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Abstract In this paper, we consider the revenue maximization problem of a rail

freight transportation company or an intermodal marketing company selling freight

transportation services. We propose a revenue management (RM) policy to

dynamically accept transportation requests or reject them in favor of some future

forecasted transportation demands with higher potential profit. In the proposed load

acceptance system, we explicitly take the network structure into account. We

analyze solutions obtained from numerical simulations and conclude on the

promising results shown by the RM system.
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1 Introduction

Rail freight transportation companies are facing the consequences of deregulation

and high competition over the same physical infrastructure. In order to best serve

their clients, while maximizing the utilization of their available capacities, an

optimal management of their costly assets has to be found (Crainic 2009). Revenue

Management (RM) offers a set of tools to make decisions, at the operational level,

to maximize the benefits of a firm by dynamically adjusting the offer to the

forecasted future demand.

In this paper, we use RM strategies to ‘‘sell the right product to the right customer

at the right price at the right time’’ (AMR Annual Report 1987). More precisely, we

consider the problem of a rail freight transportation company or an intermodal

marketing company selling freight transportation services. We consider a full-asset-

utilization operation policy corresponding to operating regular and cyclically

scheduled services with fixed composition (Crainic et al. 2006). This means that

each service is scheduled once during a given period, the planned schedule being

repeated cyclically over the time horizon. Demand for shipments varies greatly

across locations and time, partially due to new management practices favoring just-

in-time production strategies. Managing such a complex system requires the use of a

reservation system. Traditionally, the transportation requests are accepted on a first-

come first-served basis, as long as free capacity exists, and the prices are usually

based on handling costs and distances. In such a system with scarce resources during

some periods, high-value demands may be unsatisfied due to infeasibility. However,

the customers do not all have identical time delivery constraints and/or quality of

service requirements. For example, some companies are willing to pay less for

longer deliveries or to pay higher rates for quicker deliveries. In this context, it may

be advantageous to hold some capacity in reserve if there is a reasonable

expectation that high revenue, service sensitive customers will arrive later. The load

acceptance management system we design in this paper aims to dynamically accept

transportation demands or reject them in favor of some future forecasted

transportations demands with higher potential profit. As we will see later the rail

freight load acceptance problem, we consider few similarities and differences with

the airline inventory control problems in RM systems. The principle that

transportation demands can be rejected and the mathematical modeling assumptions

made in this paper are not necessarily acceptable in all contexts. National rail

industry organization differs greatly between countries. For example, in the US,

large railroads are subject to ‘‘common carrier laws’’ that force them to accept any

demand that is placed to them. The approach developed in this paper concerns rail

transportation companies with regulations or practices similar to that of France and

other EU countries.

Revenue management systems are classically separated in four subproblems:

demand forecasting, inventory control, pricing decision and oversales (Belobaba

1987; Capiez 2003; Chiang et al. 2007; Talluri and van Ryzin 2004). Commonly

used in passenger airline transportation or in other service industries such as car

rentals or hotels, applications in rail transportation of freight are not largely reported

in the scientific literature. Yet, many of the characteristics required for efficiently
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applying RM to this mode of transportation are present: the demand varies with time

and is uncertain, the transportation service is perishable (scheduled trains have to

depart on time, even if their transportation capacity is not full; thus, the unused

space on the transportation service is not generating monetary benefits, although the

fixed costs of the service have to be payed), and different client profiles and market

segments are easily identifiable. In a recent perspective (Kuehn 2011), Kuehn states

that yield management is an answer to US freight rail carriers’ capacity problems.

Although there are challenges in applying conventional yield management

techniques to the rail industry, the author describes possible alternative approaches

that could help railroads to manage traffic and allocate service network capacity

more efficiently. Several presentations at INFORMS annual conferences also

emphasized the high potential of RM systems designed for dealing with container

(or, more generally, freight) transportation by railway (Gao and Gorman 2008;

Lieberman 2005).

A recent survey on railway RM problems is presented in (Armstrong and

Meissner 2010). The authors provide an overview of the published literature for

both passenger and freight railway RM. While for passengers, the relationships with

airline RM are shown to be rather strong [see, e.g., (Bharill and Rangaraj 2008) or

(You 2008)], the authors highlight additional difficulties associated with freight rail

transportation. These include the fact that the effective capacity in rail transportation

is heterogeneous and not known in advance (Gorman 2005). Furthermore, the

capacity management problem is highly combinatorial, since solution (the capacity

allocation) depends on the routes followed by the merchandise on the service

network (Cordeau et al. 1998).

The way revenue and traffic flow management that can be integrated has not been

investigated much in the literature. Seminal studies on this issue were provided by

Kraft, in his Ph.D thesis (Kraft 1998) and his papers (Kraft 2002; Kraft et al. 2000).

This type of study was recently extended in (Crevier et al. 2012). In these different

papers, several RM or pricing strategies have been proposed on different types of

networks and under diverse assumptions. In this paper, we follow the same line of

investigation. However, a major difference is that we explicitly take into account the

network structure and interactions in the decision process. More precisely, a lower

priority shipment may be displaced even at an intermediate terminal in favor of a

newly arrived high revenue load if sufficient slack time exists in the schedule. We

assume that a differential pricing policy with different fare classes is proposed to the

clients. We focus on the load acceptance process faced by rail freight transportation

or by an intermodal company to maximize revenues taking into account future

demand forecasting.

The contribution of this paper is a new decision-making process based on a

booking and RM system for rail container transportation planning at the operational

level. The proposed approach is based on a probabilistic mixed integer program-

ming model formulated on a space–time network representation of the transpor-

tation services. A discrimination policy (accept/reject) for each new incoming

demand is applied, and the decision process explicitly takes into account the flow

interactions between present and future potential demands, to maximize expected

revenues. The routing of the demand in the space–time network is evaluated in a
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predictive manner, by taking into account the potential influence of future high

revenue demands, for which capacity should be reserved on the network. We solve

the expected revenue maximization problem using an off-the-shelf solver and

validate by numerical simulation the decision support system on test instances

inspired by French/EU rail transportation companies. We perform sensitivity

analysis on fare classes price ratios and demand estimation accuracy criteria to show

the robustness of the proposed approach.

