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Abstract—1In this paper, we study the problem of periodic
vehicle routing encountered in Home Health Care (HHC). The
problem can be considered as a Periodic Vehicle Routing Prob-
lem with Time Windows (PVRPTW). It consists in establishing
a planning of visits to patients over a given time horizon so as
to satisfy the adherence to the care plan while optimizing the
routes used in each time period. One two-stage mathematical
formulation of this problem is proposed. We then propose
a Tabu Search (TS) and a MIP-based Neighborhood Search
method to compute the weekly and daily plan, respectively.
These approaches are tested on large size instances.

Keywords - Home health care, periodic vehicle routing,
matheuristic.

I. INTRODUCTION

Home Health Care services are becoming increasingly
important. Patients receive medical treatments at home. In
France, two different types of structure exist. The first
type, denoted HHC, focuses this study and is devoted to
high qualification cares. The second type covers light care
services. HHC are characterized by low flexibility in the
adherence to the care plan and a high turn-over rate — the
average length of stay is two weeks. HHC allow to reduce
crowding in hospitals, some costs saving for health financial
support, and better living conditions for many patients. The
planning problem addressed here, and called Home Health
Care Problem (HHCP), consists in assigning caregivers to
jobs such that several exploitation costs are optimized, while
a number of legal working (the use of extra working time is
limited) and quality of service constraints are satisfied. The
decision process is divided into two steps, the weekly plan
and the daily plan. At the beginning of each week, known
tasks are scheduled satisfying constraints of their care plan
of the week. Hence, HHCP encapsulates a Periodic Vehicle
Routing Problem with Time Windows, where day and time
of visits are decided. The time windows arise from specific
cares or regularity constraints on service times. Every day the
daily plan has to be updated as new demands arise. Thus,
a variant of the classical Vehicle Routing Problem (VRP) as
to be solved preserving main characteristics of the current
solution. Main characteristics to keep are, the date (day and
time) of visits to patients, and the starting and ending times
of caregivers’ rounds. Logistics tasks as furniture or drugs
delivery can be performed by any employee, logistician,
nurse or nursing auxiliary. It is therefore interesting to
integrate all types of employee in the same planning solution.

We propose in this paper one solving approach for each
decision stage. We try to tight the gap between weekly
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planning and daily planning, by inclusion of an accurate
evaluation of travel times in the weekly decision stage by
considering a specific periodic vehicle routing problem. We
also test the performance of an a priori robustness criterion
based on the expected number of new tasks admitted each
day.

The paper is organized as follows. In Section II we review
the literature related to home health care problem and related
vehicle routing problems. We describe in Section III the
specific planning problem we address. The weekly and daily
problems are presented in Section IV and Section V with
their dedicated solution algorithm, respectively. Computa-
tional experiments are described and discussed in Section VI.
We close the paper with a contribution of the work and
suggestions for future research in Section VII.

II. LITTERATURE REVIEW

A large part of the literature addressing home health care
planning focuses on the daily routing problem. This problem
is modeled as a vehicle routing problem with or without
time windows. In [1] an efficient column generation approach
has been designed and applied to real-world data. In [2] the
authors use a combination of linear programming, constraint
programming, and metaheuristic.

Several works interested in middle-term planning of HHC
services and dynamic insertion of new demands do not
directly include the routing part of the workload. At this
stage routing time is generally roughly approximated [3],
[4] and [5]. In [6], the authors assigned weekly schedules to
therapists to already fixed appointments.

The integration of traveling workload relates HHCP to
Periodic Vehicle Routing Problem (PVRP), which is not
usually associated with applications of HHC service. In a
recent survey [7] on PVRP, most efficient heuristics and exact
approaches are enumerated. Most efficient exact methods are
derived from the algorithm proposed in [8]. Tabu search
algorithms provide good results, but more sophisticated
heuristics ([9]), like Variable Neighborhood Search ([10])
and genetic algorithms ([11]) are able to improve these
results. Its dynamic version is treated in [12] and [13]. In
the first work, a myopic approach is developed. A two-
phase approach is used in the second work, where the
routes are roughly approximated with an aggregated measure
and routes are considered in a daily re-optimization. In
the closest problem [14] to ours, the number of resources
that visit a patient during the day. The authors consider
a periodic vehicle routing problem combining a resource
rostering problem, where the objective is the continuity of
care along he week. To find a first solution, they apply an
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algorithm based on constraint programming and then calls an
adaptive large neighborhood search metaheuristic to improve
the results.

Some of other papers related to weekly scheduling. In [15],
authors proposed an Integer Linear Programming models
which use the concept of patterns, i.e. a priori scheduling
profiles, to combine the diverse decision levels. Their results
on real instances show that pattern generation policies are
crucial to address scheduling and routing in large Home Care
instances.

