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Abstract—The execution of a multiagent-based simulation
(MABS) model necessitates a scheduler that synchronizes the
agents execution and simulates the simultaneity of their behav-
iors. In the majority of MABS frameworks the scheduler activates
the agents who compute their context to decide the action to
execute. This context computation process is time-consuming
and is one of the barriers to increased use of MABS for large
simulations. The context of an agent is computed based on all
information he possesses about himself, the other agents and the
objects of the environment that are accessible to him. One of the
issues is to find this information and to identify the information
subsets that make sense for the agent. In the majority of MABS,
the context computation is hidden in the agent processes and there
is no specific algorithm enabling to decrease its computing. Our
proposal is the modeling of this subset of information identifying a
context by a so called “filter” and an algorithm to find efficiently
for each agent all their filters. The accessible information are
given by the scheduler to the agents who browse a tree of filters
to select the right information. With these filters, the agents know
their context and decide which action to execute. Our algorithm
is compared to a classical context identification. Promising results
are presented and discussed.

Keywords—Multiagent simulation, multiagent scheduling, con-
text computation, agent modeling

I. INTRODUCTION

One of the main functional objectives of a simulation is
the reproduction of complex systems, some specific properties
must therefore be guaranteed. The simultaneity of actions,
which implies that several agents are activated at the same
simulated time, is one of these properties. Therefore, similarly
to multitasking on a computer, the execution of a MABS model
necessitates a scheduling process (executed by a scheduler) that
synchronizes the agents execution and simulates the simultane-
ity of their behaviors. The majority of the MABS frameworks
follow a cooperative model, where the activation of agents is
controlled by a scheduler and their interruption is controlled
by the agents themselves. When activated by the scheduler,
the agent executes his current behavior and decides to hand
over to the scheduler, either because he has finished what he
has planned to do or because he has been designed to halt
at a certain step. The scheduler then activates another agent.
Following a discrete temporal model, the current time value
within MABS is updated when agents have terminated their
current action. The activated agent has to compute his context
to decide which action to execute and this computation is time-
consuming.

The context of an agent is computed with all the informa-
tion that are accessible by him including his local perception

of the environment i.e. the other components of the MABS [4].
This computation can be divided in two steps. The first step
is related to the identification of the perceptible information
which cost depends of the organization of this information
(grid, list, etc.). The second part is the identification of the
subsets of information that are relevant for him. The definition
of these subsets, that we call context, belongs to the knowledge
of the agents because they condition their behavior. The issue
is that the identification of the relevant context is embedded
in the agent code: The agent executes an often costly (because
of the often large size of the search space) if context then
action evaluation process. To decrease this computation cost,
the designer classically uses nested contexts and/or behavioral
automata (NetLogo like MABS). From our point of view,
nested contexts increase the complexity of the agent design and
behavioral automata focus on the internal state of the agent,
neglecting the other components of the agent context. Our
proposal is the modeling of the contexts as “filters” to simplify
the agent design without limiting the context computation
possibilities. Each agent has his own filters and executes the
algorithm that we propose in this paper to find all the filters
related to the accessible information.

The remainder of the paper is organized as follows. Sec-
tion II discusses the issues related to context computation.
Section III presents an illustrative example that we follow all
along this paper. Section IV provides the formal definition of
our proposal. Our context selection algorithm is provided in
section V. Section VI presents our experimentation and results.
The paper concludes with a discussion and some perspectives
to this work.

II. STATE OF THE ART

The context computation issue is not only related to the
multiagent based frameworks. Every system in which the com-
ponents act following filtered information coming from their
environment has to deal with these issues. In Distributed virtual
environments (DVE), context computation is a major issue
and [9] has proposed a classification of the different solutions.
Indeed, DVE provide sensory information to multiple users
allowing them to interact in a shared environment even if they
are situated in different locations. [9] proposes the following
classification of the data filtering schemes:

• Zone-based solution: the environment is decomposed
in zones and each of them contains a subset of infor-
mation. This space information becomes therefore the
main filter to find the relevant information. Moreover



it is possible to limit for a component his access to
the information.

