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Abstract:  

304L and 316L SS samples are SCC-tested in PWR water for various conditions: strain level, 

duration, pH, surface finish. The passive Chromium-rich oxide layer, the consistent oxidation feature, 

is characterized using Transmission Electron Microscope analysis. EDX analysis and Energy-filtered 

images are used to map the oxide penetration at the surface of the sample and at contiguous grain 

boundaries. Statistical data obtained by these characterizations are exploited to considerate the effects 

of deformation, pH and duration on oxidation. Complementary analyses of intergranular crack 

initiations allow to invetigate the oxidation phenomenon at grain boundaries and its influence on 

intergranular cracking. 
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1. Background 

Oxidation is a key phenomenon in the stress corrosion cracking (SCC) mechanisms of 

stainless steel (SS) in primary water of pressurized water (PWR) reactors: the passive 

chromium-rich oxide formed at the surface of SS forms a protective barrier from the 

environment, but also constitutes a boundary where the crack initiation could occur. Previous 

studies [1] have demonstrated the deleterious effect of plastic deformation on susceptibility of 

304L to IGSCC in PWR primary water at 360°C. TEM observation [2] allowed to identify 

specific interactions between plasticity and oxidation. Oxidation phenomenon needs to be 

quantified in order to develop predictive models involving interactions between mechanical 

and environmental effects. 

2. Materials 

Austenitic alloys tested in this work (304L and 316L) were sampled from 30-mm-thick plates. 

Chemical compositions and mechanical properties of the materials as manufactured are given 

in Table 1 and Table 2, respectively. Unlike 316L, 304L contains less than 5% of residual -

ferrite and is subject to strain-induced martensite transformation: Ms = –133°C, Md30 = –3°C, 

as predicted by Angel [3]. In the 316L heat XY183, Ms = –133°C, Md30 = –40°C. The 

estimated staking fault energy (SFE) of 304L is 24 mJ.m
–2

 and that of the 316L is 33 mJ.m
–2

  

[4]. Non-sensitized 304L and 316L were solution-annealed at 1050°C and water quenched. 

The resulting microstructures, showing no evidence of carbide precipitation, neither in the 

matrix, nor along the grain boundaries, were characterized using EBSD. The average grain 

diameter was 27 µm for 304L and 90 µm for 316L. The distributions of misorientation angles 

were comparable for 304L and 316L, in the range 6° <  < 59°, including twin boundaries (

> 54°). In both materials, 30 to 50% of boundaries were twin boundaries. 

 Table 1 – Chemical composition (wt. %). 

Material Heat 
C  

(%) 

S         

(%) 

P       

(%) 
Si    (%) 

Mn 

(%) 

Fe 

(%) 

Ni   

(%) 
Cr    (%) 

Mo 

(%) 

N 

(%) 

Al 

(%) 

316L XY183 0.026 0.004 0.033 0.42 1.81 65.75 12.00 17.34 2.57 0.050 - 

AISI Requirement for 316L < 0.03 < 0.03 < 0.045 < 1 < 2  10-13 16.5-18.5 2-2.5 < 0.11  

304L T2575 0.026 0.002 0.027 0.52 1.49 68.68 9.45 19.23 0.24 0.064 0.033 

AISI Requirement for 304L < 0.03 < 0.03 < 0.045 < 1 < 2  8-10 18-20  < 0.11  
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 Table 2 – Mechanical properties in air at room temperature. 
Material Heat Ys0,2 (MPa) UTS (MPa) El. (%) HV30 

316L XY183 255 553 63  

304L T2575 247 582 60 160 

RCCM-M220 requirement > 170 > 500 > 45 126-179 

3. Experiments 

3.1. Specimens 

Most of the TEM characterizations were performed on specific cross-shaped specimens 

(Figure 1). This specimen geometry and testing procedure allows the testing of SCC in PWR 

primary water while inducing strain localization and complex loading paths. The details of 

these specimen and the associated tests have been described in [5, 6]. 

Cross tests were used to promote strain localization. This design was optimized to obtain 

strain localization in the cross-area of the specimen during pre-straining and subsequent 

deformation in primary water. The specimen is not symmetrical through its thickness: only 

the front face is perfectly plane, designed to allow for easy mechanical polishing, material 

characterization and local strain evaluation. All characterizations and observations were done 

on 1 mm
2
 area at the center of the specimen‟s front face.  