The paper is organized as follows. We give a general description of the booking

system in Sect. 2. We describe the transportation scheme and introduce a

mathematical model for the optimization of container flows in Sect. 3. We present

the RM policy and the way new booking requests are accepted in Sect. 4. We finally

provide simulation results evaluating this policy in Sect. 5. Concluding remarks and

perspectives are given in Sect. 6.

2 General description of the booking system

Freight rail transportation companies have a complex organization. When dealing

with very dense rail infrastructures such as the French or European rail network, the

main difficulty is that many different types of users share the same physical

network: competitors (freight transporters), passenger transporters, etc. [see, e.g.,

(Cacchiani et al. 2010) or (Godwin et al. 2007)]. A very tight planning is thus

needed to ensure traffic safety. Companies have to make very early bookings, often

more than 1 year in advance, for the needed utilization of the network, with

precisely defined time-schedules.

The main purpose of the booking system developed here is to answer the

following question: for each new booking demand, what is the right decision, to

accept or to reject it? Each new booking demand arriving in the system is

characterized by its origin and destination on the carrier’s service network, the

containers’ availability date at the origin, their maximum delivery time, their total

volume (in standard volume units, TEU—twenty equivalent units) etc. The time

characteristics such as the booking anticipation and the latest delivery time

constitute the criteria used to match a specific booking request to its corresponding

fare class. Its associated fare is thus known a priori, and no fare negotiation process

is to be proposed to the client. Accepting the booking request is decided based on

the comparison between the expected future revenue computed with and without

that demand in the booking system. This discrimination policy is inspired by

classical mechanisms of bid-price controls for network RM, which are based on

accepting a booking request only if its price exceeds the opportunity cost of the

reduction in resource capacities required to satisfy that request (Talluri and van

Ryzin 2004).

In order to estimate these expected revenues, we introduce a space–time network

flow problem. We consider two scenarios, both of them accounting for flows

corresponding to the already accepted demands, the future potential demands (given

in terms of probability distribution of their volumes) and, in turn, including the

current demand (Scenario 1) or excluding it (Scenario 2). The accepted demands are
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thus optimally routed on the service network of the rail carrier. Two problems,

corresponding to the two scenarios, have to be solved: the first including the current

demand, the second excluding it. The expected revenues, thus, obtained are

compared to make the decision of accepting or rejecting the current request.

In the model, we consider two kinds of flow:

• The accepted requests, that have to be routed through the network; this first type

of flow corresponds to the already accepted demands that have to be satisfied,

including or not the current demand being addressed at the time of the decision

making;

• The future potential reservations, which are not to be physically routed, but are

used to compute the total expected demand that might be accepted, given the

remaining available capacity; in this way, the potential revenue associated with

the future demand is estimated.

The system is, thus, able to accept or reject new demands to save capacity for potentially

more profitable future demands. Figure 1 depicts the decision support system.

3 The container transportation system

We describe in this section, the service offer of the railway company as well as the

way the services are operated. This model is inspired by the flow model defined in

(Crainic et al. 2006). To keep the model tractable, we focus our study on a relatively

small subset of the railway network, and on a relatively short period of time. The

empty railcars rebalancing policy is therefore not addressed here. We also consider

that the capacity of rail stations, in terms of available railcars and power engines, is

large enough to serve the planned services.

3.1 Description

Let us consider a rail company working on a full-asset utilization basis to satisfy

regular and irregular freight transportation demands for its clients. Let the oriented

expected revenue

                     Decision

      Network flow problem   New demand

       Network flow problem

new demand

data including the

data excluding the
new demand

expected revenue

Fig. 1 Decision making for the booking system
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graph GN ¼ ðN;ANÞ represent the physical network of the carrier. The set N

represents the rail stations. Each different arc ði; jÞ connecting two different stations

i; j 2 N belongs to the set AN if and only if the physical network allows a direct train

to reach j starting in i without traversing any other intermediate station. A

discretized time horizon T is considered, the time unit being one or several hours,

depending on the length of the horizon and the data granularity.

We illustrate the graph representation of the physical network in Fig. 2, where a

linear network linking five cities is depicted.

In order to organize traffic flows, the company organizes transportation activities

as scheduled services that are planned cyclically, with a certain frequency within the

planning horizon and with a given itinerary on the physical network. Time

dimension is introduced in the model via a space–time representation of the service

network. On this network, a service is defined by its origin station and its departure

time, its destination station and its arrival time, its itinerary within a fixed schedule

and lower and upper bounds in terms of transportation capacity. Let S denote the set

of services.

Any transportation request may be served by one ore more services, from the

origin station to the destination station of the demand.

Let K be the set of demands, and let us consider for the time being that all the

demands are known in advance and accepted by the booking system. We place

ourselves in the static case, where the only decision to be made is the freight optimal

routing on the network. The dynamic case, where a decision to accept or reject the

current demand has to be made, will be treated in the Sect. 4.

When using the term service, the terms leg and block must be introduced as well.

A leg is one arc in the set AN , connecting two consecutive stations, in the physical

network. Let RðsÞ be the route of service s, in other words, the set of legs used by the
service s. A block is a set of railcars traveling together within a given service, using

LILLE

MARSEILLE

AVIGNON

LYON

PARIS

Fig. 2 Physical network
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one or more legs. Note that the origin and the destination of a block may be different

from the origin and destination of the containers being transported on that block. Let

BðsÞ be the set of blocks associated with a service s and let B ¼ [s2SBðsÞ be the set
of all the blocks of the services offered by the rail company on a given network.

Services and blocks are defined by the block plan of the transporter, on the long or

medium term. The routing of the freight volume corresponding to one transportation

demand will be given by the set of all blocks, belonging to one or several services,

to which the demand will be assigned, if accepted.

We give an example of a service and its four legs in Fig. 3, and an example of the

blocks defined for this service in Fig. 4. Figure 5 illustrates these blocks, represented

on a space–time network.