• Aura-based solution: an aura represents the interests
of the participants. When the aura overlaps, then the
participants exchange information. It is a qualitative
improvement of the zone-based solution: because the
information is filtered following the participant’s in-
terests. This solution is time-consuming because the
aura of all the participants have to be compared.

• Class-based solution: with this solution, the partici-
pants subscribe to a subset of components that are
relevant for them. Therefore, the information filtering
is done following the specific relation between the
component and is not limited to a spatial relation.

• Hybrid solution: this is a combination of the two
preceding solutions.

These solutions enable to compute which data should be
sent to the participants and which data should be filtered.
The participants compute their context based on these data.
For instance in [7], in an aura-based teleconferencing system,
a user receives data from the others if they use compatible
medium, are close enough and he is interested by them. In this
case, the user receives verified relevant data but he still has to
compute his context (which users, what medium, etc.), which
is a combination of this data. MABS has to take into account
that the participants are artificial agents which have to compute
their context following the accessible data. When an agent is
activated, he is aware that he is executing a new simulation
step. He can therefore compute his new context before to
decide which action to execute. In this section, we discuss
which information are provided by the scheduler to the agent
when activated in a cooperative model. These information are
used by the agent to choose which action to execute next.
There are three options: 1) no information is given; 2) a
reference to the action to perform; 3) some information about
the simulation’s context.

In the first option, the scheduler activates the agents either
by calling a default method ([2], [10], [14], [1]) or with a con-
trol message ([13], [15], [12], [5]). The activated agent must
then computes its context thanks to perceptible information.
For instance in [1] the objects belonging to the activated agent
perception field are given to him thanks to a perception event.

The second option gives a reference to the next action of the
agent and assumes that the scheduler knows which behavior of
the agent has to be activated. In [11], the scheduler activates the
agents following an ordered list of actions. In the logo-based
multiagent platforms such as the TurtleKit simulation tool
of MADKIT [6] or STARLOGO1, an agent has an automaton
that determines the next action that should be executed. The
scheduler activates the agents based on this information that
is a predetermined context.

With the last option, the scheduler also computes for each
agent which action to execute, but this computation is based on
the current simulation and agent’s context. To the best of our
knowledge, the framework JEDI [8] and the Repast Simphony
simulation platform [3] are the only two proposals where the

1http://education.mit.edu/StarLogo/

choice of the action that is executed by an agent is computed
by the scheduler. In the JEDI framework [8], the computation
of the agent action decision is based on an interaction matrix
where a cell is a conditioned interaction between two simula-
tion components. The interaction is conditioned following the
MABS state, i.e. a specific context. For instance, an interaction
is possible between two agents following their proximity. At
each of these contexts, an action is associated and will be
executed by the activated agent. This matrix is given by the
designer and does not change during the simulation. This
approach is based on a reification of the interaction and its
computation can therefore be externalized. The advantage is
that it can be optimized and simply modified contrary to an
agent-based approach. Nevertheless, this proposal is limited
by the choice of the matrix to specify the interaction. Indeed
the number of components that can be taken into account to
condition an interaction is limited to the matrix’s dimension.
Moreover this matrix cannot be modified by the agents and
therefore the agent autonomy is limited. Repast Simphony
natively uses the first scheduling options (i.e. with a default
method and no information given to the agent), but it also
allows a sort of contextual activation based on “watchers”.
Watchers allow an agent to be notified of a state change in
another agent and schedule the resulting action. The designer
specifies which agent to watch and a query condition that
must be verified to trigger the resulting action. This activation
process is limited by the expressiveness of the watcher queries
language to express the activation context. The queries are
boolean expressions that evaluate the watcher and the watchee
using primitives such as colocated, linked to [ network name
], within X [network name], etc. (a network is a graph of
agents relationships) and the logic operators AND and OR.
It is not possible to integrate complex conditions about other
components (other than the watcher and the watchee).

We propose a multiagent-based simulation process where
the environment (our scheduler) activates the agents with their
accessible information. We propose a data model and an
adapted algorithm to compute agent’ context. A context is
modeled by condition on meta-information about the MAS
components given by the environment. This standardized
model of a context is called a filter. The activated agent
processes the computation context thanks to our algorithm on
its own standardized context model (his filters).