The sample's surface of interest was mechanically polished down to 0.25 µm abrasive finish 

in order to remove the superficial cold work due to machining. Electrolytic polishing was then 

performed to eliminate residual cold work after mechanical polishing. The solution used was 

a Struers A2 electrolyte containing 73% ethanol, 10% butoxyethanol, 9% water, and 8% 

perchloric acid. This treatment leaves a chemically-affected layer enriched in chromium in the 

first few nm from the surface. A plasma cleaning step was thus used to remove this layer 

possibly affecting subsequent oxidation reactions. The layer was removed using  4.5 kV argon 

ions at low incidence for 2 minutes to minimize the irradiation damage to the surface. 

EBSD characterizations were carried out on the 1 mm
2 

area at the center of each specimen. 

Gold grids (1 mm
2
, mesh size = 5 µm) were deposited by electron micro-lithography at the 

center of the specimens, allowing the quantification of local deformation using image 

correlations on grid images acquired in a SEM. 

 

Figure 1 – Cross-shaped specimen 

3.2. Pre-deformation and SCC tests on cross-shaped specimens 

Pre-deformation of the cross-shaped specimens was achieved through a monotonous tensile 

deformation along the X axis. After the acquisition of deformed microgrid images in a SEM 

to characterize the prior deformation, the specimens arms used for pre-straining were cut off 

and the reduction in section thickness ensured that deformation was localized at the center of 

the specimen during the second loading stage in simulated PWR primary environment at 

360°C. 
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Specimens were rinsed ultrasonically in ethanol and in distilled water before testing was 

continued. Tests were carried out in Hastelloy (C-276) autoclaves. The specimens were 

insulated from the autoclave by oxidized Zircalloy to avoid galvanic coupling. Experiments 

were conducted under open circuit conditions. The environment was primary water (1000 

ppm B as boric acid, 2 ppm Li as lithium hydroxide) at 360°C. The solution was previously 

de-aerated by evaporating 20% of the initial volume at 125°C, then hydrogen overpressure 

was introduced (30 cm
3
.kg

–1
) and controlled using a Pd-Ag probe. The chemistry was 

analyzed and validated before each test (B, Li, Cl
–
, SO4

2–
, F

–
). Finally, images of the surface 

of interest were acquired in a SEM in order to quantify the second deformation and identify 

SCC initiation sites. 

Table 3 – Summary of pre-deformation and test in PWR water for cross-shaped specimen  

Material Specimen Pre-deformation Exx 
Second deformation 

Eyy in PWR water 

Duration of the test 

in PWR water (h) 

304L T112-06 0.09 0.03 519 

316L T217-01 0.07 0.02 720 

3.3. Tests on U-bends and tensile specimens at different pH, temperatures and time 

durations 

Other specimens were used: U-bends and „classical‟ tensile specimens cut in a 316L tube with 

an as-received grinded surface. Hardness measurements allowed to estimate the strain level on 

grinded surfaces to  = 0.025. For U-bends tests, TEM samples were cut in non-strained parts. 

Testing conditions are summarized in Table 4. 

Table 4 – Summary of non-cross specimens and testing conditions 

Material Heat Name Surface finish Estimated 

strain level 

pH325°C Temperature 

(°C) 

Exposure 

time (h) 

304L T2575 1171-13 Grinding 0.4 7.2 320 4 

304L T2575 T112-35 Grinding 0.025 7.2 360 17000 

316L XY183 1171H4 Grinding 0.025 8 360 600 

316L XY183 1512-10 Grinding 0.025 9,1 360 240 

304L T2575 1512-22 Grinding 0.025 9,1 360 5000 

A short exposure test was carried out in a specifically designed capsule placed in an autoclave 