A combination of the following characteristics of our
approach make the contribution of this work: (1) the routing
decisions at the weekly decision level; (2) an a priori
anticipated daily workload; (3) the skills of employees;
(4) the minimization of the deviation between tactical and
operational solutions. The algorithm developed for the first
stage decision level exploits a special case of PVRP, where
each possible pattern — a list of days for visits — for a
customer is a single day. Actually, customers in the PVRP
are task of the HHCP instead of patients.

III. PROBLEM DESCRIPTION

The care plan usually repeats a weekly pattern. This
pattern is evaluated and can be updated by the medical staff
every week. Then, planning are built on a weekly base.
Employees can call patients to fix appointments, order drugs
or materials early. Some services have to be delivered within
time windows because of medical requirements or patients’
preferences. As most of stays are short — less than two weeks
— the continuity of care (in the sense of a regular caregivers
for each patient) is not required and caregiver assignment to
tasks is only submitted to ability constraints.

High turn-over also implies that many demands are re-
vealed along the week. New demands are mainly related
to new admissions, but current patients can also require
additional cares. An optimized weekly plan has to make
easier new demands insertion, observing daily workload min-
imization for every employee. Although the care plan may
allow some flexibility on the day of service, already fixed
appointments can not be postponed to another day. Indeed,
the change of a service day imply to get the agreement of
the patient. Because of this validation step, it can not be
integrated in the optimization model. Thus, on the eve of
each day, the final daily plan is computed while all the new
demands are inserted and all tasks already assigned to this
day are kept.

Other attributes of the weekly plan are preserved through
soft constraints. As patients already know their visiting time,
deviations exceeding a threshold A are penalized. Caregivers
have to carry out other activities than delivering cares. For
instance, they have to prepare drugs and materials for each
round or to plan some visits. Starting their round earlier or
later than the original time is penalized.

IV. WEEKLY PROBLEM

A mathematical formulation of the weekly plan problem
(WP) is given in this section. The integer linear program

proposed here does not provide a relevant solution tool for
realistic-size instances (about 10 human resources and 400
tasks), but it provides a formal definition and is base of the
solution approach of the daily plan.

This problem is closely related to the widely studied
PVRP, where a customer has to be served following one
of his possible patterns. The planning horizon is split into
periods. A pattern is a set of periods where the customer has
to be visited. For each day, routes of the fleet of vehicles
based at a depot, have to visit all customers with the current
day present in their selected pattern. A classical variant of
PVRP includes time window constraints (on the day time)
on visits. The total travel time is usually minimized over
the horizon. In our case, the periods correspond to half-day
and the planning horizon is one week. Route durations can
not exceed half a day. In HHCP, a customer is a task and a
pattern is the set of possible periods for the task; the depot is
the HHC center; and the fleet of vehicles is heterogeneous as
vehicles represent staff with different skills: nurse, nursing
auxiliary and logistician. Each task requires a specific skill.
Skills are linked by logistics tasks that can be performed by
any employee. Time windows constraints can be defined for
any task.

The half day split holds since lunch and team meeting
take place in the HHC every midday. Those meetings are not
generalized to every HHC service, and periods corresponding
to complete days may be considered. Lunch breaks would
have been added to the model, but they do not change the
overall approach.

Assignment to staff members and routes are computed to
evaluate the workload and the service date for each task,
which are the output of this optimization stage. Idle times
have to be planned in order to accept future demands. As new
admissions often require several tasks to be performed during
next days, idle times have to increase with the period, i.e., last
days of the weekly plan are less loaded. Expected additional
workload is modeled as an increasing linear function of the
day number. Then a total target workload is defined for each
period.

In the following, we propose a four-index mixed integer
program (MIP) formulation of WP. The objective of WP is
to minimize the total cost of transportation as well as the
gap between workload and target workload for each period.
Because of the size of real-world problems — hundreds of
tasks — commercial MIP solvers can not solve WP and a Tabu
Search algorithm is designed to provide optimized solutions.

A. Mathematical formulation WP

We present the different parameters and decision variables,
followed by the objective and constraints.

- R is the set of resources index by r.

- T is the set of periods index by t.

- A=U,erserA(n1) is the set of tasks with A(r,7) the set of
feasible tasks with resource r in period t.

-V =UrergerV(nt) where V(rt) = A(r,t)U{dd,} U{ad,}
and dd, and ad, represent the departure and arrival depots
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of resource r, respectively.

- tjx for jand k €V, is the travel time between nodes (task
or depot) j and k. Service time of j is included.

-e; and [; are the earliest (resp. latest) visit time of node
J-

- d; is the service duration at node j.

- E, is the target workload for period .

- a € RT is the weight of penalization.

- M is a large enough number.

Three types of decision variables are used:

- X ]’li is a binary variable equal to 1 if the resource r travels
directly from node j to node k in period .

- S’rj is the starting time of the service at node j by the
resource r at time ¢.

- H, 1is the amount working time exceeding the target
workload in period ¢.