III. ILLUSTRATIVE EXAMPLE

To illustrate our proposal, we choose to simulate the
behavior of a driver who enters a roundabout. Our objective is
to highlight the richness of the context modeling for a complex
simulation. The roundabout simulation is used to illustrate the
components of our proposal while our experiments are based
on a theoretical example (section VI). Indeed, our experimen-
tation takes into account the efficiency of our proposal and
we have to control all the parameters. The figure 1 represents
a roundabout with agents (vehicles, pedestrians and bicycles)
and objects (traffic signs).

The context of a vehicle agent is computed with the
information that are perceptible by him: objects and agents
in his perception field, his GPS device and his own state.
Each of these sources gives numerous information that have
to be combined to give to the vehicle agent (VA) a global



Fig. 1. Crossroad simulation example

status of his own situation. These sources give complementary
information. For instance, the perception field gives the relative
location of the mobile entities (vehicles, pedestrians, bicycles,
etc.), the GPS device gives information about the network
topology and the traffic flows and the state of the agent gives
his direction, speed, the state of his turn signals, etc. A context
is a combination of these perceptible information that are
relevant for the agent. For instance, the pedestrian agent pa1 is
perceived by va1 and va2 (figure 1) but the resulting context is
not the same for each agent: 1) va1 context could be ”my speed
is excessive and there is pa1 crossing the street before me”;
2) va2 context could be ”I am about to cross entering traffic,
which is blocked by the crossing pa1”. The information is the
same but that is their combination that makes sense for agents.
The issue is that these combinations are multiple and their
computation is time consuming. Their definition are related
to the expert domain as their use in the decision. After the
identification of the relevant contexts, the agents have to decide
which action to execute. Our proposal is positioned between
the information acquisition and the decision process: a data
model and an algorithm for information context processing.

IV. DEFINITION OF THE MODEL

A. Data model

Our main objective is to decrease the execution time cost of
a simulation. Classically, an agent executes a sequence at each
simulation cycle: perception - decision - action. The result of
the perception step is the computation of information about the
perceptible MAS components (agents, objects, etc.). How this
computation is processed is independent of our proposal since
we only take into account the result of this process. Based
on these information, the agent has to select those that are
relevant. We assume that the scheduler provides to each agent
a set of 〈property,value〉 pairs for each perceptible entity. An
entity is an agent or an object and a description is the list
of pairs characterizing the entity (a formal definition is given
below). Entities with identical properties belong to the same
category.

The figure 2 gives two alternatives for the recording of
descriptions. In the first case, the descriptions are stored in

a 2D grid and each cell may contain a component of the
environment. In this case, an agent has to access each cell that
is accessible to him then collects the available descriptions. In
a 2D grid, the descriptions are ranged following their position
and their category has to be found. The complexity to construct
the description list is O(C∗n2) with C the number of categories
and n the size of the part of the 2D grid that is perceived.
The second alternative consists in organizing the descriptions
by category and at each cycle find the descriptions that are
accessible to the activated agent. The complexity to construct
the description list is O(C∗m) with C the number of categories
and m the average cardinality of a category. There exists other
alternatives and we assume that our algorithm uses a unique
data structure: a list of categories for which there exists at
least one perceptible description. This assumption is critical
but is not difficult to respect since this is a quite basic model
to represent the information.

Fig. 2. Alternatives for simulation data organization

The elementary component of our proposal is called a
property and gives a specific information about an entity.

Definition 1 (Property): A property pi ∈ P is a function,
which description domain d j ∈D is quantitative, qualitative or
a finite set of data. A property is noted pi : Ω→ d j, with Ω

the set of descriptions.

For instance, the property speed : Ω→ R gives the speed
of an entity or the property street : Ω→{ streets, roundabout
lanes} gives the location of the entity following the network’s
topology.

Definition 2 (Description): A description is a set of pairs
〈property,value〉 that characterizes a MAS entity (agent or
object).