(Figure 2). A specimen was introduced in the capsule, after tensile pre-deformation at room 

temperature (specimen 1171-13, 304L, heat T2575, strained to 40%). The test in primary 

water at 320°C lasted 6h (2h heating and 4h at 320°C), then a rapid decrease of temperature 

was obtained by the injection of cold pure water in the capsule (Figure 3). After testing, thin 

foils were cut to quantify the surface oxides.  
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Figure 2 – Capsule for short exposure to primary 

water. 
Figure 3 – Evolution of the temperature during testing in capsule. 
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Three of the specimens were tested [2] at higher levels of alkalinity in order to simulate a 

possible occluded chemistry. At variance with nominal conditions (1000 ppm B as boric acid, 

2 ppm Li as lithium hydroxide), 10 ppm Li was used in a first test, and 400 ppm Li in two 

other tests. Multeq
TM

 simulations estimated that pH320°C = 7.2 under nominal conditions (2 

ppm Li), pH320°C  = 8 for the first alkaline test and pH320°C = 9.1 for the other two. 

3.4 TEM Analysis 

A FEI dual-beam Helios Nanolab was used for preparing cross section thin foils on 

specifically deformed locations and SCC initiation sites on cross specimens. This dual beam 

has a Schottky field emission gun column, Ga Focused Ions Beam column, Pt and C gas 

injection system, carbon selective etching system, EDX detector, Autoprobe internal 

micromanipulator and 3D EBSD system. 

Cross-sections from other specimens were prepared by cutting sections using a slow-speed 

diamond saw and gluing surfaces of interest with thermosetting epoxy under vacuum. The 

samples were adjusted and assembled in an insert, and thin foils were cut and polished. 

Electron transparency was achieved using a dimple grinder down to 20 µm and ion 

micromilling to perforation. 

TEM observations of specimens were performed using a FEI TECNAI G2 FEG STEM 

equipped with Gatan Imaging Filter, EDAX energy dispersive spectrometer and HAADF 

detector. Besides conventional TEM and STEM imaging, oxides were characterized using 

EDS for concentration profiles across layers and EFTEM for elemental mapping.  

4. Results 

4.1. Oxide formed at pH320°C 7.2 and 360°C on cold-worked material  

Several sampling locations were chosen at the surface of the two cross-shaped specimens 

1594-T112-06 and 1594-T217-01, based on the deformation measurements and SEM 

observations of crack initiation. Figure 4 and Figure 5 give an example of such a correlation 

for the site 1 on 1594-T217-01. The site was centered on an intergranular crack between two 

grains exhibiting different levels of deformation. The level of pre-deformation Exx in ambient 

air and second deformation Eyy in primary water corresponding to the sampling for TEM 

examinations are reported in Table 5. 

 

Cracked GB 

FIB sampling 
site 

 

 

 
Figure 4 – Pre-deformation Exx (in ambient 

air) on initiation site 1 at the surface of 

specimen 1594-T217-01 (316L) 

Figure 5 – Deformation Eyy (in primary 

water) on initiation site 1 at the surface of 

specimen 1594-T217-01 (316L) 
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Figure 6 shows a typical oxide formed on strain hardened stainless steels exposed to primary 

water at 360°C (T112-06, 304L, 7.2 pH320°C). The oxide-metal interface was clearly 

positioned below the grid-oxide interface, indicating the anionic growth of the inner Cr-rich 

oxide layer in the metal. A preferential oxidation can be also noticed within pre-established 

shear bands and microtwins from pre-deformation in air. Spinels grew on the inner Cr-rich 

oxide layer and on the grid. Magnetite was identified. Despite the presence of the inner Cr-

rich oxide layer, spinels displayed an epitaxial relationship with the metal substrate. 

 
Figure 6 – Oxide observation (TEM, bright field) at site 1A on the surface of specimen 1594-

T112-06 (304L).  

Figure 7 is an EDS scan corresponding to the 

previous site (at the location of the remaining 

gold grid). Oxygen content is plotted in arbitrary 

units, while Fe, Cr, Ni and Au+Pt contents are 

plotted in weight %. O and Ni contents slightly 

increase within the 200 nm – 130 nm depth 

range. Conversely, Fe content decreases and Cr 

content does not change. It can be noticed also 

that Ni maximum correspond to minima in Fe 

and O content. This observation suggests that 

only a limited fraction of Ni (noble element) is 

affected by oxidation, contrary to Fe and Cr. 
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Figure 7 – EDS profile. Site 1A at the 

surface of specimen 1594-T112-06 (304L). 

