problem is obtained by considering Eq. 93
with �̃ as weighting functions. Since at the elementary level
(K ) v|K is linear, its second-order derivatives are equal to
zero. Consequently, assuming that functions of Ṽ vanish over
each element edge ∂K , the integration by parts of the velocity
fine-scale formulations is reduced to

∑

K

∫

K

∇ · (a1ε̇(ṽ)) · �̃ dv

=
∑

K

∫

K

a2 ∇ ph · �̃ dv (95)

where
∑

K stands for the summation over all the mesh ele-
ments, a1 = 2(G�t Hs +ηH f ) and a2 = (1−2G/3K )Hs +
H f . Equation (95) can be interpreted as a projection relation,
since it is equivalent to

P̃ ∇ · (a1ε̇(ṽ)) = P̃ (a2 ∇ ph) (96)

where P̃ is the operator of projection onto Ṽ . Note that the
right-hand side term of Eq. (96) is nothing but the projec-
tion of the momentum balance evaluated with the FE solu-
tion. Next, the differential operator 1

a2
∇ ·(a1ε̇(·)) in (96) is

approximated, on each element, by an algebraic expression,
τ−1

K I, where τK is a stabilization parameter. This approach
has been developed in [5,6,17] for example. Finally, taking
P̃ as the identity when applied to ∇ ph leads to the Algebraic
Sub-Grid Scale (ASGS) method:

ṽ|K = τK ∇ ph|K (97)

This stabilization term, τK ∇ ph|K , does not appear in the
finite element scale Eq. (93) (which corresponds to � = �h),
since as already mentioned, the products between the first
derivatives of vh and the ones of �h are equal to zero.

In Eq. (94), the subscale velocity appears through the
divergence term:
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∫

Ω

∇ ·(vh + ṽh)ψ dv =
∫

Ω

∇ ·vhψ dv −
∑

K

∫

K

ṽ · ∇ ψ dv

Consequently, the ASGS methods consists in adding the sta-
bilization term

∑

K

∫

K

τK ∇ ph · ∇ ψh dv (98)

to the mass conservation Eq. (94). In the present case (Stokes
and elasticity equations), the derived term acts as a pressure
diffusion term. Such a stabilization term has also been derived
from a bubble stabilization in [79] and is used in [4].

Finally, the stabilization parameter τK can be approxi-
mated through an adequate Fourier analysis. Using the same
procedure as in [6], τK can be related to the mesh size hK

and to the material properties:

τK = a2

a1
hK

2 = (1 − 2G/3K )Hs + H f

2(G�t Hs + ηH f )
hK

2 (99)

6.2.2 Discretization and Computation of the Surface

Tension Integral

The Laplace’s law (88) that expresses the fluid - solid cou-
pling appears in Eq. (93) as an integral over the interface Γs/ f ,
in a weak form :

∫

Γs f
γgbκn ·� da. However, the implemen-

tation of this surface integral is not straightforward within a
Eulerian context. Indeed, surface Γs/ f is not known explic-
itly (it is not a set of mesh element faces), but it is defined
by the zero LS of the function αh , which passes through the
mesh elements. To overcome this situation, two strategies are
proposed here: the Continuum Surface Force (CSF) method
and the surface local reconstruction (SLR) method. Addi-
tionally, two methods for the computation of the curvature
are discussed.
Continuum Surface Force (CSF) Method The surface tension
term in Eq. (93) has been widely studied [3,7,8,31,36,49,
50,54,74,81,91]. Most of those works uses the CSF method,
where the surface integral is approximated by a volume inte-
gral. The transformation from the surface integral into a vol-
ume integral is achieved by multiplying the original function
by a Dirac function δ (α):

∫

Γs/ f

γs f κn · � d S =
∫

Ω

γs f κn · � δ (α) dV (100)

The Dirac function δ (α) is computed by differentiating a
smooth characteristic function ĉ (x) that allows to identify
the phase which the point x belongs to:

c (x) =

⎧

⎨

⎩

c1 if x ∈ Ωs

c2 if x ∈ Ω f
c1+c2

2 if x ∈ Γs/ f

ĉ (x) = K ∗ c (x) =
∫

ΞK

c(x′)K(x′ − x)dx′ (101)

where ΞK is the compact support of the kernel K (see [91]
for further details). The performance of this kind of methods
highly depends on the choice of the kernel K and its support
ΞK . The numerical computation of this function requires
many integration points in order to guarantee the accuracy of
the computation of Eq. (100).

The characteristic function used in the CSF version con-
sidered in the present work is an approximated Heaviside
function that is used also for approximating Hs and H f , the
presence functions in the monolithic formulation (93)

Ĥs(αh)

=

⎧

⎨

⎩

1 if αh < −E
1

2E

(

E − αh − E
π

sin παh

E

)

if − E ≤ αh ≤ E

0 if αh > E

(102)

Ĥ f (αh) = 1 − Ĥs(αh) (103)

where αh is the discrete piecewise linear LS function, and
E is the width of the transition zone where the mechanical
behavior is a mixture of the mechanical behavior of both
phases, solid and fluid. The Dirac function in Eq. (100) can
be found by differentiating Ĥ f (αh):

δ(αh) = ∂ Ĥ f (αh)

∂αh

= 1

2E

(

1 + cos
(παh

E

))

(104)

The corresponding support is given by the regionΞK : −E ≤
αh ≤ E . One of the disadvantages of this method is that the
kernel K depends on a numerical parameter, here the width
of the transition zone E , which has to be chosen with respect
to the mesh size [91]. The performance of the method highly
depends on this choice.
Surface Local Reconstruction (SLR) method An alternative
method to integrate the surface tension term in Eq. (93) is
proposed in [70]: here, the interface Γs/ f is given by the zero
isosurface of the LS function, {α = 0}. Since it allows to
locally reconstruct the interface, then the surface tension term
can be explicitly computed over this reconstructed surface.

This method consists, for each element cut by the inter-
face, in approximating linearly this surface by a segment in
2D or a plane in 3D. This approximation is possible thanks
to the metric properties of the LS function. Once the inter-
face has been locally reconstructed, the contribution of the
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element to the surface integral can be explicitly computed by
Gaussian integration7: the integration points used to compute
the integral are placed over this surface. It has to be pointed
out that this approach is local to each element, and can be
implemented in the assembly loop of a finite element code.
In particular, the whole surface is never reconstructed. The
first advantage of this method is that it does not require to
choose any numerical parameter contrary to the CSF method.
Furthermore, the accuracy of the numerical results are shown
to be slightly improved using this technique, as described in
Sect. 6.3.