For instance, the description of a vehicle agent could be
(we note ΩA ⊂Ω the set of agents):

• speed : ΩA → R;

• location : ΩA → N: the distance from roundabout
entry or a relative value for a roundabout lane;

• direction : ΩA →{ to roundabout, from roundabout};
• turnSignal : ΩA → {left,right,off}: gives the state of

the turn signals



• . . .

Definition 3 (Category): A Category represents the entities
that have an identical set of properties and that are semantically
similar.

In our example, vehicle agents (VA), pedestrian agents (PA)
and traffic signs (TS) are instances of categories.

We propose to model a context as a filter that formalizes
conditions on the entity’s descriptions that are perceived by
the agent. A filter generates processed information from raw
information (description of the MAS components) and is by
construction an aggregate information.

Definition 4 (Filter): A filter Fj ∈ F is a tuple Fj =
〈 fa, fC,n f 〉 with:

• fa : ΩA → {true, f alse} a mandatory assertion that
expresses constraints on the agent who owns the filter;

• fC : 2Ω → {true, f alse} an optional set of assertions
expressing constraints about others components that
complete the context;

• n f the filter name.

A filter identifies by unification the agent’s description
and the context (a subset of descriptions) that matches the
associated assertions. A filter is valid for any tuple 〈a ∈
ΩA ⊂ Ω,context ⊂ Ω〉 such that fa(agent) ∧ fC(context)
is evaluated to true. When a filter is valid, the associated
context is valid for the agent a, i.e. the tuple 〈context,n f 〉.
A context being formalized as constraints on the descriptions
of the MAS components, the context and n f information are
complementary to characterize the MAS context. It means that
the same description’s subset can valid several contexts and a
context can be validated by several description’s subsets.

Let 〈 fa, fC,warning〉 be a filter dealing with the detection
of a warning related to the potential movement of vehicles. A
filter belongs to an agent and is therefore built from his point of
view. For the warning filter, the vehicle agent is on the central
lane of the roundabout and a slower vehicle agent before him in
the other lane turns on his left turn signal. The filter triggering
depends on: i) the location of the agent (assertion fa), ii)
the perception of another agent with a perceptible property
(assertion fC). The filter warning has the following definition:

• a ∈ ΩA : fa : [speed(a) =?sa] ∧ [street(a) =
centralLane]∧ [location(a) =?la]

• b ∈ΩA : fC(b) : [speed(b)<?sa]∧ [location(b)<?la +
2]∧ [turnSignal(b) = le f t]∧ [street(b) = externLane]

The symbol ”¿‘ before an expression identifies a variable
and the operator ”=“ is the comparison operator. With this
filter, the agent a, when he is in the central lane, is interested
by the b slower agents who are in the external lane and that are
up to two units before him, if their left turn signal is on. The
scheduler has already filtered the perceptible entities based on
the perception field of the agent a. The agents’ filters concern
locations only if they have additional space constraints other
than the perception field, like in this example.

Fig. 3. ordered list of filters

B. Data structure

We propose to organize the agents filters as a list of trees
of filters. Figure 3 is a part of a list of tree of filters for a
vehicle agent. An agent has his own instance of the proposed
data structure and he processes an algorithm (described later
in this paper) to browse it and find the filters that match the
accessible descriptions. The objective of this structure is to test
fewer filters given the number of categories that are perceived
by the agent. The basic idea is the following: The evaluation
of a filter is conditioned by the existence of at least one entity
for each category that it has to test.

A tree of filters is identified by the name of the category
that is tested by these filters having the minimum of entities.
We assume that the number of entities by category is defined
by the MABS designer or he is at least able to rank the
categories. In our roundabout example, the designer gives
the following order · · · < |T S| < |PA| < |VA| < .. . if the
simulation concerns rush hours with a great traffic activity,
or · · · < |PA| < |VA| < |T S| < .. . if the simulation concerns
night time with low traffic.

The list of filters’ trees is ranked following the order given
by the MABS designer. For instance, following the rush-hour
order, there are more vehicle agents (category VA) than traffic
signs (category TS). Therefore the first element of the list of
filters’ trees is related to the category TS and the last element
is related to the category VA. In the following our structure is
built following this order.