The important decrease of the Fe content indicates that oxidation essentially affects Fe. 

Within the range 130 nm – 90 nm, Fe and Cr contents are equivalent (45%) and significantly 

higher compared to Ni content (10%). Therefore, a significant Cr enrichment is observed in 

this inner oxide layer. It can be assumed that Fe diffusion is more effective than Cr diffusion 

in this layer. Within the range 90 nm – 45 nm, the oxide is essentially composed of Fe (60%), 

even if Cr (25%) and Ni (15%) are present. This outer oxide layer is probably essentially 

composed of Fe spinels. The total thickness of the oxide is approximately 150 nm, including 

40 nm of Cr-rich oxide. 
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EFTEM maps of O, Fe and Cr are presented on Figure 8. These maps were collected at a site 

where no prior strain was measured, but where a significant strain (0.075) was expected 

during exposure to primary water. The oxygen map indicates the position of the superficial 

oxide and magnetite. The iron map shows the presence of an outer thin (a few nm) Fe-rich 

oxide layer. The chromium map reveals possible variations of Cr concentration in the inner 

oxide layer. The interface between the inner oxide and the metal is irregular. The areas 

highlighted by red rectangles on Figure 8 suggest an anisotropic oxidation at the metal-oxide 

interface.  

 

 

 

 
Figure 8 – EFTEM maps on site 2 at the surface of specimen 1594-T112-06 (304L). Focus (red rectangle) on 

anisotropic oxidation on the internal oxidation front. 

 

Figure 9 displays a STEM observation showing possible differences in density between the 

outer and the inner part of the Cr-rich oxide layer. The outer part, at the interface with the 

spinels appears regular and dense, whereas the inner part seems to be composed of small 

“grains” growing inhomogeneously in the metal. The typical size of “grains“ observed in the 

inner oxide may be compared with the characteristic length of fine dislocation structures in 

the underlying metal. Additionally, Figure 11 shows a significant porosity in the oxide layer 

at the intersection with slip bands, indicating an effect of the deformation occurring after 

oxidation on the metal/oxide interface and raising questions about the effects of plastic 

deformation on further oxidation and SCC processes. 

Chromium

m 

Iron 

Oxygen 

Magnetite Thin outer Fe-rich 

oxide layer 

Cr-rich inner oxide layer 

100 nm 
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100 nm 

 
Figure 9 – TEM on site 1B at the surface of specimen 1594-T112-06 (304L). 

 

 

200 nm 
 

Figure 10 – Porosity in inner oxide layer, at the interface with the metal. TEM on site 2 at the surface of 

specimen 1594-T112-06 (304L). 

Detailed analyses were carried out in order to evaluate the effect of strain localization on 

oxide penetration and on metal-oxide interface. Figure 11 shows an example of EFTEM Cr-

map, with the associated binary map obtained after filtering. Image analysis of this binary 

map allowed to quantify the thickness of the inner Cr-rich oxide layer and perform a 

statistical analysis over the analyzed area (Figure 12). The three samples from specimen 

T217-01 (316L) were focused on IG crack initiation sites. This allowed the characterization of 

the oxide layer on both sides of the grain boundary, both grains having experienced distinct 

deformation levels. Figure 13 shows the crack initiation and Cr-layer analysis carried out on 

both grain around the cracked boundary on site 1 of specimen T217-01. The results obtained 

by image analyses of inner oxide layers are summarized in Table 5. 
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Figure 11 – EFTEM and analysis image of 

Cr-rich inner oxide layer at the surface of 

specimen T112-06 on site 1A (304L) 

Figure 12 - Distribution of the thickness of the 

rich-Cr inner oxide layer formed at the surface 

of specimen T112-06 on site 1A (304L) 
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Figure 13 – EFTEM analysis of Cr-rich inner oxide layer at the surface of specimen T217-01 

on site 1 (316L) 
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Table 5 – Analysis of Cr-rich inner oxide penetrations at the surface of cross-shaped specimens.  