In terms of mathematical notation, a given service s 2 S is characterized by :

• oðsÞ 2 N: service origin on the physical network;

• dðsÞ 2 N: service destination on the physical network;

• RðsÞ: the route used by the service;

• tðsÞ 2 T: service departure time [from oðsÞ];
• hðsÞ 2 N: service duration [arrival at destination dðsÞ takes place at tðsÞ þ hðsÞ];
• Bðr; sÞ � B ðr 2 RðsÞÞ: set of blocks of service s using leg r;

• lðsÞ: lower bound for service capacity, in TEUs; gives the minimum volume that

is required for the service to operate;

• uðsÞ: upper bound for service capacity, in TEUs; gives the maximum volume the

service is able to transport.

LYON

Service

ELLIESRAMNONGIVASIRAPELLIL

Fig. 3 Legs of a service

LILLE

Block 5

Block 4

Block 3

Block 2

Block 1

ELLIESRAMNOYL AVIGNONPARIS

Fig. 4 Blocks of a service
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A block b 2 B is characterized by:

• oðbÞ 2 N: block origin on the physical network;

• dðbÞ 2 N: block destination on the physical network;

• sðbÞ 2 S: service to which the block belongs;

• tðbÞ: departure time of the block from its origin oðbÞ;
• hðbÞ: block duration [arrival at destination dðbÞ takes place at tðbÞ þ hðbÞ];
• lðbÞ: lower bound for block capacity, in TEUs; gives the minimum volume that

is required for the block to exist;

• uðbÞ: upper bound for block capacity, in TEUs; gives the maximum volume that

can be transported by a block.

A transportation demand k 2 K is characterized by:

• oðkÞ 2 N: demand origin on the physical network;

• dðkÞ 2 N: demand destination on the physical network;

• volðkÞ: freight volume to be transported, in TEUs;

• tavlðkÞ: freight availability time at the origin;

• tmaxðkÞ: freight latest delivery time to the destination;

• BðkÞ � B: set of blocks that could be used to satisfy the demand; the

characteristics of the demand [tavlðkÞ, tmaxðkÞ...] as well as other possible specific
requirements and incompatibilities are considered when defining this set of

blocks.

We also introduce the following additional notation, for the sake of simplicity, to

denote the set of demands k 2 K that use the same block b 2 BðkÞ: B�1ðbÞ � K

(b 2 B).

We denote by Kfr � K the set of demands belonging to the regular traffic on the

network. Since these regular flows correspond to large volume demands, of regular

clients, received and accepted long before the ‘‘current day’’, the corresponding

block assignment is decided on the long term and fixed in advance.

Freight containers are traveling on the network under two types of capacity

constraints:

Li

M

A

Ly

P

Fig. 5 Structure of the space–time network, in terms of blocks
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• Services capacities: the power engine in charge with a service s 2 S cannot pull

more than a predefined freight volume uðsÞ; it cannot pull less than a predefined

freight volume lðsÞ either, otherwise the service is not profitable;

• Blocks capacities: a block b cannot contain more than a predefined freight

volume uðbÞ, nor can it contain less than a predefined freight volume lðbÞ, for
practical operational reasons.

We make the assumption that the minimum load for blocks and services is ensured

by the regular flows; moreover, in our model we consider the remaining capacity

only after the subtraction of the regular traffic flows already allocated on the

network. In other words, the remaining capacity is taken into account for the

capacity constraints in the model: this capacity is thus between zero (when no

capacity is left available for irregular demands) and an upper bound. For this reason,

the lower bounds for block and service capacities are not to be used in the model we

present; the remaining available capacities that are used by the irregular

transportation demands are thus given by the values of the upper bounds of those

capacities.

In the following section, we propose a mathematical model for the freight

transportation problem on the space–time network. This model is defined in the

context of a rail company functioning under the rules as described previously.

Nevertheless, the proposed approach is robust enough to cope with different ways of

working for other types of transportation companies, as long as the transportation

network can be represented in terms of block plans on a space–time network.

3.2 Mathematical models

In this section, we introduce a mathematical formulation for the network flow

optimization problem. The model is based on a space–time network G ¼ ðV ;AÞ,
constructed as follows.

The set of nodes V is composed of three subsets: V ¼ VNT [ VO [ VD.

VNT ¼ fvi;tjði; tÞ 2 N � Tg is the backbone of the space–time network. Each

physical location is replicated for all time periods 1, ..., T , thus forming the space–

time pairs of the set VNT . VO ¼ fukjk 2 Kg and VD ¼ fwkjk 2 Kg represent the sets

of origins and destinations of all requests (irrespective of time), respectively.

The set of all the arcs of the network, A, is made of five subsets:

A ¼ AB [ Awtt [ AO [ AD [ AR.

AB stands for the set of blocks in the space–time network. To each block b 2 B is

assigned an arc, coined aðbÞ, which connects its origin [voðbÞ;tðbÞ] and destination

[vdðbÞ;tðbÞþhðbÞ] on the space–time network: AB ¼ faðbÞjb 2 Bg.
Awtt represents waiting times in stations: Awtt ¼ fðvi;t; vi;tþ1Þjði; tÞ 2

N � T n ftmaxgg, where tmax is the last time step of time horizon T .

The three other arc sets connect source and destination ‘‘dummy’’ nodes to the

remaining of the graph. AO is composed of one arc per request k 2 K, which

connects the source uk to the node ði; tÞ in VNT with i ¼ oðkÞ and t ¼ tavlðkÞ:
AO ¼ fðuk; voðkÞ;tavlðkÞÞjk 2 Kg. Equivalently, AD is the set of arcs connecting the last

nodes of VNT allowing the completion of the transportation requests k to their
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destinations wk 2 VD: AD ¼ fðvdðkÞ;tmaxðkÞ;wkÞjk 2 Kg (this is equivalent to consid-

ering that even if some containers arrive at their destination before tmax, they wait at

the destination yard until the maximum delivery time is reached, so that we have a

single arc per request in AD; otherwise, there could be several arcs at destination of

k, for times t� tmaxðkÞ). Finally, AR contains a single arc ðwk; ukÞ per request k 2 K,

coined aðkÞ: AR ¼ faðkÞjk 2 Kg. This latter set aims at ensuring flow balance

throughout the graph G and is solely introduced for the sake of simplifying the

subsequent mathematical modeling.