From a practical point of view, the linear approximation
of the surface is given at the element level by the plane (or the
segment in 2D) where the LS function vanishes. The points
where the LS function is equal to zero are referred to as
vertices in the following. These vertices can then be placed
over the edges of the element, when the LS function α is
positive in one node of this edge and negative in the other
one; in special cases, they correspond to a node of the element
(when α = 0 on that node). The different possibilities of
intersections between the interface and an element are given
in Fig. 30 for the 2D case, and in Fig. 31 for the 3D case. In
the general case, the coordinates of the vertex are function
of the coordinates of the two nodes forming the edge as well
as the value of the level-let function on these nodes. The
coordinates of the vertex xvertex placed on the edge formed
by the nodes m and n are given by:

xvertex = xm + (xn − xm)
‖ α(xm) ‖

‖ α(xm) ‖ + ‖ α(xn) ‖ (105)

where xm and xn are, respectively, the coordinates of nodes m

and n, and α(xm) and α(xn) are the values of the LS function
at these nodes, which should have opposite signs.

Note that in 3D cases, the intersection of the interface with
an element can be a quadrilateral (Fig. 31g) if the LS function
is positive in two nodes and negative in the two other nodes.
In this case, the quadrilateral is divided into two triangles,
and the contribution of the element to the surface integral is
the sum of the contribution of both triangles. Furthermore,
special attention has to be paid to particular cases described
in Figs. 30 and 31. First, in the cases presented in Figs. 30a
and 31a, b, the element is not intersected by the interface, and
its contribution to the surface integral is therefore zero. Next,
Figs. 30b and 31c show configurations where the interface
can be shared by two neighboring elements. The contribution
of each of these elements to the surface integral has conse-
quently to be divided by two. Finally, in Figs. 30c and 31d,
e, the LS function is equal to zero in at least one node of the
element. In this case, the integration is carried out as for a
regular element cut by the interface.

7 An analytical integration can also be carried out.

Fig. 30 Intersection between the interface Γs/ f and an element in 2D.
a Point. b Segment (edge). c Segment (point). d Segment

Fig. 31 Intersection between the interface Γs/ f and an element in 3D.
a Point. b Edge. c Triangle (face). d Triangle (edge). e Triangle (point).
f Triangle. g Quadrilateral

Eventually, the SLR method also serves as a “pre-
conditionning” for the computation of the volume integral
which make up the system to be solved, for elements inter-
sected by the interface. This procedure is then equivalent
to consider exact Heaviside functions (Eq. 53) instead of
approximate functions, such as Eq. (102), to separate fluid
and solid regions.
Curvature computation strategies As indicated previously,
the performance of the present method highly depends on
the accuracy of the computation of the curvature κ . The first
method has been introduced in the previous Sect. 5 within the
context of sintering by surface diffusion. By construction, the
mixed ’curvature-surface Laplacian’ formulation (κ/�sκ)
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presented in Sect. 5.2 [13] is solved for the curvature κ . Then
this method can also be used here, since the simulation of sin-
tering by multiple diffusion mechanisms constitutes, the aim
of this work, can rely on the curvature obtained from the sur-
face diffusion step and then be introduced into the mechanical
solver to obtain the pressure field needed for the volume dif-
fusion. This explicit curvature computation is referred to as
“Direct” method.

An alternative method can be adopted to avoid the explicit
computation of the curvature. Let � be a vector in Rn . The
surface gradient of � with respect to Γs/ f is defined as
the tangential part of the gradient of �: ∇s � = ∇� −
(∇� · n) ⊗ n = (I − n ⊗ n) · ∇�, where n is the outward
normal to Γs/ f . The surface divergence of � is defined as the
trace of the surface gradient operator:

∇s · � = ∇ · � − (∇� · n) · n = (I − n ⊗ n) : ∇� (106)

Furthermore, since I − n ⊗ n is the operator of projection
onto the tangent space of Γs/ f , the vector (I − n ⊗ n) · � is
tangent to Γs/ f . Consequently, and because Γs/ f is a closed
surface, the following relation holds [29]:
∫

Γs/ f

γs f ∇s · [(I − n ⊗ n) · �] d S = 0 (107)

where γs f is assumed to be a constant.
By using the definition of the surface divergence (Eq. 106),

the above relationship (Eq. 107) writes:
∫

Γs/ f

γs f [I − n ⊗ n] : ∇�d S

=
∫

Γs/ f

γs f (I − n ⊗ n) : ∇(n ⊗ n · �)d S

Finally, it can be shown that the right hand side term in the
previous equation is equal to the surface tension term that is
to be computed in Eq. (93). The mean curvature can then be
defined as the divergence of the outward unit normal along the
surface because ∇ ·n = ∇s ·n. Therefore the last expression
in the previous equation is equal to the surface tension term
in Eq. (93).
∫

Γs/ f

γs f [I − n ⊗ n] : ∇�d S =
∫

Γs/ f

γs f κn · �d S (108)

By substituting the surface tension term of Eq. (93) by the
left hand side term of Eq. (108), the explicit computation
of curvature κ can be avoided. This approach was inspired
by [29], and also discussed in [54].

6.3 Numerical Validation

Again, all the simulations presented in the forthcoming sec-
tion have been performed by using the finite element library
CimLib, a fully parallel C++ scientific code, mainly devel-
oped at the CEMEF, MinesParisTech [25].

6.3.1 Parasitic Current (Two-Phase Incompressible flow)

As a first validation of the approach, a benchmark case is con-
sidered that has been widely studied to check the accuracy
of the different methods introduced so far. The test consists
in computing the mechanical equilibrium of an incompress-
ible fluid bubble placed inside another incompressible fluid,
with the stress vector set to −pout n over the boundary of the
computational domain. The analytical solution of this prob-
lem is a zero velocity field and a pressure field p equal to
pout outside the bubble and jumping to pin = pout + γs f κ

inside the bubble.
It has to be highlighted that the formulation of the mechan-

ical problem (Eqs. 93 and 94) holds for a problem where
the phase 1 (Ωs) presents a linear elastic behavior. Hence,
in order to perform this two-fluid test case, the formulation
has to be slightly modified. Both phases will be assumed to
respond as Newtonian fluids. Even if the analytical solution
of this problem is a zero velocity field, some nonphysical
parasitic currents are generated as a result of the numeri-
cal simulation [3,7,8,31,36,49,50,54,74,81,91]. These par-
asitic currents are used to assert the convergence and the
performance of the different approaches presented below to
calculate the surface tension integral.