Specimen Material Site 

Local strain in 

the sample Cumulated 

strain level 

Analysed 

length 

(nm) 

Cr-rich inner oxide penetration 

(nm) 

Prior 

Exx 

Second 

Eyy 
Mean Median Min. Max. SD 

T112-06 304L 

1A 0.10 0.02 0,12 1386 102 96 31 172 30 

1B 0.00 0.075 0,075 694 49 49 23 87 12 

2 0.02 0.07 0,09 679 81 82 54 101 9 

T217-01 316L 

1L 0,05 0,05 0,10 1188 72 71 12 124 27 

1R 0,08 0,1 0,18 988 90 88 59 135 17 

2L 0 0,02 0,02 2077 46 48 6 101 25 

2R 0 0,02 0,02 890 73 74 40 105 14 

3L 0,1 0,01 0,11 2941 96 94 41 141 16 

3R 0,1 0,01 0,11 880 61 61 19 92 16 

4.2. Oxides formed on material with machined surfaces 

Specimen 1171-13 was a tensile specimen (grinding finish) strained to 40% deformation at 

room temperature and tested in the capsule during 4h at 320h. Figure 14 shows the analysis 

on site 1. The Cr-rich layer appeared fairly regular and thin (around 20 nm), only showing a 

significant penetration in one zone. Figure 16 shows the analysis of site 2, adjacent to site 1. 

A thin and regular layer can be observed on the right hand side, but on the left, the thickness 

and morphology are different: the oxide layer penetrates deeper (around 80 nm), as seen on 

the O map, and seems more irregular, as seen on the Cr map. The two zones probably 

belonged to different grains, the left one having undergone a higher level of deformation. This 

illustrates the complexity of real surface conditions, particularly when a significant 

deformation is added. Secondly, oxide penetration in the “constant thickness” zone is lower 

than in the cross-shaped specimen (520h and 720h exposition), indicating that oxidation 

processes are still active after 4h. However, maximum penetration levels are comparable. This 

could be an effect of the surface finish and deformation level, but would also indicate that 

local maxima of penetration are reached earlier and that defects possibly acting as diffusion 

shortcuts also enhance the oxidation kinetics. 

 
 
 

 

 
 

 

 

Figure 14 – EFTEM and analysis image of Cr-

rich inner oxide layer at the surface of specimen 

1171-13 on site 1 

Figure 15 – Distribution of the thickness 

of the rich-Cr inner oxide layer formed at 

the surface of specimen 1171-13 on site 1 
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Figure 16 – EFTEM and analysis image of Cr-rich 

inner oxide layer at the surface of specimen 1171-

13 on site 3 

Figure 17 – Distribution of the thickness 

of the rich-Cr inner oxide layer formed at 

the surface of specimen 1171-13 on site 3 

Specimens T112-35, 1171H4, 1512-10 and 1512-22 were tested in PWR water at different pH 

values and during various exposition times. All specimen had a grinding surface finish and 

samples were cut in areas unaffected by deformation in ambient air or during the test. Figure 

18, Figure 19 and Figure 20 show Cr-rich analysis examples for specimen T112-35, 1171H4, 

1512-10, exposed to environments where pH = 7.2, 8 and 9.2, respectively. They display 

comparable oxides morphologies with clear maxima. The oxide penetration is significantly 

lower at pH 7.2 and 8 (30 +/- 20 nm) than at pH 9.1 (150 +/-65 nm). On Figure 21 are shown 

the results for specimen 1512-22, also tested at pH 9.1 during 5000h (to be compared to 240h 

for specimen 1512-10). The penetration is more important ( 550 +/-70 nm) and the 

morphology is different: the oxide layer seems now homogeneous. Table 6 summarizes the 

analyses performed on specimens with machined surfaces. 