Figure 6 exhibits a part of the graph G obtained in the case of the example given

in the previous section, considering a request for transportation of containers from

Lille to Marseille within a maximum delivery time of 6 time units (TU).

We introduce the following decision variables. The variable vðk; aÞ represents the
volume of the request k 2 K delivered via the arc a 2 A. Depending on the subset of

A to which arc a belongs, the value of vðk; aÞ can easily be interpreted. For example,

in the case where a 2 AB, vðk; aÞ indicates the quantity of merchandise to be loaded

in the corresponding block; if a 2 Awtt, vðk; aÞ is the quantity of merchandise that is

going to wait in the corresponding station during the time interval represented by

arc a; etc. Note that variables vðk; aÞ are only defined when the use of arc a for

satisfying request k is compatible with the time characteristics of the request. This

set of arcs is then denoted Ak. Also, the set of ending nodes of arcs in Ak is denoted

Vk, so that flow issued from request k will traverse the network through the subgraph

ðVk;AkÞ.
For the sake of simplicity, we also introduce additional variables vðbÞ, with the

meaning that vðbÞ is the cumulated load of block b 2 B.

We denote v as the vector defined by variables vðk; aÞ and vðbÞ. The problem of

delivering goods in the railway network can then be described as follows:

M

Li

P

Ly

A

Fig. 6 Space–time network including waiting arcs and dummy arcs.
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maximize /ðvÞ ð1Þ

subject to

vðbÞ ¼
X

k2B�1ðbÞ
vðk; aðbÞÞ ðb 2 BÞ; ð2Þ

vðbÞ� uðbÞ ðb 2 BÞ; ð3Þ
X

b2Bðr;sÞ
vðbÞ� uðsÞ ðs 2 S; r 2 RðsÞÞ; ð4Þ

X

a2dþðiÞ\Ak

vðk; aÞ �
X

a2d�ðiÞ\Ak

vðk; aÞ ¼ 0 ðk 2 K; i 2 VkÞ; ð5Þ

vðk; aðkÞÞ ¼ volðkÞ ðk 2 KÞ; ð6Þ

vðk; aÞ fixed ðk 2 Kfr; a 2 AkÞ; ð7Þ

vðk; aÞ� 0 ðk 2 K; a 2 AkÞ; ð8Þ

vðbÞ� 0 ðb 2 BÞ: ð9Þ

The definition of the objective function / depends on the objective pursued. Its

definition in the context of the arrival of new requests will be discussed in Sect. 4.

Constraints (2) define the load of a block as the sum of the quantities of goods

assigned to this block. Inequalities (3) and (4) ensure block and service capacity

constraints, respectively. Regarding services, this capacity is enforced for each leg

(segment) composing the service. Constraints (5) stand for flow balance, for each

request k 2 K, where notations d�ðiÞ and dþðiÞ denote ingoing and outgoing arcs of

node i, respectively. Constraints (6) ensure that every request k 2 K is satisfied by

imposing a flow volðkÞ, equal to the volume of the demand, on the dummy arc

aðkÞ ¼ ðwk; ukÞ (that links backwards the sink to the source node). Finally, con-

straints (7) define the volumes associated with the regular flows in the network.

4 The booking and revenue management system

In this section, we present a booking and RM system devoted to the arrival of new

requests. We describe the behavior of the system faced with the arrival of a new

request ~k at time tresð~kÞ. Time tresð~kÞ is the time the client calls in to make a booking

for a certain transportation demand ~k. This time is called the reservation time of the

request.

The discretization of the time horizon involves relatively large periods between

the time steps (e.g., the time period may be equal to six hours, twelve hours, etc.,).

Therefore, we assume that several booking requests may arrive simultaneously at

each time step, although we assume that these requests are treated sequentially, in

the order of their arrival (i.e., requests following request ~k at time tresð~kÞ are not

known while request ~k is treated).
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At time tresð~kÞ, the booking system has to decide whether or not request ~k should

be accepted. Let us recall that in addition to its booking time, request ~k is defined by

its origin oð~kÞ, its destination dð~kÞ, a volume volð~kÞ, times tavlð~kÞ and tmaxð~kÞ (see
Sect. 3). In view of its characteristics oð~kÞ, dð~kÞ, tresð~kÞ, tavlð~kÞ and tmaxð~kÞ, the
request is assigned to a fare class, with a known unit price denoted f ð~kÞ. Thus, the
revenue obtained in case request ~k is accepted is volð~kÞ � f ð~kÞ. No request can be

partially accepted. Also, the booking system is designed for requests of limited

amount, and unit prices are assumed to be independent of the total amount of goods

involved in the request.

A new request is accepted under two conditions:

• A feasibility condition, imposing that a solution exists including the new request

plus the formerly accepted requests and regular flows.

• An economic condition, implying that the expected revenue if the request

accepted is at least equal to the expected revenue in case of rejection; note that

the computation of these expected revenues requires that some forecasts of the

future demands should be available in the system.

When the request is rejected, we assume that the customer leaves the system. In

particular, we do not treat the case where the same customer reformulates his/her

request to fit in another fare class.

To compute the expected revenue for a booking request ~k, we have to look at the

possible flow interactions between this request and potential future requests that

might use the same services and blocks of the transportation network. Let us define

Lð~kÞ as the set of all possible future booking request configurations with direct

interactions with the request ~k. Each potential request configuration l 2 Lð~kÞ is

characterized by an origin–destination pair ðoðlÞ; dðlÞÞ, an availability time tavlðlÞ, a
latest delivery time tmaxðlÞ and a booking time tresðlÞ. By direct interactions, we

mean that the time intervals on which future demands and the new booking demand
~k are routed on the space–time network overlap. Mathematically, we define the set

of future requests Lð~kÞ as made up of requests of type l satisfying simultaneously

the two time conditions:

• tresðlÞ[ tresð~kÞ,
• ½tavlðlÞ; tmaxðlÞ� \ ½tavlð~kÞ; tmaxð~kÞ� 6¼ ;.

