Design of Bulk Built-In Current Sensors to Detect Single Event Effects and Laser-Induced Fault Injection Attempts
Jean-Max Dutertre, Rodrigo Possamai Bastos, Olivier Potin, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre

To cite this version:

HAL Id: emse-01099040
https://hal-emse.ccsd.cnrs.fr/emse-01099040
Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Design of Bulk Built-In Current Sensors to Detect Single Event Effects and Laser-Induced Fault Injection Attempts

J.-M. Dutertre1, R. Possamal Bastos2, O. Potin1, M.-L. Flottes2, G. Di Natale3, and B. Rouzeyre3

Bulk Built-In Current Sensors (BBICS) are fault detection mechanisms embedded in integrated systems. BBICS are able to monitor anomalous transient currents like the so-called single event effects induced by radiation or even malicious injection sources. This work reviews BBICS principles and introduces new sensor architectures that improve the transient-fault detection sensitivity. In addition, a test chip is presented for the validation of the sensor concept under the laser-induced effects.

Integrated circuits are more and more Transient-Fault (TF) sensitive through new technologies

The today’s trend in efficient protections against transient faults:
- Concurrent Error Detection (CED) mechanisms
- Recovery-based Error Correction Procedures
- Lower abstraction levels
- Higher abstraction levels

It allows higher detection capability at the expense essentially of CED devices.

Mitigation of Transient faults by using CED schemes based on Bulk Built-In Current Sensors (BBICS):

| Cases of Transient Faults in an Inverter Protected by a PMOS-BBICS and a NMOS-BBICS: |
|------------------|------------------|
| **Case 0:** | **Case 1:** |

PMOS on

<table>
<thead>
<tr>
<th>in = 0</th>
<th>out = 1</th>
</tr>
</thead>
</table>

PMOS off

<table>
<thead>
<tr>
<th>in = 1</th>
<th>out = 0</th>
</tr>
</thead>
</table>

NMOS on

<table>
<thead>
<tr>
<th>in = 0</th>
<th>out = 1</th>
</tr>
</thead>
</table>

NMOS off

<table>
<thead>
<tr>
<th>in = 1</th>
<th>out = 0</th>
</tr>
</thead>
</table>

Analysis of laser-induced currents in NMOS and PMOS transistors:

Test chip composed of single NMOS and PMOS transistors designed with classic and triple-well 90-nm CMOS technology.

Transistors designed with classic CMOS technology

- Laser-induced NMOS current
 - Case 0
 - Case 0A
 - Case 0B

- Laser-induced PMOS current
 - Case 1A
 - Case 1B

Transistors designed with triple-well CMOS technology

- Laser-induced NMOS current
 - Case 8A
 - Case 8B

- Laser-induced PMOS current
 - Case 4A
 - Case 4B

Laser-induced current that would contribute to produce a transient fault

- Drain current

- Bulk current

Bulk current monitored by a NMOS-BBICS would have the same order of magnitude than drain current

Bulk current monitored by a PMOS-BBICS would be an order of magnitude above drain current

Improving the transient-fault detection sensitivity of BBICS by using triple-well CMOS technology:

Conclusions and Perspectives:

1. Classic PMOS transistors drive bulk currents much higher than drain currents, limiting efficient transient-fault detection sensitivity of PMOS-BBICS.

2. Structural weakness in classic NMOS transistors that precludes NMOS-BBICS efficiently identifying anomalous bulk currents.

3. Use of triple-well CMOS technology allows a distinction of the bulk current and improves the transient-fault detection sensitivity of BBICS.

A 65-nm CMOS test chip is being tested to validate BBICS approach in such a technology.

Layout of 65-nm CMOS test chip with BBICS devices

1. Centre Microélectronique de Provence - Georges Charpak, Gardanne, France (dutertre@emse.fr)
2. Université Grenoble Alpes, CNRS, Laboratoire TIMA, Grenoble, France (bastos@imag.fr)
3. LIRMM (Université Montpellier II / CNRS UMR 5506), Montpellier, France ({flottes, dinatela, rouzeyre}@lirmm.fr)