 

 

 

 
Figure 18 – EFTEM map of Cr-rich inner 

oxide layer at the surface of specimen T112-35 

on site 2 (pH 7.2 – 17000h) 

Figure 19 – EFTEM map of Cr-rich inner oxide layer 

at the surface of specimen 1171H4 (pH 8 – 600h) 

  
 

 

 

Cr 
 

Figure 20 – EFTEM map of Cr-rich inner oxide 

layer at the surface of specimen 1512-10 on site 1 

(pH 9.1 – 240h) 

Figure 21 – EFTEM and analysis image of Cr-rich 

inner oxide layer at the surface of specimen 1512-

22 (pH 9.1 – 5000h) 
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Table 6 – Analysis of Cr-rich inner oxide penetrations at the surface of the specimens without 

surface preparation  

Material Specimen Site 
Estimated 

strain 

Test 

duration 

Temperature 

(°C) 
pH320°C 

Analysed 

length 

(nm) 

Cr-rich inner oxide penetration (nm) 

Mean Median Min. Max. SD 

304L 1171-13 

site 1 

0,4 4 325 7.2 

718 29 25 4 82 19 

site 2 455 22 24 3 38 9 

site 3 879 58 55 10 131 35 

304L T112-35 
site 1 

0.025 17000 360 7.2 
1787 59 53 13 140 30 

site 2 1243 35 27 11 81 20 

316L 1171H4 - 0.025 600 360 8 534 33 22 9 95 23 

316L 1512-10 
site 1 0.025 

240 360 9.1 
1303 151 121 79 279 63 

site 2 0.025 465 139 114 80 246 57 

304L 1512-22 - 0.025 5000 360 9.1 4383 552 542 383 725 66 

4.3. Observations on intergranular crack initiation sites 

Each of the three samples from specimen T217-01 was located on an intergranular crack 

initiation site. It was thus possible to conduct the analysis along the crack together with the 

adjacent free surfaces. Observed intergranular crack tips were most likely active, as the cracks 

only affected on boundary (no branching). Cracks usually initiated where discontinuities of 

deformation across grain boundaries were the most prevalent, as illustrated with local 

deformation measurements in Figure 4 and Figure 5. STEM images of the cracks, seen in 

Figure 22, Figure 23, Figure 24 and Figure 25, clearly exhibit cracks along grain boundaries 

separating grains with different densities of dislocations.  

 
 

Figure 22 – Bright field image of the crack 

initiated at site 1 of specimen T217-01 

Figure 23 – Bright field image of the crack 

initiated at site 2 of specimen T217-01 

  

  
Figure 24 – Bright field image of the crack 

initiated at site 3 of specimen T217-01 

Figure 25 – Different dislocation densities 

between grains. Defocused bright field image 

of the crack initiated at site 3 of specimen 

T217-01 

Crack depths did not exceed a few microns and the typical crack mouth opening displacement 

was about 200 nm. Open cracks were filled with Fe oxide (Figure 27). Crack walls exhibited a 
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regular Cr-rich oxide layer whose morphology and thickness were comparable to that of the 

surrounding free surfaces. This would indicate that the local environmental conditions were 

essentially unaffected by the presence of iron oxide and that the time to stabilize the Cr oxide 

layer was probably significantly shorter than the testing time. The opening of the cracks was 

dissymmetric with respect to the grain boundary. This may be due to stress relaxation along 

the grain boundary after cracking, with plastic deformation in the “softer” grain possibly 

enhancing further dissolution in this grain by a local destabilization of the passive film. 

At the crack tip, oxide penetration was deeper along the grain boundary than below the free 

surfaces. This may be due to the grain boundary acting as a short-circuit for oxygen diffusion. 

In addition, the non-oxidized grain boundaries ahead of the crack tip showed significant 

compositional changes over more than 100 nm ahead of the intergranular oxide. This can be 

compared to what was seen at the metal-oxide interface over only a few nm: a significant 

enrichment in nickel, with associated depletion in iron and chromium. This phenomenon may 

also be related to the free volume of the grain boundary, allowing the oxidation phenomenon 

to operate deeper and promoting a faster diffusion of Cr and Fe. The implications on the 

oxidation mechanisms, the mechanical behavior of the boundary and the cracking could be 

considerable. Table 7 summarizes the analysis performed for each crack, taking into account 

the crack length, the oxidation of the crack tip, the affected zone ahead of the tip and the 

structure of the crack walls. 