For a given category, we obtain the filters that concern
it and that do not contain a category of inferior cardinality.
For instance, in figure 3, we obtain from category T S a tree
containing the filters verifying it and the categories which
cardinality is superior. It means that this tree contains the filters
where the category T S is tested alone or with the categories
PA and VA. From category PA (the second element of the list)
we obtain the filters where the category PA is tested alone
or along with the category VA. In that way, it is possible to
eliminate the tree of filters (the tree is not browsed) if there
is no description belonging to this category in the perceptible
information.



A node is a set of filters which fC validation concerns
the same set of categories. To distinguish these filters, we
append a letter to the end of the filter’s name. For instance, the
node F4:PA-TS-VA-VA (figure 3) contains all filters where fC
is validated with the description of a pedestrian agent, a traffic
sign and two vehicle agents (in addition of the vehicle agent
owner of the list of filters’ trees). The filter warning belongs
to the node F1:VA since fC is related to one vehicle agent.

An arc is an inclusion relation between subsets of filters.
Following this relation, the depth of a node provides the
number of categories that a filter has to test. An arc between
two nodes indicates that the deeper node (the child) contains
the filters which evaluation requires a category more to test
than the shallower node (the parent). For instance, the children
of the node F1:TS are F1:TS-VA, F1:TS-PA and F1:TS-TS with
respectively the addition of the categories VA, PA and TS.

The naming convention of the filters respects these con-
straints and indicates the depth of the filter in the tree and
the order of the category taken into account. For instance,
figure 3, F2:TS-VA specifies a filter that is at the depth 2 and
concerning the categories TS and VA. This naming convention
has two advantages. The first is algorithmic because respecting
this order allows us to look efficiently for filters that can be
evaluated (section V). The second advantage is practical since
the respect of this order insures the uniqueness of filters. For
instance, the filter F2:TS-VA does not belong to the tree of
the category VA. Nevertheless, for clarity’s sake, we use also
a more explicit naming (like warning for a filter F1:VAx) in
our explanation when the position of the filter in the tree is
not discussed.

For a given depth, we order the filters in decreasing order of
categories cardinality. Indeed, for a given node, these children
are explored if the additional category belongs to the percep-
tible categories (section V). Therefore, processing in priority
the children that have potentially the most chances to have
descriptions increases the possibility to have a valid context
and to stop the search. For instance, there are potentially more
vehicle agents than pedestrian agents that are perceived by a
vehicle agent. For instance, in figure 3, the filters belonging to
the node F3:TS-PA-VA are tested before the filters belonging
to the node F3:TS-PA-PA if the category VA belongs to the set
of perceptible categories. If the objective is to retrieve all the
possible contexts of the agents, like in our experiments, then
the ordering of the nodes has no consequence.

If a child node has no parent, i.e. there exists no filter
concerning the parent’s categories, then the parent node is
created but is empty.

Starting from this filters’ structure and the data related to
the descriptions that are accessible from the environment, we
design an algorithm, which identifies efficiently the possible
filters.

V. CONTEXT COMPUTATION ALGORITHM

A. Algorithm global overview

Figure 4 illustrates our explanation of the foundations
of the proposed algorithm. The general principle is for the
activated agent to test the only filters for which there exists
perceptible descriptions. This information is provided by the

environment and used by the agents to explore their list of
filters’ trees. For a tree, the agent has to test the filters
contained in the root then in each of its children if the
added category exists in the descriptions’ list provided by the
environment. It is noteworthy that a child node may have
validated filters because accessible descriptions validate its
conditions while its parent does not contain any valid filter.
For instance, a filter belonging to the node F3:TS-PA-PA can
be valid even if no filter in the node F3:TS-PA is valid. Our
data structure is built to exploit the perception of the entities
and not their value.

Fig. 4. Global overview of data model

We propose a classical scheduling algorithm (algorithm 1)
for which the number of time ticks is fixed (T ). At each
tick, we activate the agents of the simulation by providing
a dictionary which keys are the categories and the values
the accessible entities’ lists (algorithm 1-(4)). This dictionary
contains the only categories, which list is not empty. It is not
sorted because our algorithm aims to provide all the possible
contexts; it is then necessary to explore all the possible trees.
The prefixed notation indicates the access to the members of
the concerned element.