The unit price corresponding to the fare class to which a request configuration l

belongs is denoted f ðlÞ. Note that Lð~kÞ is possibly a very large set as it enumerates

all the feasible combinations of the parameters that define a request. However, not

all of these requests will become realizations. Each request type l 2 Lð~kÞ has a

probability distribution associated with it. This is given in terms of possible values

of the volume of that request. These values are integer and bounded, as they are

given in terms of number of twenty feet containers (TEUs). Therefore, we use a

discrete probability distribution function, denoted PlðxÞ, to characterize the random

integer variable corresponding to the volume x of the potential request type l. A

volume x ¼ 0 indicates that the request will not appear.
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Let us finally introduce decision variables volðlÞ, l 2 Lð~kÞ, aimed at ‘‘booking’’

some capacity (delivery routes) in the network for potential future requests. More

precisely, volðlÞ is a decision variable that gives the maximum volume available to

serve a request of type l, compatible with the capacity constraints on blocks and

services of the network.

Then, given a vector v [including variables volðlÞ], the expected revenue for

future requests can be computed as:

/ðvÞ ¼
X

l2Lð~kÞ
f ðlÞ

XvolðlÞ

x¼0

xPlðxÞ: ð10Þ

Note that when the volume x exceeds volðlÞ no revenue is obtained as requests

cannot be partially accepted.

We denote by Kð~kÞ the set of all requests accepted before request ~k , including

the regular flows.

Model REJECTð~kÞ described below allows to evaluate the expected maximum

revenue at time tresð~kÞ, if request ~k is rejected:

maximize /ðvÞ ð11Þ

subject to

vðbÞ ¼
X

k2B�1ðbÞ
vðk; aðbÞÞ þ

X

l2B�1

Lð ~kÞ
ðbÞ

vðl; aðbÞÞ ðb 2 BÞ; ð12Þ

vðbÞ� uðbÞ ðb 2 BÞ; ð13Þ
X

b2Bðr;sÞ
vðbÞ� uðsÞ ðs 2 S; r 2 RðsÞÞ; ð14Þ

X

a2dþðiÞ\Ak

vðk; aÞ �
X

a2d�ðiÞ\Ak

vðk; aÞ ¼ 0 ðk 2 Kð~kÞ; i 2 VkÞ; ð15Þ
X

a2dþðiÞ\Al

vðl; aÞ �
X

a2d�ðiÞ\Al

vðl; aÞ ¼ 0 ðl 2 Lð~kÞ; i 2 VlÞ; ð16Þ

vðk; aðkÞÞ ¼ volðkÞ ðk 2 Kð~kÞÞ; ð17Þ

vðl; aðlÞÞ ¼ volðlÞ ðl 2 Lð~kÞÞ; ð18Þ

vðk; aÞ fixed ðk 2 Kð~kÞ; a 2 AkÞ; ð19Þ

vðl; aÞ� 0 ðl 2 Lð~kÞ; a 2 AlÞ; ð20Þ

volðlÞ� 0 ðl 2 Lð~kÞÞ; ð21Þ

vðbÞ� 0 ðb 2 BÞ: ð22Þ
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where B�1

Lð ~kÞ
ðbÞ is the set of requests of Lð~kÞ that are authorized to use block b and

ðVl;AlÞ is the subgraph within which the request of type l can be delivered (sub-

graph containing all the blocks that request l is authorized to use).

Variables vðl; aðbÞÞ indicate the volume ‘‘booked’’ on block b for a potential

request of type l. Each variable vðl; aðlÞÞ associated with a request of type l gives the
total volume volðlÞ of this request that has to be transported on the network, on the

dummy arc aðlÞ, to ensure demand satisfaction [constraints (18)]. Other constraints

replicate and adapt constraints of model (1–9). In particular, constraints (12) include

the volumes associated with potential requests l when computing arc flows; they are

thus considered in the capacity constraints (13) and (14).

Let us call vREJECT an optimal solution of model REJECTð~kÞ.
Model ACCEPTð~kÞ, maximizing the expected revenue at time tresð~kÞ under the

assumption that request ~k will be accepted, can be stated:

maximize /ðvÞ ð23Þ

subject to constraints (13, 14), (16), (18–22) as before, and the following ones:

vðbÞ ¼
X

k2B�1ðbÞ
vðk; aðbÞÞ þ

X

l2B�1

Lð ~kÞ
ðbÞ

vðl; aðbÞÞ ðb 2 B n B~kÞ; ð24Þ

vðbÞ ¼
X

k2B�1ðbÞ[f~kg
vðk; aðbÞÞ þ

X

l2B�1

Lð ~kÞ
ðbÞ

vðl; aðbÞÞ ðb 2 B~kÞ; ð25Þ

X

a2dþðiÞ\Ak

vðk; aÞ �
X

a2d�ðiÞ\Ak

vðk; aÞ ¼ 0 ðk 2 Kð~kÞ [ f~kg; i 2 VkÞ; ð26Þ

vðk; aðkÞÞ ¼ volðkÞ ðk 2 Kð~kÞ [ f~kgÞ; ð27Þ

vð~k; aÞ� 0 ða 2 AkÞ: ð28Þ

Compared with model REJECTð~kÞ, the sole modification is that the delivery of an

amount volð~kÞ of goods for request ~k is imposed, which is equivalent to including

request ~k in K. Let us call vACCEPT an optimal solution of this model.

Demand ~k is then finally accepted if:

/ðvACCEPTÞ þ volð~kÞ � f ð~kÞ�/ðvREJECTÞ ð29Þ

In order to efficiently solve the REJECT and ACCEPT optimization problems, we

propose a linearization of the objective function, as follows. We introduce, for each

request l, additional binary decision variables ylj, where j are integer values such

that 1� j�VMAXðlÞ and VMAXðlÞ is the smallest integer such that PlðjÞ ¼ 0 for

j�VMAXðlÞ þ 1. Variable ylj is then equal to 1 if a volume j is booked for request l,

0 otherwise.

