
COGITO: Code Polymorphism to Secure Devices

Damien Couroussé1, Bruno Robisson2, Jean-Louis Lanet3, Thierno Barry1, Hassan Noura1,

Philippe Jaillon4 and Philippe Lalevée4

1Univ. Grenoble Alpes, F-38000 Grenoble, France CEA, LIST, MINATEC Campus, F-38054 Grenoble, France
2Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) Gardanne, France

3University of Limoges, 123 rue Albert Thomas, 87000 Limoges, France
4École Nationale Suprieure des Mines de Saint-Etienne (ENSM.SE) Saint-Etienne, France

{1, 2, 4, 5}thauthor@cea.fr, 3rdauthor@xlim.fr, {6, 7}thauthor@ensmse.fr

Keywords: Code Polymorphism, Runtime Code Generation, Physical Attacks, Embedded Devices

Abstract: In this paper, we advocate the use of code polymorphism as an efficient means to improve security at several

levels in electronic devices. We analyse the threats that polymorphism could help thwart, and present the

solution that we plan to demonstrate in the scope of a collaborative research project called COGITO. We

expect our solution to be effective to improve security, to comply with the computing and memory constraints

of embedded devices, and to be easily generalisable to a large set of embedded computing platforms.

1 Introduction

Electronic devices have grown a huge interest for the

average user thanks to the tremendous computation

power and data storage that it is possible to put in a

few square centimetres of silicon. Everybody has now

the capability to put a lot of its personal and profes-

sional information in such devices, and the confiden-

tiality of the ’secret’ kept in electronic devices is of

huge importance. As a consequence, security of such

devices is one of the main concerns, on an equal foot-

ing with user interfaces and connectivity. Therefore,

when thinking about security issues in electronic de-

vices, smart card or Java Card are the words that first

come to mind for historical reasons. But today, the

landscape of electronic devices is composed of com-

puting platforms of very different kinds. Hence, secu-

rity is now an issue for a very large set of embedded

devices, from nodes in wireless sensor networks to

smartphones.

All of these electronic devices can be subject to

“physical attacks” which are generally split in two

steps, thereafter called ’first step’ attacks and ’second

step’ attacks. ’First step’ attacks consist in getting

general information about the functioning of the de-

vices: identifying which security functions are imple-

mented, when they are launched and on which hard-

ware blocks they are executed. The term ’reverse

engineering’, in the large meaning of the word, is

also commonly used to refer to this step of the at-

tack. In this step, the attacker can use three differ-

ent kinds of techniques. The first one consists in

getting information about the chip design by direct

inspection of its hardware structure. This inspec-

tion may be performed by using any kind of imag-

ing techniques or by using destructive means such

as abrasion, chemical etching or focused ion beam.

The second kind, called side channel attacks, con-

sists in observing some physical characteristics (such

as power consumption, electromagnetic radiation, re-

sponse time, etc.) which are modified while the cir-

cuit is active. The third technique, called fault at-

tacks, consists in disrupting the circuit’s behaviour by

using laser beams, voltage or clock glitches, electro-

magnetic pulses, etc. In the ’second step’, the attack

is focused on one or several security functions in or-

der to bypass them (Barbu et al., 2010), to recover

the details of their implementation (Novak, 2003) or

to recover the manipulated data (Genkin et al., 2013).

These ’second step’ attacks are very powerful but al-

ways rely on a very precise spatial and temporal con-

trol of the target. In particular, the success of a fault

(resp. side channel) attack depends on the time pre-

cision required to inject the fault (resp. measure the

physical characteristics) at the right time and on the

right area during program execution.

Many protections (also called ’ad hoc’) have been

proposed to counter all these ’second step’ attack

schemes. But surprisingly, few protections have been

proposed against ’first step’ attacks, even if these

1



ones constitute a crucial stepping stone for the suc-

cess of an attack. We assume that polymorphism,

which consists in regularly changing the behaviour

of a secured component at runtime while maintaining

unchanged its functional properties, can make attack-

ers’ lives more difficult. Our hypothesis is that poly-

morphism can tackle security issues at several levels:

it increases the difficulty of reverse engineering, it

provides dynamically changing temporal and spatial

properties that also increase the difficulty of ’second

step’ physical attacks. Moreover, we assume that the

use of polymorphic code is a realistic objective even

for resource-constrained embedded devices, and illus-

trate how we plan to achieve this thanks to a tool for

runtime code generation that fulfils the memory and

computing constraints of embedded systems.

