Skip to Main content Skip to Navigation
Journal articles

Characterization of sintered inkjet-printed silicon nanoparticle thin films for thermoelectric devices

Abstract : Nanostructured silicon-based materials are good candidates for thermoelectric (TE) devices due to their low thermal conductivity, customizable electrical conductivity, and reduced cost. Generally, nanostructured TE bulk materials are obtained through compaction and sintering at high temperature (>1000 degrees C) of silicon nanoparticles (NPs). In order to introduce TE generators in flexible electronic devices, development of thin film TE is needed. Inkjet-printing of silicon NPs-based ink is an interesting technology for this targeted application due to its low cost and additive process. This paper presents the implementation of inkjet-printing of a silicon NPs-based ink toward the fabrication of TE material on flexible substrate and the development of a characterization method for this material. After printing, recovering of electrical properties through sintering is mandatory. Nevertheless, special care must be taken in order to keep thermal conductivity low and reduce the annealing temperature to allow the use of flexible substrates. The functional properties: electrical and thermal (measured by Raman spectroscopy), are studied as a function of the annealing process. Two types of annealing: rapid thermal annealing and microwave annealing, are investigated as well as two atmospheres: inert (N2) and reducing (N-2-H-2 5%).
Document type :
Journal articles
Complete list of metadatas
Contributor : Géraldine Fournier-Moulin <>
Submitted on : Friday, September 12, 2014 - 5:24:40 PM
Last modification on : Wednesday, June 24, 2020 - 4:19:09 PM

Links full text



Etienne Drahi, Anshul Gupta, Sylvain Blayac, Sébastien Saunier, Patrick Benaben. Characterization of sintered inkjet-printed silicon nanoparticle thin films for thermoelectric devices. physica status solidi (a), Wiley, 2014, 211 (6), pp.1301-1307. ⟨10.1002/pssa.201300180⟩. ⟨emse-01063744⟩



Record views