The decision variables volðlÞ are given by:

volðlÞ ¼
X

1� j�VMAXðlÞ
j ylj ðl 2 Lð~kÞÞ; ð30Þ
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X

1� j�VMAXðlÞ
ylj � 1 ðl 2 Lð~kÞÞ; ð31Þ

ylj 2 f0; 1g ðl 2 Lð~kÞ; 1� j�VMAXðlÞÞ: ð32Þ

Constraints (31) ensure that only one variable ylj is fixed to 1. The expected revenue

/ðvÞ is then given by:

/ðvÞ ¼
X

l2Lð~kÞ
f ðlÞ

XvolðlÞ

x¼0

xPlðxÞ ¼
X

l2Lð~kÞ
f ðlÞ

X

1� j�VMAXðlÞ

Xj

x¼0

ðxPlðxÞÞylj ð33Þ

or

/ðvÞ ¼
X

l2Lð~kÞ

X

1� j�VMAXðlÞ
f ðlÞ

Xj

x¼0

xPlðxÞ
 !

ylj: ð34Þ

Due to this linearization (or to the initially non-linear objective function), none of

the two problems to be solved to accept/reject a new request is a pure flow problem.

Binary variables ylj complicate the solution method and prevent from solving large

instances in reasonable computing times. Ad hoc or heuristic algorithms could be

proposed to tackle this difficulty, by partitioning the network and exactly solving

each subproblem separately, or by stopping the exploration of the search tree when a

satisfactory solution is found, for example.

5 Simulation and numerical results

We validate the proposed RM models through numerical simulations performed

using CPLEX 11.2 solver on a computer running under Linux 64-bit and with an

Intel Xeon 5160 CPU, 3GHz, 16GB. We use two types of networks (linear and star)

and different scenarios for the demand profile. We keep the networks and time

horizons relatively small to allow acceptable computing time for solutions of the

mathematical models (\1 min). Again, we leave more sophisticated solution

methods for future research. The purpose in these experiments is to give some

insights on the benefits that could be obtained with the proposed booking and RM

system.

We design the linear and star networks as follows:

Linear network. We introduce four consecutive cities, A, B, C, D. We define two

cyclic services s1 and s2, connecting A to C and C to D, respectively. We

introduce four blocks. Service s1 is composed of three blocks: b1, linking A to B,

b2, linking B to C and b3, linking A to C; Service s2 is composed of a single

block: b4, linking C to D. In this network, we limit requests to three origin–

destination pairs: AC, AD and BD.

Star network. The star network links four cities, A, B, C, D through a single hub,

H; no direct link exists between the four cities; for example, to go from A to B,

the two legs AH and HB are consecutively used. We introduce three services and
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four blocks in this network. Service s1 connects A to B and is composed of two

blocks, b1 (from A to H) and b2 (from H to B). Service s2 connects H to C, with

one block b3 (from H to C). Service s3 connects H to D, with one block b4 (from

H to D). In this network, we limit requests to three origin–destination pairs: AB,

AC and AD.

Services and blocks are chosen with respect to the interactions between different

flows on the space–time network. We generate bottlenecks in the test instances to

study the effects of the RM models on congested parts of the network. The limited

size of the physical/service network is consistent with the fact that, in practice these

congested parts can be easily identified and should be relatively small.

Note that in all scenarios the residual capacity is scarce with respect to the

volume of irregular demands arriving in the system, thus some of the demands have

to be rejected.

Fare classes constitute a critical set of parameters for the simulator. We define

four different fare classes as a combination of two possible categories (short or long)

for the booking anticipation time w and two possible categories (short or long) for

the maximum delivery time D (see Fig. 7). The highest fare class corresponds to

short booking anticipation and short delivery time, the second highest is the one

with long booking anticipation and short delivery time, short booking anticipation

and long delivery time comes on the third position and finally the lowest fare class

corresponds to long booking anticipation and long delivery time. Each demand is

associated with its corresponding fare class based on these two time characteristics.

Relative values (price ratios) are used in the test instances to illustrate the price

differences between the four fare classes.

We design and simulate the decision-making process as follows. The requests

arrive to the booking and RM system and are treated sequentially, in the order of

their arrival. The simulation horizon is discrete and made up of 100 time units

(TUs). A single booking request ~k is generated at each time unit of the simulation

horizon; the booking time is thus fixed [tresð~kÞ]. The origin–destination pair

characterizing the request is uniformly generated using the possible values defined.

Uniform distributions are also used to generate the value (in TUs) of the booking

anticipation (either short or long) and the value (in TUs) for the delivery time (either

short or long). This implies that the four fare classes resulting from the combination

delivery time 

booking 
anticipation 

C1 C3 

C2 C4 

wmin 

wmax 

max min 

High fares: C1, C2 
Low fares: C3, C4 

thresold 

wthresold 

Fig. 7 Anticipation w and
delivery time D used to compute
the fare class of a demand
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of the values of these two parameters are equally likely (the parameters are

uniformly generated, one out of two possible values each).

Demand X is represented as a discrete random variable varying between 0 and a

maximum volume size VMAX = 5 (in TEUs). Size zero is an indication that the

demand does not come. The discrete probability distribution of a request

configuration type l is defined as follows: PlðX ¼ 0Þ ¼ 0:5 and PlðX ¼ xÞ ¼ 0:1
for x 2 f1; 2; :::; 5g.

For each arriving booking request ~k, an accept/reject decision has to be made. As

explained in Sect. 4, this decision relies on the estimation of the expected revenue

computed based on the future possible requests appearing between tresð~kÞ and

tmaxð~kÞ. On this time interval, we apply the same process as for the arriving requests
~k, using the same values of parameters, at each time unit, to generate potential future

request configurations. The characteristics origin–destination pair ðoðlÞ; dðlÞÞ,
availability time tavlðlÞ, latest delivery time tmaxðlÞ of such a future request

configuration are then checked against the conditions that direct interactions with ~k
are generated on the space–time network. Finally, the expected revenue is computed

as indicated by /ðvÞ in Eq. (34), using the same volume probability distributions as

when generating the new requests. For all other configuration types l we define the

volume probability distribution given for a single value, equal to zero:

PlðX ¼ 0Þ ¼ 1. By doing so we limit the size of the optimization problems that

are solved. Furthermore, we anticipate the fact that in practice L could be very large

and it might be necessary to only consider a limited subset of configurations.