To demonstrate our hypothesis, the rest of this pa-

per is organised as follows. Section 2 presents an

overview of the general principles of protections and

of the uses of polymorphism in the context of secu-

rity. Section 3 introduces the solution envisioned in

this paper and provides a simple illustrative case. Sec-

tion 4 concludes.

2 State of the art

We make the distinction between general protections,

which make reverse engineering of the target more

difficult to achieve in ’first step’ attacks, and ad

hoc protections, which are specific defensive mech-

anisms implemented against a known attack usually

performed as a ’second step’ attack.

2.1 Ad hoc protections

Many protections have been proposed to counter ’sec-

ond step’ hardware attacks. Some protections (called

’sensors’) give information about the state of the sys-

tem either by measuring light (Dutertre et al., 2013),

voltage (Zussa et al., 2014), frequency or temperature

or by detecting errors during computations. This de-

tection is generally based on spatial redundancy, tem-

poral redundancy or information redundancy. Sev-

eral mechanisms are also proposed to detect a mod-

ification of the execution flow of a program (Petroni

and Hicks, 2007), or to avoid the effects of instruc-

tion skips caused by fault attacks (Moro et al., 2014).

In some cases, an additional hardware block is dedi-

cated to this task (Arora et al., 2005). To reduce sen-

sitivity to side channel attacks, ’noise’ is added to the

power consumption, for example by using an inter-

nal clock, by shuffling operations or by masking the

internal computations that could be predicted by the

attacker (Mangard et al., 2007), by using balanced

data encoding or balanced place and route (Guilley

et al., 2010), by using power filters or electromag-

netic shields (Shamir, 2000), or by using software

techniques called ’hiding’ (Mangard et al., 2007).

2.2 Obfuscation as a general protection

We propose to make the distinction between obfus-

cation mechanisms that do not modify the behaviour

of the target at runtime, thereafter called static obfus-

cation, and dynamic mechanisms which purpose is to

modify, at runtime, the apparent behaviour of the tar-

get. Polymorphism, by providing to a secure compo-

nent the capability to change form on a regular basis,

is considered as a dynamic obfuscation mechanism.

2.2.1 Static obfuscation

Obfuscation of hardware is a common practice, be-

cause the attacker can gain a lot of knowledge

about the target by physical inspection of its struc-

ture (Chakraborty and Bhunia, 2009) but we do not

further consider this topic as it falls out of the scope

of this paper.

Software obfuscation can involve modifications to

the source code, to intermediate representations or

to the binary code (Collberg et al., 1997) or encryp-

tion (Sander and Tschudin, 1998) in order to make

it unintelligible or inaccessible to automatic analysis.

At the theoretical level, it was demonstrated by Barak

et al. that there is no general obfuscation technique

that applies to any code function; in other words,

there is no ”universal obfuscating tool” (Barak et al.,

2001). However, nothing in this theory forbids the

existence of obfuscation techniques able to target the

mostly used cryptographic algorithms such as DES,

AES, RSA, ECC.

2.2.2 Dynamic obfuscation by polymorphism

Non-deterministic processors (May et al., 2001b)

achieve what we call polymorphic execution, that is,

the shuffled execution of a program from a static bi-

nary input residing in program memory. May et al.

achieve dynamic instruction shuffling (May et al.,

2001b) and random register renaming (May et al.,

2001a). (Bayrak et al., 2012) describe an instruction

shuffler: a dedicated IP inserted between the proces-

sor and the program memory (instruction cache).

Most (if not all) tools for program analysis and re-

verse engineering of software cannot handle programs

that are dynamically modified at runtime (Madou

et al., 2006). Hence, despite the theoretical work

of (Barak et al., 2001), dynamically mutating code

2



and polymorphic code are likely to make ’first step’

attacks more challenging. (Madou et al., 2006) use

runtime code rewriting scripts to restructure the con-

tents of a procedure from binary programs under a

scrambled form. However, this form of dynamic mu-

tation is only effective against code analysis and not

against physical attacks since the executed program

always takes the same form.