The dependence of the maximum velocity vmax to the
surface tension / viscosity ratio (γs f /η) is first investigated.
Table 4 shows the value of C = ‖vmax‖/( γs f

η
) obtained for a

wide range of values of γs f /η, from 10 to 105. C is found to
be constant. This result confirms the proposition in [54] and
[81]: ‖vmax‖ depends linearly on γs f /η.

Figure 32 shows how the parasitic currents are mainly
concentrated around the interface Γs/ f . The simulations have
been performed over a structured mesh with an element size
of 1/64 (Fig. 32 left), using the direct computation of the
curvature, i.e. from the mixed formulation κ/�sκ . Comple-
mentary tests showed that the maximum velocity vmax does
not depend on the element size, and consequently, the results
quality depends mostly on the method used for prescribing
the surface tension. Additionally, those tests showed that the
result did not either change when the surface integral was
computed using CSF or SLR.

Next, the dependence of the finite element error on the
bubble mean pressure is evaluated versus the mesh size. The
simulation is performed in a structured 2D mesh of N nodes
over a square domain of side length 1 m. The parameters
of the simulation are a bubble radius of R = 0.2 m, a sur-
face tension coefficient γs f = 0.9 N/m and a viscosity of
η = 1000 Pa · s. Pressure at the outer boundary is set to
zero (pout = 0). Therefore the theoretical value of the pres-
sure inside the bubble is pth

in = 4.5 Pa. Figure 33 shows
the relative error on the mean pressure inside the bubble
((pth

in − pin)/pth
in ) as a function of the square root of the num-
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Table 4 Values of
C = vmaxη/γs f for the
two-fluid simulation

γs f /η 101 102 103 104 105

C [81] 9.1 × 10−3 9.0 × 10−3 8.8 × 10−3 9.1 × 10−3 9.4 × 10−3

Pino Muñoz et al. [70] 3.7 × 10−3 3.7 × 10−3 3.7 × 10−3 3.7 × 10−3 3.7 × 10−3

Fig. 32 Parasitic currents in a static bubble simulation over a square
computational domain of side 1 and element size h = 1/64 (left with
mesh, right velocity only)

ber of nodes N 1/2. Four of these curves have been extracted
from [7]: results named “CSF” are computed by Brackbill et
al. using the Continuum Surface Force method [8] within a
Eulerian VOF framework; Results named “HAREM” corre-
spond to an augmented Lagrangian method combined with a
VOF approach [87]; the “Front Tracking” results correspond
to a: LS Finite Differences method [78]; and the “Monte
Carlo” approach is based on energy potential including inter-
face and volume energies [7].

The fifth curve in Fig. 33, referred to as “Pino et al.” cor-
responds to the simulation carried out by using the direct
computation of the curvature (κ/�sκ), and the SLR method
for surface tension integral evaluation. For comparison, the
sixth curve, referred to as “Pino et al. Dirac” is obtained in
the same condition of curvature computation, but using an
approximation of the Dirac delta function to compute the
surface integral similarly to the “CSF” method. Both simu-
lations show a similar trend, with a first order spatial con-
vergence, and can be compared with relevancy to the recent
results obtained by Bordère et al. [7], referred to as “Monte
Carlo” in Fig. 33. The mesh adaptation strategy presented
in Sect. 4.4.4 has also been used to perform the same sim-
ulation presented previously and the corresponding relative
error on the mean pressure is also plotted in Fig. 33 (referred

Fig. 33 Relative error on the mean pressure computed inside the bub-
ble

Table 5 Relative error on the mean pressure as a function of the stabi-
lized finite element and curvature computation methods

Stabil. Curvature κ

Analytical
Direct Tensorial

ASGS 1.72 × 10−2 1.72 × 10−2 1.73 × 10−2

P1 + /P1 6.20 × 10−3 6.29 × 10−3 8.65 × 10−3

to as “Pino et al. Adapt”). This mesh adaptation leads to a
non uniform element size distribution which has an element
size smaller close to the interface and larger away from Γs/ f .
Compared with an structured mesh with the same number of
nodes, the adaptated mesh has an element size that could be
up to 20 times smaller that the structured one. This clearly
yields an improved convergence of the numerical approach.

Finally a comparison between the two stabilized finite ele-
ment methods used to solve the mechanical problem, that is
P1 + /P1 and ASGS, is reported in Table 5. For this com-
parison the same incompressible bubble inclusion simulation
as described previously has been considered, using a struc-
tured mesh with an element size of 1/256. The curvature is
computed in three different manners: in the first one (“Analyt-
ical”) the curvature is replaced by its exact value κ = 1/R,
the second method (“Direct”) is the mixed solver κ/�sκ ,
and the third way (“Tensorial”) corresponds to the tensorial
expression given in Eq. (108).

For this test case the best results are found by using a
P1 + /P1 stabilization whatever the curvature assessment
procedure. Furthermore, it is an interesting fact to verify,
like in [29], that the result obtained by computing the cur-
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Table 6 Material properties of the solid and the fluid considered

Properties Value

Elastic solid
μ 156 GPa

K 260 GPa

ν 0.25

γs f 0.9 J/m2

Incompressible fluid
η 1 Pa s

vature with the direct method allows us to get a result as
accurate as in the case where the curvature is replaced by its
exact analytical value. It is also important to highlight that
the ASGS stabilization does not present any relevant depen-
dence upon the curvature computation method. However, it
has to be underlined that P1 + /P1 stabilization appears
slightly better, for this case, than the ASGS method when
the error is estimated with the mean pressure. If the error is
now based on the maximum pressure value (i.e. L∞-norm),
the conclusions are different as shown in next section.

6.3.2 Fluid–Elastic Solid Interaction

The mechanical monolithical formulation presented in
Eqs. (93) and (94) will be used from now on to simulate
the interaction between an incompressible fluid and a linear
elastic solid with surface tension. This kind of interaction
presents some new challenges such as coping with the high
ratio between the mechanical properties of the two phases
and the compressible nature of elastic solids.
Spherical elastic inclusion This section focuses on the case
of an elastic cylindrical 2D inclusion embedded into a New-
tonian fluid matrix. Like in the previous section, the stress
vector is set to −pout n over the boundary of the compu-
tational domain. The mechanical properties of both phases,
solid and fluid, are presented in Table 6. This problem is
solved under the plane strain hypothesis. The pressure inside
the elastic inclusion depends on both the curvature κ and
surface tension coefficient γs f , but is also a function of the
mechanical properties of the solid. The analytical solution of
this problem is:

pin = pout + 3K

3K + μ
γs f κ = pout + 2

3
γs f κ (1 + ν) (109)

where pin is the pressure inside the solid (Ωs), pout is the
pressure in the fluid (Ω f ), and ν is the solid Poisson’s ratio.
In the considered case pout is set to zero, and therefore the
pressure inside the solid should be pin = 3.75 MPa consid-
ering the mechanical properties in Table 6.