  
Figure 26 – EFTEM analysis of Cr-rich inner oxide layer and Ni enrichment in grain 

boundary ahead of the tip in the crack initiated at site 1 of specimen T217-01 

 

 O 

500 nm 

 Fe  Cr  Ni 

 
Figure 27. O, Fe, Cr and Ni EFTEM maps of the crack initiated at site 2 on T217-01 

 

  
Figure 28 – EFTEM analysis of Cr-rich inner oxide layer and Ni enrichment in grain boundary 

ahead of the tip in the crack initiated at site 3 of specimen T217-01 
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Table 7 – Analysis of the cracks initiated at the surface of of specimen T217-01 (316L - 720h - pH 7.2) 

5. Discussion 

5.1. Effect of deformation 

Figure 29 shows the evolution of chromium-rich oxide penetrations as a function of 

cumulated deformation. The mean oxide penetration increases for higher deformation levels 

as well as the extrema. A sharp increase appears around 10 % cumulated deformation. This 

phenomenon could be explained by the features observed in Figure 6 and Figure 9. Oxidation 

phenomena seem to interact with plastic deformation by different mechanisms. The 

preferential oxidation along the deformation structures could explain this behavior, from the 

dislocation network increasing the mean penetration (Figure 6) to slip bands setting local 

maxima of penetration. Defects may act as diffusion sort-circuits for oxidizing species and 

allow the oxidation to penetrate deeper within the metal surface.  
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Figure 29 – Evolution of the Cr-rich oxide penetration as a function of cumulated deformation 

Crack Site 

Local strain in the 

sample Crack 

length 

(nm) 

Oxide 

at the 

crack 

tip 

(nm) 

Affected 

grain 

boundary 

length 

(nm) 

Analysed 

length 

(nm) 

Cr-rich inner oxide penetration (nm) 

Prior 

Exx 

Second 

Eyy 
Mean Median Min. Max. SD 

1 
left 0,05 0,05 

899 59 170 
786 88 89 48 119 16 

right 0,08 0,1 619 76 83 24 125 28 

2 
left 0 0,02 

548 136 136 
304 67 66 50 89 9 

right 0 0,02 322 66 64 56 82 7 

3 
left 0,1 0,01 

317 110 125 
123 43 43 33 52 5 

right 0,1 0,01 143 36 38 16 47 7 
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5.2. Effect of the pH of the environment 

Figure 30 shows the effects of pH on the oxide growth, using the results from tests on 

specimen with machined surfaces. First, a decrease on the oxide penetration can be seen at pH 

8 and a significant increase at pH 9.1. Secondly, comparing the durations of the various tests 

at pH 7.2 and pH 9.1, pH could also have a significant impact on the oxide penetration 

kinetics. At pH 7.2, stabilization of the Chromium passive layer seems to occur after a few 

hours of exposition ; 40 nm after 4h, 50 nm after 17000h (50 nm after 500h for cross test 

specimen on low deformation areas). On the other hand, at pH 9.2 the oxide is still actively 

penetrating the metal surface after hundreds of hours (150 nm after 240h, 550 after 5000h).    

Figure 31 illustrates the possible evolution of the average oxide penetration as a function of 

time for pH 7.2 and pH 9.1, fitting the result and assuming a saturating law (Evans type). This 

would indicate a critical change in chemical behavior, bringing into question the passivity of 

the chromium layer at pH 9.2, as well as pointing out possible effects of occluded 

environments of high alkalinity on oxide growth and SCC cracking. 
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Figure 30 – Oxide penetration as a 

function of pH (machined surfaces) 

Figure 31 – Mean oxide penetration as a function of 

time for pH 7.2 and pH 9.1, fitting results from the 

test with saturating laws (Evans-type) 

 

5.3. Cracks analysis 

The crack tip in site 1 exhibits a different morphology; closer to the tip, the oxide layer on the 

crack walls gets thinner and the crack tip doesn't show any preferential oxidation along the 

grain boundary. The crack is twice longer (almost 1 µm) than the other so this could be seen 

as an effect of the crack length: the transport of the oxidizing species is less effective the 

longer the crack is. Additionally, the grain boundary ahead is also the most affected (almost 

200 nm): the tip and affected region sum up to reach an equivalent level the other cracks. This 

fact could mean that the crack was still active at the end of the test, the oxidation processes 

not yet stabilized, and would indicate that the cationic diffusion of the metallic species 

(chromium and iron) is precursory to the oxidation (anionic diffusion of oxygen). 
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Figure 32 – Comparison of crack structures 

Figure 33 shows the evolution of oxidation depth along the crack walls and crack length as a 

function of local deformation during the test (second Eyy). Observations are consistent with 

the surface observations, indicating a deeper penetration in areas with higher levels of 

deformation. Crack length seems to be correlated to local deformation in a similar way. 