To the best of our knowledge, only a few research

works have studied the use of code polymorphism for

security purposes. (Amarilli et al., 2011) propose to

shuffle instructions and basic blocks of the program’s

control flow graph at runtime from a static version

of the program. Their approach, applied to the shuf-

fling of basic blocks only, is shown to increase the

difficulty of DPA on AES. (Agosta et al., 2012) use

runtime code generation (described by the authors as

code morphing) to protect an implementation of AES

against DPA. A runtime code generator is generated

at static compilation time, embedded in the appli-

cation binary code. The polymorphic production of

code variants involves register renaming, instruction

shuffling and the production of semantically equiva-

lent code fragments. The overhead of code genera-

tion is significantly high since each new code gener-

ation is reported to execute in 90 ms (11,970.106 cy-

cles at 133 MHz) on an ARM926 processor running

GNU/Linux, in order to generate polymorphic ver-

sions corresponding to the 64 xor operations in the

AES kernel. This approach is the closest to the ap-

proach that we envision in this paper, but as we will

illustrate below, we expect our approach to better fit

with the constraints of resource constrained embed-

ded systems.

3 Code polymorphism for embedded

systems

As explained in the previous section, the state of the

art protections present the following limitations:

1. General protections, which make the code ex-

ecution harder to interpret and so the knowl-

edge about the circuit’s functioning harder to re-

cover, are a primary requirement in secure de-

vices. However, state-of-the-art solutions present

performance issues or are not applicable to secure

devices because of resource constraints.

2. Security in a device is incrementally built by

adding standalone ad hoc protections. Ad hoc

countermeasures are often proven to be efficient

when analysed independently, but are difficult to

integrate in a device since each countermeasure

comes with an additional performance overhead.

We postulate that code polymorphism is able to

provide an efficient solution as a general protection

against ’first step’ attacks. Furthermore, ’second step’

attacks, which rely on a precise behavioural (spatial

and temporal) model of the target, are also more dif-

ficult to achieve if the target’s behaviour is regularly

modified. Indeed, the success of a fault attack de-

pends on the temporal and spatial precision required

to inject the fault at the right time during program ex-

ecution, and on the right position on the chip; this

should be more difficult in presence of polymorphism.

Similarly, side channel attacks need to correlate a

large number of activity traces to extract the target

information; a polymorphic component is able to pro-

duce a larger set of different activity traces, and as

a consequence, the attacker needs to gather a greater

number of activity traces to achieve the attack.

In the work presented in this paper, our objective

is to provide a realistic solution to achieve code poly-

morphism by introducing in a unique framework:

• Introduce alea during runtime code generation to

produce polymorphic application components,

• Use semantic equivalences at the instruction level

to produce different (but functionally equivalent)

instances of code sequences

• Shuffle, at runtime, the machine instructions and

randomise the mapping to physical registers

• Combine with hardware protections

• With limited memory consumption and fast code

generation, so that it is applicable very small com-

puting units such as secure elements

3.1 Sketching deGoal

deGoal is a framework for runtime code generation,

whose initial motivation is the use of runtime code

specialisation to improve program performance, e.g.

execution time, energy consumption or memory foot-

print. In this section, we first sketch the characteristics

of deGoal and then elaborate about its use in the con-

text of security. (Couroussé et al., 2013; Aracil and

Couroussé, 2013; Charles et al., 2014) further elabo-

rate about the use of deGoal in contexts or application

domains that originated its design.

In classical frameworks for runtime code genera-

tion such as interpreters and dynamic compilers, the

aim is to provide a generic infrastructure for code gen-

eration, bounded by the syntactic and semantic defi-

nition of a programming language. The generality of

such solutions comes at the expense of an important

overhead in runtime code generation, both in terms

3



.c

.c.cdg d
e
G
o
a
l

.c

.c.cdg.c

static
binary

compilette

runtime
binary

kernel

HW description data

p
a
l
t
f
o
r
m

c
o
m
p
i
l
e
r

c
o
m
p
i
l
e
t
t
e

RUN TIMESTATIC 
COMPILATION TIME

DESIGN
TIME

compilette

Figure 1: deGoal workflow: from the writing of application’s source code to the execution of a kernel generated at runtime