Within the Eulerian approach considered in this work,
the surface tension at Γs/ f introduces a discontinuity of

Fig. 34 L2-relative error on the pressure computed inside the elastic
inclusion

the normal stress, and therefore, a discontinuity of pres-
sure. However, the presented simulations have been carried
out by approximating the pressure with a continuous piece-
wise linear function. With this continuous approximation,
the pressure discontinuity and the material property dis-
continuity at the fluid–solid interface, generate some pres-
sure oscillations that do not represent finely the physical
nature of the problem. Nevertheless, continuous approxima-
tions remain popular and easy-to-implement methods to deal
with two-phase problems [7,8,36,49,50,54,74,81], although
other techniques as the extended finite element method, the
discontinuous Galerkin method, or a recent modified contin-
uous Galerkin method [4] exist and can be used.

Figure 34 shows the relative L2-error on the pressure, as
a function of the square root of the number of nodes. The
surface integral has been evaluated by using the SLR method
which was proved to yield the best results. The curvature can
be computed into three different ways: the first one corre-
sponds to its analytical value (solid lines) and the two other
ones are the direct formulation (κ/�sκ) (dotted lines) and
the tensorial method (dashed lines) expressed in Eq. (108).
Both stabilization methods studied in this work are also plot-
ted: the P1+/P1 stabilization (filled circles) and the ASGS
method (filled triangles). It is important to note that the six
first curves are obtained with structured meshes, and the last
one (referred to as “Tensorial Curvature, ASGS Adapted”)
is obtained from an adapted unstructured mesh.

It can clearly be seen that the surface tension term is not
accurately computed by the tensorial method for structured
meshes with less than 1602 nodes (green curves). However,
when the mesh size is small enough, the tensorial method
leads to results with a relative error lower than 2 %, which
is of the same order as the error obtained with the analytical
value of the curvature, or obtained with the direct computa-
tion of the curvature. The stabilization method also has an
effect on the relative error: with the structured meshes, the
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Fig. 35 Oscillations of the pressure field at the fluid–solid interface,
using MINI-element or ASGS stabilization (with two different scales).
a MINI-element. b ASGS method

P1 + /P1 stabilization seems to lead to slightly better result
than the ASGS method. However, even if the relative L2-error
on the pressure is better when using the P1 + /P1 stabiliza-
tion, the nonphysical oscillations of the pressure (L∞-error)
are significantly amplified when using the P1 + /P1 stabi-
lization, as it can be seen in Fig. 35. Accordingly, the pres-
sure analytical solution should be zero in the fluid, but as a
result of the non physical oscillation of the pressure close
to the interface, this pressure is lower than zero, and larger
for the P1 + /P1 case (−8.35E5 Pa ≃ 24 % pin) than for
the ASGS method (−1.41E5 Pa ≃ 4 % pin). Since we seek
the smoothest pressure distribution, especially for physical
phenomena driven by pressure gradients, the following simu-
lations are performed by using the ASGS method. The impact
of the curvature computation method is discussed further in
the next section.
Two spherical particles with neck The case described in
Fig. 36 is now considered: two spherical elastic particles of
radii R1 and R2, are connected by a neck of radius r . The
analytical value of the curvature is known all over the sur-
face: over the neck it is equal to 1/r , over the surface of

Fig. 36 Two-particle problem—Radii and inflection points (2D)

each particle it is equal to 1/R1 and 1/R2, respectively, and
at the inflection points (see Fig. 36) the curvature is zero. A
2D simulation is carried out (plane strains assumption), for
which the computational domain is the unit square, and the
particles radii are R1 = 0.2μm and R2 = 0.1μm and the
neck radius is r = 0.01μm. The material properties of both
fluid and solid phases are those given in Table 6.

The results obtained with the approach presented in this
work are compared with those obtained by performing the
same simulation using Abaqus 6.10�. Contrary to CimLib,
the framework adopted in Abaqus� for the elastic analysis is
a Lagrangian one. Consequently, the following comparison
methodology has been used. First, the mesh of the compu-
tational domain is created using the Gmsh free mesher (see
[34]), in such a way the fluid–solid interface is exactly repre-
sented by a set of interior element edges, as shown in Fig. 37.
A Eulerian computation is then carried out with CimLib,
using this mesh made up of ASGS-stabilized triangles, the
SLR algorithm, and three methods for calculating the curva-
ture: the analytical one, the “direct” one, and the “tensorial”
one. A Lagrangian simulation is subsequently achieved with
Abaqus�, using the particles mesh, extracted from the previ-
ous fluid–solid mesh. Furthermore, the curvature is computed
in two different ways to study the impact of slight curvature
variations onto the mechanical equilibrium, independently of
the FE solver for the mechanical problem. The first method
uses the analytical value of the curvature. The second one
uses CimLib with the direct method to compute the curvature
that is subsequently imported into Abaqus�. The Laplace’s
law (88) is then applied as a Neumann condition over the
mesh boundary.

Figure 38 shows the variation of the computed pressure
along the vertical line connecting both necks, as depicted
in the sketch of the particles configuration. Note that the
elastic analysis in Abaqus� is carried out with displacement
based FE. The pressure field is then post-treated and equal
to minus one-third the trace of the stress tensor. Looking at
the CimLib and Abaqus� simulations using the analytical
value of the curvature in Fig. 38 (“Analytical Curvature”),
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Fig. 37 Both meshes used for the CimLib–Abaqus� comparison

Fig. 38 Comparison of the pressure along the vertical line connecting
both necks in 2-grain test case (sketch in left corner)

an excellent agreement is found. The same kind of agree-
ment is found regarding the CimLib and Abaqus� simula-
tions using the direct method for computing the curvature
(“Direct Curvature”). But a slight variation of the curva-
ture (Analytical or Direct) has an impact on the pressure,
which means that the mechanical problem itself is intrinsi-
cally very sensitive to slight curvature variations. Obviously
the mechanical approach developed here also presents this
sensitivity. Pressure obtained with CimLib using the tenso-
rial method to express the surface tension term is bounded
by the pressure computed by using the Analytical and Direct
method for the curvature, demonstrating the precision of this
method for curvature computation even for a non-structured
mesh.