Again, the crack at site 1 stands out, as seen on the EFTEM image (Figure 26). At a higher 

level of deformation, it is the longest crack and highest maximum oxide penetration along the 

crack walls. However, as indicated above, closer to the tip, the oxide thickness decreases. 

This may indicate that the crack was still active at the end of the test, achieving a deeper 

penetration and passivity where the crack initiated and thinner penetration in later exposed 

surfaces after a propagation step. From this case, and assuming the other two cracks 

experienced only one cracking event, this would indicate that the typical intergranular 

cracking step is between 200 nm and 500 nm. This information is valuable for the general 

understanding of SCC mechanisms, as it defines an area where investigations about the 

cracking factors should be led, and sets a representative length scale for future mechanistic 

modeling of intergranular cracking. 
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Figure 33 – Oxidation of the crack walls and crack length as a function of deformation 
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5.4. Assessed cracking mechanism 

Based on previous considerations, the following basic mechanism is assumed to explain both 

initiation and propagation of SCC in stainless steels exposed to primary water : 

1. Oxidation, leading to the formation of a superficial Cr-rich passive layer with a mean 

thickness of 50 nm. The maximum oxide penetration does not exceed 90 nm at 360°C, when 7 

< pH320°C < 8, if the material is not strain hardened. 

2. When sufficient, local stresses lead to the fracture of the oxide or metal-oxide interface. 

Strain hardening, loading fluctuations, intergranular strain incompatibilities and irregular 

metal-oxide interfaces promote stress concentrations and, as a consequence, initiation or crack 

tip extension.  

Judging from observations, transgranular cracks are supposed to initiate on intense slip bands 

preferentially oxidized and strained during exposure while intergranular cracks initiate after 

preferential oxidation along grain boundaries and stress concentrations appearing between 

grains. 

6. Conclusion 

Oxidation of free surfaces and IGSCC cracks of cold-worked austenitic stainless steels 

exposed and strained in PWR water have been characterized by ATEM of cross-sections 

samples. Oxidation at free surfaces consists in an outer Fe-rich oxide layer and an inner Cr-

rich oxide, and appears clearly below the original surface of the material. The oxide layer 

seem to penetrate deeper along deformation features and microstructural defects such as the 

dislocation network, slip band or grain boundaries. The assumed growth mechanism is by 

anionic processes, diffusion of oxygen allowing penetration of the oxide and defects acting as 

diffusion short-circuits. The sparse magnetite spinels found at the surface of the oxide layer 

most likely grow by a cationic mechanism. Judging from local deformation measurements, 

oxide penetration seem to increase with deformation of the material with a strong increase 

around 10 % local deformation. Alkalinity seems to affect oxide penetration: compared to the 

nominal pH 7.2 water, pH 8 shows a reduced penetration while pH 9.1 exhibits a significant 

penetration as well as altered kinetics. 

Intergranular crack initiation was also characterized by ATEM. Initiation occurred at 

boundaries separating grain with seemingly different levels of plastic deformation. Cracks 

were filled with Fe-rich oxide and crack-wall exhibited a Cr-rich oxide penetration similar to 

that of the free surfaces. Grain boundaries at the crack tip exhibited preferential oxide 

penetration and a zone ahead of the oxidized tip revealed significant depletion in both Fe and 

Cr, with an according enrichment in Ni.  

Results on machined surfaces emphasized the complexity of the phenomenon in real 

conditions. An upcoming study of surface finish effects is being performed on a set of 

samples oxidized in the same conditions (nominal PWR, 150h), with different surface 

preparation. 

Short time exposure in the capsule and crack initiation analysis also revealed that the stability 

of the Cr-rich passive layer is reached after a few hours and set a higher bound for the 

investigation of oxidation kinetics. In this perspective, a device allowing short-time exposures 

(from a minute to tens of hours) is currently under development. 
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