of memory footprint and computing time and com-

puting energy. In deGoal, a different approach is

used: code segments (thereafter called kernels) are

generated and tuned at runtime by ad hoc runtime

code generators, called compilettes. Each compilette

is specialised to produce the machine code of one ker-

nel. Syntactic and semantic analyses are performed at

the time of static compilation, and compilettes em-

bed only the processing intelligence that is required

for the runtime optimisations selected. As a conse-

quence, compilettes offer very fast code generation

(10 to 100 times faster than typical frameworks for

runtime code interpretation or dynamic compilation),

present a very low memory footprint, can run on very

small microcontroller architectures such as 8/16-bit

microcontrollers (Aracil and Couroussé, 2013), and

are portable (Charles et al., 2014).

In COGITO, we re-target the original purpose of

deGoal in order to focus on security aspects: we ex-

ploit the flexibility brought by deGoal for runtime

code generation to achieve code polymorphism.

3.2 Application building, runtime code

generation and execution

The building and the execution of an application us-

ing deGoal consists of the following steps as illus-

trated in Figure 1: writing the source code using a

mix of C source code and of our dedicated cdg lan-

guage (described below); compiling the binary code

of the application and the binary code of compilettes

using static tools; at runtime, generating the binary

code of kernels by compilettes and in the end running

the kernels.

3.3 The Cdg language

Cdg is an assembly-like DSL. From the programmer’s

perspective, this represents a major paradigm shift:

Cdg expressions describe the instructions that will be

generated at runtime instead of the instructions to be

executed.

Compilettes are implemented by using a mix of

ANSI C and Cdg instructions. The C language is

used to describe the control part of the compilette

that will drive code generation, while Cdg instructions

perform code generation. The Cdg instruction set in-

cludes a variable length register set, classical arith-

metic instructions, load and store instructions. From

this high-level instruction set, compilettes map the

Cdg instructions to machine instructions according to

(1) the characteristics of the data to process, (2) the

characteristics of the execution context at the time

of code generation, (3) the hardware capabilities of

the target processor, (4) execution time and/or energy

consumption performance criteria. In all cases, code

generation is fast, produces efficient code, and is ap-

plicable to low-resource embedded systems such as

micro-controllers.

In the case of the work presented in this paper,

we remove the dependency of code generation to the

input data, and make code generation dependant of an

alea to introduce random polymorphism.

3.4 Main properties of the code

generation backend

Considering that deGoal targets constrained embed-

ded systems, drastic architecture choices have been

made so that code generation can be fast and mem-

ory lightweight. At runtime, a compilette performs

in this order: register allocation, instruction selection

and instruction scheduling.

Register allocation. In dynamic compilers, reg-

ister allocation is usually performed after instruc-

tion scheduling: instruction selection and instruction

scheduling are performed on a SSA form. The SSA

form is later analysed and register allocation is per-

formed, using techniques that provide a reduced run-

time computational cost of the register allocation as

compared to graph colouring usually used in static

compilers (Kotzmann et al., 2008). On the contrary,

in a compilette register allocation is done first, sim-

ply by using greedy algorithm. The idea is to lighten

4



the pressure on instruction selection and instruction

scheduling: if register allocation is done first, it

becomes possible to perform instruction scheduling

without intermediate representation1. This comes at

the expense of a potential reduced code quality: cur-

rently, compilettes do not support register spilling.

Instruction selection. Instruction selection is per-

formed at runtime once the runtime constants have

been evaluated by the compilette. Instruction selec-

tion is done at the level of Cdg instructions: each Cdg

instruction can be mapped to one or more machine

instructions depending on the data input of the com-

pilette and/or processor capabilities (e.g. availability

of SIMD units).

Instruction scheduling. The generated machine

instructions can be either directly written in program

memory in order to fasten code generation, or pushed

into an intermediate instruction buffer that is pro-

cessed by an instruction scheduler. We plan to ex-

ploit this feature in this work to perform instruction

shuffling during runtime code generation. A func-

tional overview of instruction scheduling is illustrated

in (Couroussé et al., 2013).

3.5 Implementation of code

polymorphism with deGoal

We present now the features that we plan to imple-

ment in deGoal in order to achieve code polymor-

phism for security purposes.