The tensorial method still yields good results, as it can be
seen in Fig. 39, where the pressure isovalues obtained with
this approach under CimLib are compared with the Abaqus�

results. Furthermore, two advantages have been found to the
tensorial method compared with the direct curvature evalu-
ation. First, in the limit case where the neck curvature tends
to high negative values, the pressure field exhibits a better

Fig. 39 Comparison between the pressure field obtained with Abaqus

using analytical curvature (upper) and CimLib using Tensorial curvature
(lower)

Fig. 40 Comparison between the magnitude of the displacements
obtained with Abaqus (upper) and CimLib (lower). ux = u y = 0
at point “A” and uy = 0 at point “B”. The analytical curvature (upper)
and Tensorial curvature (lower) methods were used

behavior when it is computed using the tensorial method.
Second, when using an iterative method to solve the lin-
ear algebraic system obtained from the finite element dis-
cretization, the convergence is found to be better with this
approach than when the curvature is computed. And finally,
as the explicit curvature estimation is avoided, the computa-
tion time is reduced.

As a complement, even if the variational formulation of
the problem has been developed as a function of the velocity,
the displacement inside the solid can be computed during
the post-processing by using the Euler explicit scheme (Eq.
(92)). The Eulerian framework used can generate a rigid body
displacement of the solid. In order to be able to establish a
comparison between the results obtained from Abaqus� and
CimLib, this rigid body displacement should be subtracted
to match the Dirichlet boundary conditions applied to the
Abaqus� simulation. Consequently, a translation is applied
to the solid in CimLib in order to set the displacement of
point “A” in Fig. 40 equal to zero. And finally, a rotation
is applied to the solid to prescribe the displacement in the
Y direction equal to zero at point “B” (Fig. 40). After the
post-processing, a comparison of the displacement magni-
tude between the results obtained from Abaqus� (upper)
and CimLib is presented in Fig. 40. A very good agreement
between both simulations is found.

Finally, it was established in Sect. 2.2.3 that the fluid veloc-
ity associated with volume sintering is proportional to the
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Fig. 41 3D representation of the pressure distribution (Pa) in 2D par-
ticles connected with a neck

gradient of the hydrostatic pressure (Eq. 25). This means that
even very slight oscillations of the pressure can lead to high
magnitude localized velocity, and consequently to a degen-
eration of the surface of the particles after a few time steps. It
can be shown that the numerical approach presented allows
to obtain a pressure field with very low unphysical oscil-
lations, even in cases where the surface tension induces a
very high gradient of pressure. For instance, Fig. 41 presents
the pressure computed for the case of two 2D particles con-
nected through a neck using the same mechanical charac-
teristics (Table 6) for particles of radius R1 = 0.2 μm and
R2 = 0.05 μm and the neck radius is r = 0.01 μm. The cur-
vature close to the neck between the particles is very high,
which leads to large pressure gradients but still no strong
pressure oscillations can be observed (Fig. 41).
Multiple spherical particles in 3D. To conclude this section
dedicated to the numerical tools developed for volume dif-
fusion sintering, the simulation of a particle packing embed-
ded into a Newtonian fluid is shown in Fig. 42. Packing is
made up of 178 elastic spherical particles, which can initially
slightly intersect each other, with a uniform radius distribu-
tion ranging from 0.05 to 0.1 μm. The material properties of
both fluid and solid phases are those from Table 6. The mesh
has been adapted in the vicinity of the particles surface using
the strategy presented in Sect. 4.4.4, in order to improve the
description of the microstructure while keeping a reasonable
number of elements. In the simulation shown in Fig. 42 about
700,000 nodes and 4,000,000 elements have been used. The
simulation has been performed using the SLR combined to
the tensorial method, for computing the surface tension term,
and the multiscale ASGS technique to stabilize the P1/P1
velocity–pressure formulation. Regarding Fig. 42, the devel-
oped methodology allows the pressure field to be accurately

Fig. 42 Pressure (Pa) field in a particle packing

computed in this particles compact, with limited oscillations
at the fluid–solid interface.

6.4 Volume Diffusion Velocity

Solving numerically for the matter velocity in volume dif-
fusion requires two more difficulties to be sorted out. First,
the pressure discontinuity at the solid-fluid interface does
not allow to compute directly any pressure gradient although
matter velocity depends on it, and second the mass balance
must be fulfilled over time since no densification is activated
during volume diffusion (see Table 1).

6.4.1 Pressure Discontinuity

Equation 25 shows that the lattice flux diffusion depends on
the gradient of the pressure computed by solving previous
mechanical problem. However, as demonstrated in Fig. 35b,
since one single field is used to describe both fluid and solid
pressure fields, this field exhibits a discontinuity at the inter-
face, and consequently its gradient can not be computed in
a straightforward way over this interface. This issue is over-
come by computing the pressure gradient only inside the
grains, up to a distance λ from the interface (see Fig. 43).
The pressure normal gradient (or normal velocity) computed
over {α = −λ} is subsequently projected onto the interface
{α = 0}. Providing the pressure pn has been computed, these
steps are performed by solving the following equation

ξn = ∇ pn · nα if α < −λ (110)

∇ ξn · nα = 0 if α > −λ (111)

where nα is given by Eq. (51) from the LS definition. Equa-
tion (110) is solved by a finite element method. At each time
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Fig. 43 ξn is directly computed from the gradient of the pressure in
the region α < −λ (darker grey region) and convected in the outward
normal direction in the region α > −λ (lighter grey region)

tn, ξn is approximated by a continuous piecewise linear
function defined over Ω . Since second expression in (110)
is a stationary advection equation, a Galerkin approxima-
tion can not be applied, and the SUPG method (Eq. 72) is
used. Once ξn is computed, the volume diffusion velocity is
simply

vn
vα = −Cvξ

nNα (112)

with Cv = (1− f )Ωa
0 Dv/kT , and Nα is the piecewise linear

vector obtained as the normalized nodal average of the nα

vectors (which are constant per element).

6.4.2 Artificial Volume Conservation Velocity

The velocity computed to represent volume diffusion must
also verify the mass balance in the system. Indeed, volume
diffusion induced by matter transport from the surface to the
neck does not induce any mass change, no densification in
our case (see Table 1). If no particular attention is paid to
this point, an artificial volume loss of some percents can be
induced due to the numerical schemes.

This problem is also present when the grain boundary
diffusion is considered. In literature different solutions are
proposed, for example by Pan [20,21,52,63,65,66]. Some
additional degrees of freedom are added to each particle cor-
responding to the translational and rotational velocities of a
rigid body motion, in such a way that the volume of the parti-
cles is conserved. Another solution considering the sintering
by surface and grain boundary diffusions of two particles
of the same size [88], consists in the addition of a relative
velocity between the two particles to represent the effect of
the grain boundary diffusion and at the same time establish
the coupling between the two diffusion mechanisms. Those
solutions are more adapted for Lagrangian approaches where
the nodes of the mesh are placed over the surface of the par-
ticles and the grain boundaries and mainly used in 2D prob-

lems. It would be complex to integrate them within the LS
approach presented in this work as the velocity field should
be computed over the vicinity of the interface and not only at
the interface, and also their extension to 3D problems raises
some additional challenges.