Algorithm 1 Simulation scheduling algorithm
Require: T > 0

1: t← 0
2: while t < T do
3: for all a ∈ΩA do
4: AccessibleWorld← DescriptionComputation(a)
5: a.activate(AccessibleWorld)
6: end for
7: t← t +1
8: end while

B. List of filter’ trees browsing

When an agent is activated, he executes the perception -
decision - action loop. Our proposal concerns the perception
step. A part of this step is already performed since the agent
has the accessible descriptions (AccessibleWorld) and has
to find the possible contexts. The browsing of the list of



categories belonging to AccessibleWorld is already a selection
of the potential filters since the filter’s tree referred by a
category that does not belong to it is not explored. In Figure 4,
the list of trees of the categories VA and T S are explored but
not the filters’ tree of the category PA (following the selection
labeled with the number 1).

Algorithm 2 Activate: agent activation algorithm
Require: AccessibleWorld

1: for all Category ∈ AccessibleWorld do
2: for all f ∈ sel f .Filter[Category][1] do
3: if f .valid(sel f ) then
4: if f .trigger(self ,AccessibleWorld) then
5: self .validFilter.add( f )
6: end if
7: end if
8: end for
9: for all t ∈ self .Filter[Category][2] do

10: self .recursiveFilterTriggering(t,AccessibleWorld)
11: end for
12: end for
13: self .decision()
14: self .action()

In algorithm 2, the agent explores the filters’ trees
of each category belonging to AccessibleWorld (the nota-
tion sel f refers to the agent himself). The filter’s trees
(PotentialContext) are recorded in a ordered dictionary with
the category name as a key and the filters’ trees as value. The
algorithm explores the filter’s tree in two steps:

1) It explores the filters of the current node (value 1
in algorithm 2-(2)): it tests the fa part of the filter
(condition on the state of the agent) before to test
fC (the conditions on the concerned descriptions).
This order avoids to browse the related categories
if the current state of the agent makes the filter not
adapted. For instance, for the filter warning, it is not
useful to test all the perceptible vehicle agents if the
activated vehicle agent is not in the central lane of the
roundabout. If the agent uses a behavioral automaton,
his current state can be used here to reproduce a logo-
based simulation.

2) It explores the children saved in a sublist (value 2
in algorithm 2-(9)): the exploration of the child is
performed following a recursive process applying the
same principles as for the root.

If the filter is valid given the state of the agent (algorithm 2-
(3)) and the necessary descriptions (algorithm 2-(4)) then it is
saved in a list of valid filters of the agent. This list is made
of sublists containing the name of the filter and the list of
descriptions validating it. We choose not to compute all the
combinations of perceptible descriptions of a given filter and
to only select the first successful.

The input parameters of the recursive algorithm are the
part of the filters’ tree that is explored and the perceptible
descriptions. A partial filters’ tree is a list of lists with, for
each imbrication level, three information:

1) The name of the new category taken into account.

Algorithm 3 Recursive filters’ tree exploration
Require: partialTree
Require: AccessibleWorld

1: if partialTree[1] ∈ AccessibleWorld then
2: for all f ∈ partialTree[2] do
3: if f .valid(self ) then
4: if f .trigger(self ,AccessibleWorld) then
5: self .validFilter.add( f )
6: end if
7: end if
8: end for
9: for all t ∈ partialTree[3] do

10: self .recursiveFilterTriggering(t,AccessibleWorld)
11: end for
12: end if

For instance VA for the fist call following the filters
tree given figure 4;

2) The list of filters of the node. For instance the filters
belonging to the node F2:TS-VA figure 4;

3) The list of children that reproduce this structure. For
instance the structure related to the filters’ tree with
F3:TS-VA-VA as a root.

With this information, the algorithm tests the existence of
the category (algorithm 3-(1)) and if successful, it tests the
nodes of the filter (algorithm 3-(2)) then accesses the children
nodes (algorithm 3-(7)). If the category does not belong to
perceptible categories then this part of the filters’ tree is not
explored. For instance, the filters’ tree with the category PA
(figure 4-cut 2) are not explored because this category does
not belong to perceptible categories.