In the experiments we test the application of the RM policy (RM2), described in

Sect. 4. We also present and analyze results of a less powerful policy, when only

the optimization model ACCEPTð~kÞ is applied (RM1). RM1 policy applies the

acceptation rule based on the feasibility of the demand only; nevertheless, the

routing of the demand (in case of acceptation) is done in a predictive manner, by

taking into account the potential influence of future high-revenue demands, for

which capacity should be reserved on the network.

We test these two RM policies against a traditional FCFS policy. FCFS refers

here to a decision policy that simply treats the demands ~k, one by one, in the order

of their arrival time [tresð~kÞ]. A demand is accepted (irrespective of its profitability)

if it is feasible. It is rejected otherwise. The feasibility is computed in terms of

available capacity of the different blocks of the itinerary, and time delivery

constraints, considering the remaining capacity on the network, at the moment when

the booking request arrives in the system. Mathematically, a feasible solution is

found by applying model ACCEPTð~kÞ with Lð~kÞ set to ;.
We also compare the results of applying the RM policies with a deterministic

optimal solution policy (DET), i.e., assuming perfect information. It consists in

considering future demand information completely known in advance, thus the

accept/reject decisions are made in a pure optimal way (no uncertainty exists with

respect to the future). This policy constitutes an upper bound for the performances

of the policies tested (FCFS, RM1 and RM2).
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As the demands’ characteristics are randomly generated, we perform 20

replications for each proposed scenario and compute the average values of the

performance indicators. Tables 1, 2, 3 and 4 summarize these numerical results.

We perform sensitivity analysis with respect to (1) Fare classes prices and (2)

Demand estimation accuracy.

1. Fare classes price ratios. Tables 1 and 3: the reference scenario is based on

1:2:4:6 price ratios. This notation means that the highest fare class is

characterized by a price six times the price of the lowest fare class (6:1). The

subsequent fare class has a price four times the lowest price (4:1). The

following (the third class) is associated with a price only twice the lowest one

(2:1).

2. Demand estimation accuracy. Tables 2 and 4: the reference scenario is based on

a parameter, called demand coefficient, equal to one; the meaning of this

parameter is the ratio between the average interarrival time of booking demands
~k and the average interarrival time of future demand configurations l; when

equal to one, demand estimation accuracy is considered perfect, since the

arrival rate for the two processes is the same. When the parameter has values\1

(demand coefficient \1) the future demand is underestimated. Indeed, if the

average interarrival time of demands ~k is less than the one of future demands,

we have, on average, more booking demands than what was expected (we

simulate a demand underestimation situation). On the contrary, when the

parameter is greater than one (demand coefficient [ 1) we simulate a demand

overestimation situation, based on the same reasoning: the interarrival time of

demands ~k is now greater than the one of future demand configurations l, so we

have, on average, less demands ~k than what was expected.

Corresponding results are presented for both the linear network (Tables 1,2) and

star network (Tables 3, 4).

In each table, the column heading ‘‘Policy’’ refers to the type of allocation policy

performed, ‘‘Tot rejected’’ denotes the total number of rejected demands (in

percents), ‘‘RM rejected’’ gives the number of demands rejected due to the revenue

maximization criterion (29), ‘‘Income/Dem’’ denotes the average revenue per

accepted demand (in monetary unit). The last column, ‘‘Gain/FCFS’’ refers to the

total revenue improvement of the allocation policy with respect to FCFS.

As a general rule, the RM2 policy significantly increases the total revenue when

compared to the FCFS. The revenue increase obtained by the RM1 policy is not as

pronounced. As we have also compared our results to the DET policy, we conclude

that the results obtained are relatively good. The gap between the RM2

improvement and the deterministic (best) solution is, for instance, of the order of

55 % for a scenario dealing with only two different fare classes and with a high

price ratio between them (1:6:6:6).

The number of rejected demands in the deterministic case is relatively high,

which shows that in all scenarios the residual capacity is scarce with respect to the

transportation demand the system has to cope with.

278 I. C. Bilegan et al.

123



For the price-based scenarios, we have varied the number of different fares, as

well as the ratio between the different fares two by two. The revenue improvement

obtained is, as expected, higher as the ratio between the fare classes grows. For the

linear network this gain may go up to 24 % and the for the star network, up to 30 %.

For the demand based scenarios, we note that in case of overestimation the net

gain obtained by applying RM policies is limited (not more than 10 % of revenue

improvement). On the opposite, the underestimation situation is clearly well suited

for taking advantage from applying RM strategies. The improvement obtained is up

Table 1 Instances with different price ratios—linear network

Price ratio Policy Tot rejected RM rejected Income/demand Gain/FCFS

1:2:4:6 FCFS 38.5 0 7.06 1.00

RM1 38.2 0 7.26 1.03

RM2 42.9 10.7 8.45 1.11

DET 34.1 0 11.30 1.71

1:2:2:6 FCFS 38.0 0 5.57 1.00

RM1 38.8 0 5.68 1.01

RM2 41.3 4.7 5.92 1.01

DET 33.9 0 8.85 1.69

1:3:3:6 FCFS 38.5 0 6.69 1.00

RM1 38.0 0 6.70 1.01

RM2 41.0 4.9 7.33 1.05

DET 35.0 0 10.80 1.70

1:4:4:6 FCFS 38.5 0 8.04 1.00

RM1 37.7 0 8.01 1.01

RM2 42.3 10.5 9.56 1.12

DET 35.1 0 12.42 1.63

1:5:5:6 FCFS 38.0 0 9.64 1.00

RM1 38.0 0 9.73 1.01

RM2 40.8 12.0 11.85 1.17

DET 34.6 0 13.91 1.52

1:6:6:6 FCFS 38.0 0 10.99 1.00

RM1 37.1 0 11.10 1.02

RM2 40.3 12.8 13.55 1.19

DET 35.0 0 15.71 1.50

1:2:4:8 FCFS 38.5 0 7.62 1.00

RM1 37.9 0 7.72 1.02

RM2 44.2 14.4 9.89 1.18

DET 33.9 0 13.15 1.86

1:2:4:10 FCFS 39.9 0 7.94 1.00

RM1 39.7 0 8.62 1.09

RM2 46.1 17.1 10.97 1.24

DET 34.8 0 14.25 1.95
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to 24 % for the linear network and up to 33 % for the star network, which is a very

significant gain at the level of the annual turn-over of the transportation company.