Another solution can be proposed. The idea consists in
adding an artificial volume conservation velocity on the fluid-
solid interface, intended to recover the volume loss/gain
(�V ) due to the diffusion phenomena [13,69]. This artificial
volume conservation velocity vc is defined in such a way that
its magnitude is constant over the whole fluid-solid interface
and it is oriented in the local normal direction of the particles
surface:

vc = vcn (113)

It can be easily shown that the volume change induced by
any velocity field vcn will be proportional to the fluid-solid
surface S

�Ṽ ≈ vc�τ S|t (114)

Then this correction, or artificial velocity, can be computed
over the fluid-solid interface such that it induces a volume
change to counterbalance the volume change �V due to mat-
ter diffusion vn

vα over a time step �t

�Ṽ|�τ = −�V|�t

=
∫

Ωs |t+�t

dV − V (t) (115)

In this way, Eqs. (114) and (115) allow to find an expression
for the artificial volume conservation velocity vc:

vc = −�V|�t

�τ S|t
(116)

Considering this volume conservation velocity, some numer-
ical tests are carried below.

6.5 Time-Stepping Strategy

Time-stepping strategy for the simulation of sintering by vol-
ume diffusion is summarized in Algorithm 3. It consists in
computing the coupled fluid-solid mechanical equilibrium
for pressure pn , then deduce the pressure normal gradient ξn

to compute the corresponding surface velocity vn
vα , update

the surface geometry, and then correct this velocity to enforce
volume conservation.

6.6 Sintering Between Two Grains

In the following simulations, the computational domain is a
cube or a square with a side length equal to 1μm. Table 7
summarizes the values of the different parameters used in
the lattice diffusion simulations. The grain boundary is not
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Algorithm 3 Time-stepping for volume diffusion
n ← 0, α ← α0 (Eq. 49)
Initial mesh adaptation
while tn ≤ � do

pn ← from fluid–solid coupled problem (93)–(94) with the ”best”
combination

ξn ← from Eq. (110)
vn
vα ← from Eq. (112)

αn+1 ← from Eq. (68) with v ← vn
vα

vc ← from Eq. (116)
αn+1 ← from Eq. (68) with v ← vc

if necessary then

mesh adaptation step
end if

n ← n + 1
end while

Table 7 Parameters used in simulations of lattice diffusion

Parameters

Mechanical
Problem

G = 156 GPa, K = 390 GPa

System (87) (Poisson’s coefficient ν = 0.25), η = 1,000 Pa.s

Laplace’s law γs f = 0.9, γgb = 0 N.m−1

Diffusion
Eq. (112)

(1 − f )2Ωa
0 Dv/kT = 0.013 m4.s−1.N−1

Time step 3.10−4 s ≤ �t ≤ 10−3 s

taken into account, we have therefore γgb = 0. Two remarks
can be done. First, the value of the viscosity of the surround-
ing medium is very high, here η = 1, 000 Pa.s. However,
since the role of the surrounding fluid is only to transmit
the stresses from the computational domain boundary to the
grain surfaces, an accurate description of the dynamics of
this medium is not of interest here. Consequently, the key
parameter is not η but the ratio η/(�tG) which has to be
small enough to guarantee that the surrounding medium does
not perturbate the motion of the grain surfaces. The present
ratio, lower than 2.10−5, satisfies this condition. The sec-
ond remark is that the parameter (1− f )Ωa

0 Dv/kT (through
the diffusion coefficient Dv) allows the time scale to be set.
Here, the time is expressed in seconds. However, this choice
is arbitrary.

The neck growth by lattice diffusion between two spher-
ical grains of same radii is first analyzed. The geometrical
models developed in the literature have been presented in the
first section of this paper, they can be expressed under the
form of power law (Eq. 33). For volume diffusion a common
expression of the neck growth over time writes [73]
(

x(t)

R

)n

= B DlγΩm

RT R4 t = Bt∗ (117)

where B is a constant, t∗ = (Dvγs f Ω
a
0 )/(kT R4) the dimen-

sionless time, and the value of the parameter n stands between
4 et 5 according to [28] (Table 2). Figure 44 shows the growth

Fig. 44 Growth by lattice diffusion of the dimensionless neck radius
x/R over dimensionless time t∗ = (logarithmic scale) for different
values of R

of the dimensionless neck radius x/R versus t∗, computed
by finite element for a grain radius ranging from 0.1 to 0.4.
The best curve fitting these data, obtained by a least-square
minimization, is x/R = 0.36t∗1/5.6 and is referred to as
“n = 5.6”. Similarly to surface diffusion, this value which is
larger than the upper bound predicted by the theory represents
a sort of average value that takes into account the different
stages of the sintering. However, when these simulations are
examined individually, the coefficient n is shown to depend
on the grain size and to vary slightly into each simulation.
More precisely, the simulations provide a coefficient n that
decreases when the grain size increases: n is equal to 4.85
when R = 0.1, to 4.23 when R = 0.2, to 4.14 when R = 0.3
and to 3.88 when R = 0.4. However, it has to be underlined
that, even if it gives a good indication on the relevancy of
the numerical approach, a strict comparison between simu-
lations and expression (117) is not fully appropriate since this
expression does not depend on material parameters. Indeed,
expression (117) corresponds to the limit case where grains
are considered as rigid bodies.

Figure 45 presents the change in time, by volume diffu-
sion, of two spherical particles of different sizes. This simu-
lation has been performed in 2D and the plane strain assump-
tion is considered. The initial radii of the two particles are
0.25 and 0.1 μm, respectively. The mesh adaptation strategy
is used to refine the mesh over a narrow band around the
interface Γs f , as shown in Figs. 46a and 45c. The mesh is
built up of about 55,000 elements.

The pressure field computed at the initial configuration
is shown in Fig. 46a. After 250 time steps as described in
Algorithm 3, the pressure field is shown in Figs. 46b and 45c.
At that time (t = 250�t = 0.1 s), the neck between the
particles is about 87 % of the radius of the smaller particle
and as the curvature is lower then, as expected, the pressure
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Fig. 45 2D simulation, under plane strains assumption, of volume dif-
fusion for two cylindrical particles of different size: a and c mesh refined
around the interface and pressure isovalues (MPa), respectively on the
initial configuration and after 250 computation increments; b pressure
field (MPa) and induced diffusion velocity after 250 computation incre-
ments

is not as strong as it was at the beginning. It is important
to highlight that the change on the grain volume during the
whole simulation is limited to 2.2 × 10−6 % which can be
considered as zero.

