Design of Bulk Built-In Current Sensors to Detect Single Event Effects and Laser-Induced Fault Injection Attempts

Jean-Max Dutertre, Rodrigo Possamai Bastos, Olivier Potin, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre

To cite this version:

HAL Id: emse-01099040
https://hal-emse.ccsd.cnrs.fr/emse-01099040
Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bulk Built-In Current Sensors (BBICS) are fault detection mechanisms embedded in integrated systems. BBICS are able to monitor anomalous transient currents like the so-called single event effects induced by radiation or even malicious injection sources. This work reviews BBICS principles and introduce new sensor architectures that improve the transient-fault detection sensitivity. In addition, a test chip is presented for the validation of the sensor concept under the laser-induced effects.

Integrated circuits are more and more **Transient-Fault (TF) sensitive through** **new technologies**

The today's trend in efficient protections against transient faults:
- Concurrent Error Detection (CED) mechanisms
- Recovery-based Error Correction Procedures

Mitigation of Transient faults by using CED schemes based on Bulk Built-In Current Sensors (BBICS):

Analysis of laser-induced currents in NMOS and PMOS transistors:
- Test chip composed of single NMOS and PMOS transistors designed with classic and triple-well 90-nm CMOS technology.
- Experiment settings: measure of laser-induced currents at $A = 1064 \text{nm}$, laser spot $\Omega = 5 \mu m$, pulse duration = 20 ps, 1.25 W

Improving the transient-fault detection sensitivity of BBICS by using triple-well CMOS technology:
- Lasers beams
- Laser-induced NMOS current
- Laser-induced PMOS current

Conclusions and Perspectives:
- Laser-based experiments revealed:
 1. Classic PMOS transistors drive bulk currents much higher than drain currents, limiting efficiently transient-fault-detection sensitivity of PMOS-BBICS.
 2. Use of triple-well CMOS technology allows a distinction of the bulk current and improves the transient-fault detection sensitivity of NMOS-BBICS. A 65-nm CMOS test chip is being tested to validate BBICS approach in such a technology.