The results obtained by applying RM1 give a good indication about the potential

benefits of using a ‘‘predictive routing’’ policy instead of a FCFS traditional

approach. The relative revenue increase is of the order of 2 or 3 %. Even if they

seem low, these values are not negligible when talking about transportation

companies making benefits of the order of several million dollars or euros.

Moreover, when considering the average revenue per demand, we notice a

consistent increase of the values compared with the ones of the FCFS strategy. This

confirms that the discrimination policies proposed are effective and allow a better

utilization of resources on the network. Numerical results obtained so far validate

the proposed RM approach. The decision-making process, with dynamic booking

and capacity allocation, in the light of future demand forecasts, yields high

performances of the transportation system.

6 Concluding remarks and further work

In this paper, we propose a new approach, inspired by bid-price capacity control

mechanisms, for optimizing expected revenue on a rail transportation service

Table 2 Instances with under and over estimation of the demand—linear network

Demand coeff Policy Tot rejected RM rejected Income/demand Gain/FCFS

0.25 FCFS 70.9 0 5.63 1.00

RM1 71.0 0 5.89 1.04

RM2 72.5 8.3 7.14 1.20

DET 72.2 0 13.15 2.23

0.50 FCFS 58.8 0 5.76 1.00

RM1 58.4 0 5.99 1.05

RM2 60.4 10.4 7.41 1.24

DET 59.5 0 12.92 2.21

1.00 FCFS 38.5 0 7.06 1.00

RM1 38.2 0 7.26 1.03

RM2 42.9 10.7 8.45 1.11

DET 34.1 0 11.30 1.71

1.50 FCFS 23.2 0 7.80 1.00

RM1 23.8 0 8.03 1.02

RM2 30.2 11.7 9.01 1.05

DET 12.0 0 9.90 1.46

1.75 FCFS 24.5 0 7.87 1.00

RM1 22.9 0 8.08 1.05

RM2 32.4 13.0 9.27 1.06

DET 13.6 0 9.39 1.36
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network. RM has already been used as an important mechanism for transportation

companies (mainly airlines) to best serve their clients while optimally assigning the

available capacities to the demand. Nevertheless, this type of mechanism has been

much less studied for solving rail container transportation problems. Indeed, in rail

transportation, many exogenous constraints appear, whereas it is not the case with

airline transportation. In this research work, we propose a load acceptance

management system to dynamically accept or reject transportation demands in favor

Table 3 Instances with different price ratios—star network

Price ratio Policy Tot rejected RM rejected Income/demand Gain/FCFS

1:2:4:6 FCFS 46.6 0 6.85 1.00

RM1 46.2 0 6.98 1.03

RM2 50.8 14.2 8.98 1.21

DET 42.7 0 12.02 1.88

1:2:2:6 FCFS 46.6 0 4.68 1.00

RM1 47.0 0 4.91 1.04

RM2 47.1 0.3 4.92 1.04

DET 42.3 0 9.44 2.17

1:3:3:6 FCFS 46.6 0 5.99 1.00

RM1 47.2 0 6.08 1.01

RM2 50.8 7.2 6.98 1.07

DET 42.3 0 10.99 1.98

1:4:4:6 FCFS 46.6 0 7.30 1.00

RM1 46.4 0 7.47 1.03

RM2 50.0 14.2 9.79 1.26

DET 42.5 0 12.58 1.86

1:5:5:6 FCFS 46.6 0 8.60 1.00

RM1 46.8 0 8.66 1.01

RM2 52.1 15.4 11.81 1.23

DET 42.5 0 14.15 1.77

1:6:6:6 FCFS 46.6 0 9.91 1.00

RM1 45.8 0 10.01 1.02

RM2 50.9 16.1 13.99 1.30

DET 41.9 0 15.55 1.71

1:2:4:8 FCFS 46.6 0 7.12 1.00

RM1 47.1 0 7.33 1.02

RM2 51.2 14.7 9.40 1.21

DET 42.7 0 14.08 2.12

1:2:4:10 FCFS 46.6 0 7.40 1.00

RM1 46.5 0 7.60 1.03

RM2 51.7 13.9 9.98 1.22

DET 42.6 0 16.11 2.34
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of some future forecasted transportation requests with higher potential profit. The

objective function to be maximized is given by the expected revenue of the

company. We give a probabilistic mathematical model taking into account network

interactions. The proposed decision support system is validated through numerical

simulations. We present results showing that significantly improved revenues may

be obtained by applying the proposed RM mechanisms and policies.

In future work, we plan to study some other variants of the acceptance

conditions. We could, for instance, introduce some flexibility in the offered services,

by considering penalties to be applied to the provider in case of delivery delays.

Unexpected modifications in the regular flows could also be a source of uncertainty

to be integrated in the model.

Finally, RM has been proposed initially as a mechanism for airline companies to

adapt their services to a competitive market. It would be also interesting to study the

impacts of applying RM techniques in a rail container transportation competitive

market, with several companies operating simultaneously on the same physical

network.
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Table 4 Instances with under and over estimation of the demand—star network

Demand coeff Policy Tot rejected RM rejected Income/demand Gain/FCFS

0.25 FCFS 70.8 0 5.42 1.00

RM1 70.5 0 5.56 1.04

RM2 72.2 12.7 7.24 1.27

DET 73.7 0 13.00 2.16

0.50 FCFS 62.0 0 5.42 1.00

RM1 61.7 0 5.56 1.04

RM2 64.8 14.6 7.24 1.33

DET 63.6 0 13.00 2.25

1.00 FCFS 46.6 0 6.85 1.00

RM1 46.2 0 6.98 1.03

RM2 50.8 14.2 8.98 1.21

DET 42.7 0 12.02 1.88

1.50 FCFS 34.5 0 7.66 1.00

RM1 34.5 0 7.81 1.02

RM2 40.0 13.5 9.17 1.10

DET 23.2 0 10.62 1.63

1.75 FCFS 34.6 0 7.62 1.00

RM1 36.1 0 7.50 0.96

RM2 42.0 13.8 9.09 1.06

DET 17.6 0 9.25 1.53
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