7 Toward a Full Sintering Simulation

A numerical framework for the simulation of sintering by
surface and volume diffusion has been established in previ-
ous sections. The third important diffusion route, the grain
boundary diffusion, is discussed in Sect. 7.1. However, we
shall see that the proposed numerical framework is not yet
satisfactory to deal with this diffusion route. That is why
Sect. 7.2 proposes to couple together only the surface and
volume diffusion velocities, and Sect. 7.3 investigates the
sintering of two grains under this mechanism. Finally, the
simulation of sintering of a granular packing is shown in
Sect. 7.4.

7.1 Grain Boundary Diffusion

According to Eqs. (26) and (30), the velocity associated with
the grain boundary diffusion path is function of the second
derivative of the normal stress along the grain boundary. The
strategy presented in this paper is a first step toward the sinter-
ing simulation by grain boundary diffusion since the surface
tension at the grain boundary can be taken into account in the
mechanical problem (87). Hence, Fig. 46 shows the pressure
field computed with non-zero surface tension both at the free
surface and at the grain boundary.

However, some major difficulties are yet existing, and
make that the numerical strategy allowing to compute the
velocity due to grain boundary diffusion is yet to be devel-
oped. Among these difficulties, we can note that the descrip-
tion of two grains separated by a grain boundary, as shown in
Fig. 46, requires two LS functions. More generally, one LS
function has to be associated with each grain if one wants to
describe grain boundaries (even if some optimization can be
done using a graph coloration algorithm as explained in [41]).
Beyond this number of LS functions, dealing with two level
sets in contact still remains a difficult task: the triple junc-
tion is not geometrically well-defined when using a mesh,
holes can be artificially created at the grain boundary and in
the vicinity of the triple junction, grains can overlap. Some
solutions are provided in references [56,80] but in a two-
dimensional finite difference framework. Another difficulty
is that the normal stress computed with our strategy is not
smooth enough to obtain a good approximation of its Lapla-
cian over the grain boundary.

For these reasons, simulation of sintering by grain bound-
ary diffusion remains a challenging task for the future.
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Fig. 46 Pressure field computed by taking into account the surface
tension over Γs f and Γgb (grain boundary). a pressure field on the
entire domain, and b pressure distribution along a straight line (green

line in a)—pressure jumps across interfaces Γs f and Γgb. (Color figure
online)

7.2 Coupling Surface and Volume Diffusion Routes

In order to couple together surface and volume diffusion
routes, some hypotheses have to be made. The surface diffu-
sion mass flux js and the volume diffusion mass flux jv are
assumed to be independent and therefore the corresponding
velocities are also independent. Additionally, both diffusion
mechanisms are supposed to occur simultaneously. In fact,
those diffusion fluxes mainly depend on the geometry of the
structure and more precisely on the curvature κ . The surface
flux js is directly proportional to the surface gradient of the
curvature and the volume flux is proportional to the pressure
gradient which also depends on the curvature through the
Laplace’s law. A way to establish a coupling between the
two diffusion paths consists in computing the coupled veloc-

Table 8 Material properties used

Property Value Units

DsΩ
a
0 γs f δs/kT 1×10−7 m mol/s

DvΩ
a
0 (1 − f )/kT 55.16 m mol/N s

K 260 GPa

G 156 GPa

η 1e-3 Pa/s

γs f 0.9 N/m

Ωa
0 8.55×10−6 m3/mol

ity vsv as the result of the vectorial addition of each indi-
vidual diffusion velocity. This coupling velocity is obtained
through a population balance when considering js and jv
as independent. Considering the expressions for surface dif-
fusion (Eq. 29) and volume diffusion (Eq. 32) velocity,
we have:

vsv = vs + vv

= (1 − f )
Ωa

0

kT

(

Dsδsγs f �sκ − (1 − f )Dv ∇ p · n
)

n

(118)

The time-stepping strategy for the simulation of sintering by
coupling surface and volume diffusions is given by Algo-
rithm 4.

Algorithm 4 Time-stepping for coupling surface diffusion
and volume diffusion

n ← 0, α ← α0 (Eq. 49), A0 ← ‖ ∇ α0‖
Initial mesh adaptation
while tn ≤ � do

(

κn
α , vn

sα

)

← from Eq. (83)
vs

n
α ← from Eq. (84)

ξn ← from Eq. (110)
vn
vα ← from Eq. (112)

αn+1 ← from Eq. (68) with v ← vn
vα + vs

n
α

vc ← from Eq. (116)
αn+1 ← from Eq. (68) with v ← vc

if necessary then

mesh adaptation step
end if

n ← n + 1
end while

The material properties used in the following simulations
correspond to the properties of Alumina (Al2O3) and are
summarized in Table 8. It is important to recall that the dif-
fusion related properties are significantly larger than the real
properties of the material (because the time unit is not fixed),
but this does not have any impact on the kinetics of the phe-
nomena.
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Fig. 47 Evolution of the dimensionless neck radius x/R over the time
t (logarithmic scale)

7.3 Sintering Between Two Grains

Surface and volume diffusions are coupled to simulate the
sintering of two particles by these two diffusion mechanisms.
When the surface diffusion and volume diffusion mecha-
nisms were presented, the case of two particles was used
to validate the results obtained. As indicated several times
throughout the presented approach, the analytical models for
the neck growth between particles can be written under the
form of power laws (Eq. 33) for any diffusion mechanism,
with appropriate expressions of exponents n an dm (Table
2) and with B which stands for a physical parameters com-
bination including radius particle R (see Eq. 85) for surface
diffusion and Eq. (117) for volume diffusion).

Change in the dimensionless neck radius x/R for two par-
ticles of radius R = 0.2 μm is considered. First, the surface
and the volume diffusion were considered alone. The change
in the dimensionless neck radius x/R for these two diffu-
sion mechanisms is plotted in Fig. 47, where the red and
the green lines correspond to the surface and volume diffu-
sions, respectively. As stated in previous Sects. 5.4 and ??,
the kinetics of these two diffusion mechanisms is well repre-
sented by the numerical approach developed. The evolution
of the dimensionless neck radius x/R for the coupled diffu-
sion is also plotted in Fig. 47 with a blue line. As expected
the neck growth is significantly faster when the coupled dif-
fusion is considered. By using a least square interpolation of
the obtained data, the exponent corresponding the coupled
diffusion is n = 3.29. Validation of this coupling is very
complex since analytical models for the neck growth are not
available for these two mechanisms working simultaneously.
However, by considering the kinetics obtained, one may state
that the results are qualitatively correct.