Introduce alea during runtime code genera-

tion. Code polymorphism has to present a fair level of

randomness. Each new code generation should pro-

duce a code sequence with a different binary code,

while preserving the functionality of the original im-

plementation. At the same time, the process of code

generation must remain deterministic, considering a

selected random input.

Random generation of semantically equivalent

sequences. Our runtime code generation technique is

able to involve all the optimisation techniques usually

employed in compiler backends, where the purpose

is to optimise the machine code generated according

to the characteristics of the target. In our case, we

leverage this level of variability to increase the num-

ber of code variants possibly generated. We consider

randomly changing the following code generation pa-

rameters:

• use of semantic equivalences; for example replac-

ing a multiplication operation with a power of two

with a left shift operation (Agosta et al., 2012).

1or at least with a minimalist, much lighter intermediate
representation

Semantic equivalence can involve more complex

patterns than a one-to-one relationship between

equivalent operations, hence they can change the

number of machuine instructions generated.

• insertion of dummy operations (Mangard et al.,

2007), that is, operations intended to vary the ex-

ecution time and the power trace of the target, but

which do not impact the result of the processing.

• mapping to physical registers,

• instruction scheduling,

Ability to combine with hardware countermea-

sures. Use of dedicated hardware support or spe-

cialised instructions was a primary concern in the de-

sign of the Cdg language: hardware protections or

hardware IPs (e.g. AES) are easily integrated in the

implementation of a compilette. Furthermore, Cdg

being a low-level programming language, it is easy to

integrate software protections at the instruction level.

Limited memory consumption. deGoal com-

pilettes embed only the necessary data to generate

the instructions (and algorithmic equivalences in the

case of this project) required for the target polymor-

phic code. For example, we achieved runtime code

generation with deGoal on the evaluation board of

the MSP430 micro-controller, which includes only

512 bytes of RAM (Aracil and Couroussé, 2013).

Fast runtime code generation. Using deGoal,

the current speed of code generation ranges from 10 to

100 cycles per instruction generated in an implemen-

tation that is not targeting secure devices (Couroussé

et al., 2013). Even with the addition of extra process-

ing to achieve the insertion of randomisation at vari-

ous levels, we expect the speed of code generation to

remain far above the state of the art.

Portability to very small processors and secure

elements is achieved thanks to the small footprint of

compilettes and the small amount of processing they

require to achieve code generation.

4 Conclusion

In this paper we advocate the use of code poly-

morphism as a means to secure the sensitive compo-

nents of embedded applications such as cryptographic

primitives. We assume that code polymorphism can

bring improvement to several security issues at the

same time. Firstly, it is de facto a mean to obfus-

cation, hence making reverse engineering more diffi-

cult to achieve. Moreover, considering that physical

attacks are strongly related to the temporal and spa-

tial behaviour of the target, regularly modifying the

5



target’s behaviour will raise the level of security of a

component against physical attacks.

In the scope of the COGITO project, we plan to

implement code polymorphism in secure components

thanks to deGoal, a framework for runtime code gen-

eration that is applicable to embedded devices even

with limited memory and computing resources. We

have presented the various ways to leverage polymor-

phism, and illustrated them with a simple case. A

large body of the work planned in this project will also

consist in the analysis of the potential flaws that run-

time code generation could bring to secure devices.

ACKNOWLEDGEMENTS

This work was partially funded by the French Na-

tional Research Agency (ANR) as part of the program

Digital Engineering and Security (INS-2013), under

grant agreement ANR-13-INSE-0006-01.

REFERENCES

Agosta, G., Barenghi, A., and Pelosi, G. (2012). A code
morphing methodology to automate power analysis
countermeasures. In DAC, pages 77–82. ACM.

Amarilli, A., Müller, S., Naccache, D., Page, D., Rauzy,
P., and Tunstall, M. (2011). Can Code Polymorphism
Limit Information Leakage? In WISTP, LNCS 6633,
pages 1–21.

Aracil, C. and Couroussé, D. (2013). Software acceler-
ation of floating-point multiplication using runtime
code generation. In ICEAC, pages 18–23.

Arora, D., Ravi, S., Raghunathan, A., and Jhaals,
N. K. (2005). Secure Embedded Processing through
Hardware-Assisted Run-Time Monitoring. In DATE,
pages 178–183.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sa-
hai, A., Vadhan, S., and Yang, K. (2001). On the
(im) possibility of obfuscating programs. In CRYPTO,
pages 1–18. Springer.