VI. EXPERIMENTATION

A. Simulation settings

To validate our algorithm, we choose a theoretical frame-
work in which we set categories and filters. Our environment
is a 2D grid that contains 60.000 entities distributed in 6
categories in addition of 100.000 agents. For each category,
we set a relative number of entities (table I) to have categories
that are poorly represented (C4) or well represented (C9). For
each description, we generate random values between 0 and 20
for five properties. We simulate agents situated on a grid with
a size varying from 500 × 500 to 5000 × 5000. The agents
have to decide which action to perform based on the MAS
entities that are present in their perception field. The position
of the entities is random.

TABLE I. CARDINALITY OF THE DIFFERENT CATEGORIES

name cardinality
C4 2.500
C5 5.000
C6 7.500
C7 10.000
C8 15.000
C9 20.000

In each filter, we define two conditions on the properties
by category ( fC) and the evaluation part of the agent ( fa)
comprises three conditions. For instance, for a filter F2− 78



of depth 2, there will be 7 conditions (4 conditions for fC and
the 3 conditions of fa).

A filter is designed with nested loops and each loop is
related to one category. The nested loops are ordered following
the increasing category order. For instance, for a filter F2−78,
there are two loops and the loop for the category C8 is
nested within the loop for the category C7. The objective
is to minimize the cost of the filter computation: there is a
priori less entities belonging to the category C7 to test. During
evaluation, when a description of the current loop validates the
conditions (for F2−78, filter ωi ∈C7), then the nested loop is
processed for the next category to test. Again, if a description
of the current loop validates the conditions (for F2−78, filter
ω j ∈C8) and if there is no nested loop, then the filter is valid
for the entities’ tuple (for F2− 78, filter (ωi ∈C7,ω j ∈C8))
and the trigger function returns true (algorithm 1-(4); algorithm
3-(4)).

The filters’ tree for our tests is the one described in fig-
ure 5. Filters are chosen to respect a homogeneous dispatching
between categories in order not to introduce bias. Hence for
a category, there exists 3 filters of first level (F1), 6 filters of
second level (F2) and a filter of third level (F3) for a total of
41 filters. An agent of the simulation has the same filters’ tree.

Fig. 5. General organization of the data

We compare our proposal with a solution in which filters
are not organized and are explored iteratively. The objective
is to compare our proposal with an algorithm computing the
context with conditional branching but that remains generic.
We call this proposal a iterated algorithm while ours is called
structured algorithm.

We perform 50 simulations of one time cycle and measure
the time spent to generate the possible filters. To ensure a
similar behavior of the two algorithms (same world state during
evaluation), at each cycle the activated agent executes both
algorithms and measures their execution time before modifying
the state of the world.

Our algorithm have been developed in Python 3.3 and
processed on a PC with an Intel Core i7-2600 CPU@3.4GHz
and 8 GB memory.

B. Results

We propose two parameters for the evaluation:

• The size of the perception field: the variation of this
parameter enables to know when the decrease of
the context computation runtime becomes negligible
according to the time needed to explore the grid that
contains the perceptible descriptions.

• The size of the grid: the variation of this parameter
enables to modify the number of potential entities
that are perceived by the agent with a constant grid
exploration cost.

We vary the perception field value from 5 to 20 and
measure the percentage that the context computation process
represents within the total perception time step for the iterated
algorithm. The results are given in table II. For instance, if
the perception field value is 5 and the size of the 2D grid
is 3000×3000 then 31.47% of the perception step processing
time is related to the context computation and therefore 68.53%
to the browsing of the 2D grid that is perceived by each agent.
We observe that the context computation represents half the
execution time of the perception process when the perception
field is small and it decreases quickly (down to 16% for a
5000×5000 grid and a perception field of 20). If the perception
field is greater than 20 then the runtime related to the context
computation process becomes negligible. The increase of grid
size causes a decrease of the context computation runtime
process because the runtime to explore the grid remains stable
while the context computation runtime decreases (there are less
entities to process).