Figure 48 permits to compare the neck geometry, obtained
at a same fixed time, provided by three different diffu-
sion mechanisms: surface diffusion alone, volume diffusion
alone, and the coupling between surface and volume diffu-

Fig. 48 Geometry of the neck between the particles after 65 time steps

sions. As expected, the neck grows significantly faster when
surface and volume diffusion take place simultaneously.

7.4 Sintering of a Granular Packing

A sintering simulation by coupled surface and volume diffu-
sions over a more realistic granular packing is presented. A
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set of 154 particles with radii ranging from 0.0633 to 0.0797
μm is embedded into a computational domain given by a
cube of side 1.2 μm. The material properties used are pre-
sented in Table 8. Figure 49a shows the initial packing as
well as a cut of the refined mesh that is made up of about 2
millions nodes and about 11 millions tetrahedral elements.

The changes in structure under surface and volume diffu-
sion is shown in Fig. 49a–d. In the initial geometry, grains are
set to be quasi-tangent. As the volume diffusion takes place,
the necks between the particles grow up to a point (Fig. 49d)
where the particles can not be distinguished any more (recall
that grain boundaries do not exist in this simulation).

One of the most important advantages of the numerical
approach developed in this work is related to its capability
to supply information about the local state of the structure
at any time step. Furthermore, since the surface and volume
diffusions are coupled together, the results obtained should
get closer to the microstructures that can be obtained in real
experiments, but still important differences are present. Spe-
cially, the grain boundary diffusion mechanism has a huge
contribution among the diffusion paths and therefore it is not
yet possible to make qualitative comparisons with the results
available experimentally where all the diffusion mechanisms
are activated. Nevertheless, important information can be
extracted from this kind of simulation.

For example the grain packing presented in Fig. 49a was
initially formed by a set of 154 particles with no closed
porosity. As coupled diffusion takes place, the structure
changes and closed porosity appears after about 250 time
steps (t ≈ 0.2 s). Figure 50a shows the first pore that appears
inside the powder compact. In fact this pore evolves until a
roughly spherical shape is reached (Fig. 50a–c). The struc-
ture is still changing, and after 520�t it is possible to identify
multiple pores of different sizes inside the powder compact,
as can be seen in Fig. 50d.

As stated previously, neither the mass nor the density of
the particles change during the sintering process, the volume
of the grains must remain constant. Considering the simu-
lation shown in Fig. 49, the change of total volume of the
grains after 200 time steps is about 0.12 %, which is negligi-
ble (thanks to the correction velocity—Eq. 113). Because of
this volume conservation, shrinkage effect results naturally
from the microstructure changes which occur during the sim-
ulation. This simulation involves 550 time steps and has been
performed in about 245h by using a parallel computing strat-
egy on 24 cores.

8 Conclusion

Sintering is a very complex process involving several mul-
tiphysics phenomena. From a practical point of view there
are many variables that have to be controlled in order to

Fig. 49 Changes occurring in a granular packing under surface and
volume diffusion. a t = 0 and adapted mesh; b t = 65�t ; c t = 130�t ;
d t = 170�t
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Fig. 50 Closed porosity at different time steps. a t = 270�t ; b t =
470�t ; c t = 520�t ; d t = 520�t (all the pores developed)

obtain the desired properties of the final product. Because of
these many variables and their interdependency, it is difficult
to extract useful information from experimental data. There-
fore numerical simulations represent a powerful tool that can
provide meaningful information about this phenomena.

Considering the numerical tools available aiming at the
simulation of the sintering process at the particle scale, a lack
of a numerical approach able to handle the different diffu-
sion mechanisms, complex geometries, and strong topologi-
cal changes in 2D and even more drastically in 3D becomes
obvious. In this work was developed a numerical approach
able to integrate efficient simulations of sintering by mul-
tiple diffusion mechanisms at the grain scale, allowing to
study the changes occurring into the representative elemen-
tary volume of a powder compact. The LS method which is an
Eulerian-based approach was chosen because of its capabil-
ity to handle strong topological changes in 2D and specially
in 3D without any kind restriction concerning the geometry
and the evolution of the system.

Within this LS framework, a numerical strategy, based
on stabilized mixed finite elements, was developed for sim-
ulating sintering both by surface and volume diffusions. A
characteristic of the proposed approach for volume diffu-
sion, is to express the mass flux with respect to the gradient
of pressure. Hence, contrary to the literature where grains are
considered as rigid bodies, grains were assumed to behave
here as elastic bodies. Consequently, a finite element analysis
of the mechanical problem coupling elastic bodies with a sur-
rounding fluid medium through Laplace’s law was addressed.

Both surface and volume diffusion simulations were com-
pared individually with success to usual geometrical mod-
els of two grains. However, the interest of the proposed
approach is that it allows to cope with the severe topological
changes and complex geometries that characterize the sinter-
ing process. Hence, combining surface and volume diffusion
routes, the simulation of sintering of a 3D granular pack-
ing involving more than 150 grains was presented. During
this simulation, the structure, which is initially made up of
tangential grains, changes until developing closed porosity.

It is important to highlight that this kind of simulations
are computationally very expensive, especially in 3D. In fact,
the 3D simulations of the 150 particle packing sintering were
performed by using a mesh built-up of about ten millions of
elements and 24 processors were used, which required a com-
putational time of about 200 hours. It has also to be outlined
that mesh adaptation technique is another key point of these
simulations. Without this mesh adaptation, such simulations
would not be accessible.

Outlook can be drawn from this work. Since the frame-
work for the simulation of the grain boundary diffusion
path has already been fixed, the most straight outlook is the
introduction of this diffusion mechanism into the numeri-
cal approach. However, this still represents a challenging
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task since the transport of multiple LS functions has to be
handled and the normal stress over the grain boundary has
to be computed in a more accurate way. Coupling between
those three main diffusion mechanisms (surface, volume and
grain boundary) could lead to comparisons with experimen-
tal data and calibrated powder compact sintering. Moreover,
the microstructural evolution of the powder compact could
be embedded into macroscopic models.

Additionally, this numerical tool also allows to deal with
the sintering of multi-materials or the study of the sinter-
ing of doped powders. In fact, all the diffusion mecha-
nisms are numerically controlled by the value of the mater-
ial properties—i.e. diffusion coefficients, mechanical prop-
erties, surface tension coefficients—therefore it would be
possible to evaluate different material properties from some
physical considerations to represent the multi-materials sin-
tering or the sintering of doped powders. That corresponds
to a work in progress.
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