Barbu, G., Thiebeauld, H., and Guerin, V. (2010). Attacks
on Java Card 3.0 Combining Fault and Logical At-
tacks. In CARDIS, volume 6035 of LNCS, pages 148–
163. Springer.

Bayrak, A. G., Velickovic, N., Ienne, P., and Burleson,
W. (2012). An architecture-independent instruction
shuffler to protect against side-channel attacks. ACM
TACO, 8(4):20:1–20:19.

Chakraborty, R. and Bhunia, S. (2009). Harpoon: An
obfuscation-based soc design methodology for hard-
ware protection. TCAD, 28(10):1493–1502.

Charles, H.-P., Couroussé, D., Lomller, V., Endo, F., and
Gauguey, R. (2014). deGoal a Tool to Embed Dy-
namic Code Generators into Applications. In Com-

piler Construction, volume 8409 of LNCS, pages 107–
112. Springer.

Collberg, C., Thomborson, C., and Low, D. (1997). A tax-
onomy of obfuscating transformations. Technical Re-
port 148, Department of Computer Science, Univer-
sity of Auckland.

Couroussé, D., Lomüller, V., and Charles, H.-P. (2013).
Introduction to Dynamic Code Generation – an Ex-
periment with Matrix Multiplication for the STHORM
Platform, chapter 6, pages 103–124. Springer.

Dutertre, J.-M., Possamai Bastos, R., Potin, O., Flottes, M.-
L., Rouzeyre, B., and Di Natale, G. (2013). Sensitiv-
ity tuning of a bulk built-in current sensor for optimal
transient-fault detection. Microelectronics Reliability,
53(9):1320–1324.

Genkin, D., Shamir, A., and Tromer, E. (2013). RSA Key
Extraction via Low-Bandwidth Acoustic Cryptanaly-
sis. Cryptology ePrint Archive, Report 2013/857.

Guilley, S., Sauvage, L., Flament, F., Vong, V.-N.,
Hoogvorst, P., and Pacalet, R. (2010). Evaluation
of power constant dual-rail logics countermeasures
against DPA with design time security metrics. IEEE
Trans. Computers, 59(9):1250–1263.

Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez,
T., Russell, K., and Cox, D. (2008). Design of the
java hotspot client compiler for java 6. ACM TACO,
5(1):7:1–7:32.

Madou, M., Anckaert, B., Moseley, P., Debray, S., Sut-
ter, B., and Bosschere, K. (2006). Software protec-
tion through dynamic code mutation. volume 3786 of
LNCS, pages 194–206. Springer.

Mangard, S., Oswald, E., and Popp, T. (2007). Power anal-
ysis attacks: Revealing the secrets of smart cards.
Springer.

May, D., Muller, H., and Smart, N. (2001a). Random
Register Renaming to Foil DPA. In CHES, volume
LNCS 2162, pages 28–38. Springer.

May, D., Muller, H. L., and Smart, N. P. (2001b). Non-
deterministic processors. In ACISP’01, pages 115–
129. Springer.

Moro, N., Heydemann, K., Encrenaz, E., and Robisson, B.
(2014). Formal verification of a software countermea-
sure against instruction skip attacks. Journal of Cryp-
tographic Engineering, pages 1–12.

Novak, R. (2003). Side-channel attack on substitution
blocks. volume 2846 of LNCS, pages 307–318.
Springer.

Petroni, Jr., N. L. and Hicks, M. (2007). Automated detec-
tion of persistent kernel control-flow attacks. In CCS,
pages 103–115. ACM.

Sander, T. and Tschudin, C. (1998). On software protection
via function hiding. In Information Hiding, volume
1525 of LNCS, pages 111–123. Springer.

Shamir, A. (2000). Protecting smart cards from passive
power analysis with detached power supplies. In
CHES, LNCS, pages 71–77. Springer.

Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.-M., Mau-
rine, P., Guillaume-Sage, L., Clediere, J., and Tria, A.
(2014). Efficiency of a glitch detector against electro-
magnetic fault injection. In DATE, pages 1–6.

6

https://www.researchgate.net/publication/266403418