TABLE II. STRUCTURED ALGORITHM: RELATIVE COST OF CONTEXT
COMPUTATION W.R.T PERCEPTION PHASE

Perception field
Grid size 5 10 20
500×500 52.34% 41.01% 32.48%

1000×1000 51.48% 42.45% 29.92%
3000×3000 43.95% 31.47% 22.84%
5000×5000 41.76% 18.39% 16.43%

The second test is a comparison between the structured
algorithm and the iterated algorithm w.r.t. the context com-
putation runtime. The table III provides the improvement
percentage when using our algorithm w.r.t to the perception
field and the size of the grid. It means that if the perception
field value is 10 and the size of the 2D grid is 3000× 3000
then the necessary time to compute the context is 53.56% less
with the structured algorithm than with the iterated algorithm.

TABLE III. STRUCTURED VS. ITERATED ALGORITHM: RELATIVE
PERFORMANCE OF CONTEXT COMPUTATION COST

Perception field
Grid size 5 10 20
500×500 14.28% 8.92% 1.61%

1000×1000 30.7% 9.06% 8.63%
3000×3000 81.77% 53.56% 22.63%
5000×5000 90.83% 73.38% 25.03%

Our algorithm is always better than the iterated algorithm
but this advantage decreases conversely to the increase of the
perception field. This result is coherent with the principle of
our algorithm: the more entities the agent perceives, the less



there are empty categories. Nevertheless, we saw with the first
series of experiments that the perception field has to be limited
to 20, because with a superior value, the context computation
runtime becomes negligible according to the browsing of the
grid that contains the perceptible entities.

The table IV highlights the fact that our algorithm improves
the simulation execution time whatever the perception field
size. For instance if the perception field value is 10 and the
size of the 2D grid is 3000× 3000 then time related to the
perception step is 16.85% less with the structured algorithm
than with the iterated algorithm. This gain is not anecdotal
since the average gain for the duration of a single simulation
cycle is 1.25 second.

TABLE IV. STRUCTURED VS. ITERATED ALGORITHM: RELATIVE
PERFORMANCE OF SIMULATION TIME

Perception field
Grid size 5 10 20
500×500 7.48% 3.66% 0.52%

1000×1000 15.8% 3.85% 2.58%
3000×3000 35.94% 16.85% 5.17%
5000×5000 37.93% 13.5% 4.11%

Our algorithm is dependent of the cardinality ordering
given by the designer. To test the consequence of a wrong
order, we have executed the same simulations with the same
list of filters’ trees (figure 5), but with an inverse order of the
cardinality given in table I (for instance, we have set 20.000
entities of category C4 and 2.500 entities of category C9).
The improvement of the structured algorithm compared to the
iterated algorithm in the case of a wrong order is given in
table V.

TABLE V. STRUCTURED VS. ITERATED ALGORITHM: RELATIVE
PERFORMANCE OF CONTEXT COMPUTATION COST (WRONG ORDER)

Perception field
Grid size 5 10 20
500×500 11.88% 7.36% 1.4%

1000×1000 26.55% 12.39% 7.63%
3000×3000 76.78% 43.76% 18.31%
5000×5000 88.67% 66.98% 28.05%

The incorrect order penalizes the structured algorithm,
since the runtime improvement becomes less important (com-
pare with table III). However, the structured algorithm remains
more efficient that the iterated algorithm. Indeed, even if the
filters’ tree is more deeply explored when the categories’
ordering is incorrect, the structured algorithm still behaves
better than the iterated algorithm.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a solution to decrease execution
times of a multiagent simulation. This issue is important be-
cause high execution times risk unfortunately to circumscribe
the use of the multiagent paradigm to small-size simulations.
Our proposal is focused on the optimization of context compu-
tation. We propose to model a context as a filter, which enables
us to propose a filters’ structure as a tree and an algorithm
for the agent to process it efficiently. The proposed structure
exploits the a priori cardinality of the different categories that
an agent can take into account in the evaluation of his context.
Our first set of experiments shows that, even when this a priori

order is wrong, our proposal remains more efficient than an
iterated algorithm.

Our future work concerns the introduction of new data
structures, such as lattices, in the organization of filters. In
addition, we plan to enrich the evaluation of our proposal with
several real world applications.
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