WP:minz:ZZZthkX;}(—kasz (1)

rER jEV keV tET teT

Y Y Y Xji=1 vkeA 2

reRteT:keA(rt) jeV(rt)
(X~ )M < Sy =S, —dj—tic YreR1ET,jKEV(r)

3)

Y Xi= Y X VreRieTkeA(rt) 4
JEV(rt) JEV(rt)
Z Z Z Xkr;(dj—Fljk)SH,—FEt VieT (5
r€R jeV (rt)keV (rr)
H >0 VteT (6)
Xp=0 VreRteT k¢ V(n) @)
Xjke{o,l} VjkeV.reRteT (8)

ej <8<l VjeVireRteT )

The objective function (1) minimizes the total routing cost
in the first criterion, and minimizes the exceeding workload
in the second criterion. Constraints (2) ensure that each
task is assigned to a single resource and a single period.
Constraints (3) compute arrival times from precedence vari-
ables. Constraints (4) ensure the continuity of routes. Con-
straints (5) and (6) give exceeding workload. Constraints (7)
set few of infeasible assignments to zero; they can be
maintained through a preprocessing step. Constraints (8)
define the binary variables. Constraints (9) ensure that time
windows are observed. Applied to depots constraints (9)
enforce the maximal duration to routes.

B. A TABU SEARCH METHOD

Tabu Search (TS) has been proved as one of the most effi-
cient metaheuristic approach on many vehicle routing prob-
lems, like some periodic vehicle routing problems [16], [17].
Moreover, TS requires light developments and parametriza-
tion steps.

Our TS is inspired from the Tabu Search proposed in [16]
which addresses a multi-depot PVRP, and allows to explore

unfeasible solutions. The general scheme of our TS is
described in Algorithm 1. An initial solution is generated
from a greedy list algorithm (Step 1); the list of patients
is randomly generated. Neighborhoods considered at Step 2
are based on 0-1 and 1-1 exchange moves. The first move
computes all possible insertion positions for each task after
removing itself from its current position. The 1-1 exchange
move computes all swap between pair of tasks. Note that, in
our implementation, moves are considered between routes of
different possible days of realization of the task. A neighbor
solution is evaluated by a fitness function g defined in
equation 10. The last term penalizes time window constraints
violation with a variable parameter 7.

=L Y ) ) X+ ) H

reR jEV keV €T ter
+y )Y, max(e;—S;S,;—1;:0) (10)
jeV.reRteT

Among all the moves evaluated, the best set of independent
moves is selected at Step 3. Qualified moves have to satisfy
all the constraints of the model (1)-(9) except the time win-
dow constraints. Moves are independent if their combined
contribution (when moves are all performed) to the objective
function is equal to the sum of independent contributions
of each move. For instance two moves involving different
days are independent. On a single routes moves can be
independent when no time window constraints are violated
before and after moving. This subset is computed by solving
a general matching problem on a graph where nodes are
pairs of employee and period, and edges are weighted by
the best value among all neighbors involving both extreme
nodes. Each node is duplicated in order to model neighbors
on single routes. Independence is verified for travel time and
time window costs, but not for the exceeding workload. Com-
putational experiments show that this bias can be neglected
since that case appears rarely and gives small deviations.
The reader is referred to [18] for a polynomial (cubic)
algorithm and [19] for an implementation in the context of a
large neighborhood search for a parallel machines scheduling
problem.

At Step 5, the best known solution is updated with
the solution obtained by application of selected moves. As
n [16], two parameters are updated at Step 6 in order to
control the divergence of the exploration. The main one is
the tabu list. For each task involved in a selected move, the
origin attribute (day, employee, position in the sequence) of
the task is forbidden for a fix number of iterations. In that
way, one can expect to avoid loops on a small set of solutions.
Each position is also associated with an aspiration value,
which is defined as the cost of the best feasible solution
found with that position. Thus, a neighbor solution X of the
current solution X can be considered only when: (1) all new
positions which are not in X but in X, are non-tabu, or (2) X
is feasible and z(X) is less than the aspiration values of these
positions. Steps 2-7 are repeated until a limited number of
iterations is reached.
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Time complexity of both neighborhoods exploration is
cubic, since the evaluation of the violation of time window
constraints can require a linear time-complexity algorithm.
This worst case is not met in general, since evaluated moves
only involve qualified employees and possible visiting days.

Algorithm 1 TS algorithm
Step 1: X* := X := an initial solution.
Step 2: N(X) := set of neighborhoods solutions.
Step 3: M C Z(N(X)) := best set of independent moves.

Step 4: X := M applied to X.

Step 5: X* := X if z(X*) > z(X).

Step 6: Update tabu list and aspiration parameters.
Step 7: If stopping criteria is not met got to Step 2.

V. DAILY PROBLEM

Some unknown demands when the weekly plan has been
computed, have to be inserted each day. We assume that all
daily demands are known before each day. Insertion of new
demands have to preserve as far as possible the time schedule
of the weekly plan. Assignment to staff members is left as a
free decision variable. We expect that the original solution is
obviously close to the optimal solution after insertion, since
the objective function penalizes deviations from the original
solution. The size of the daily problem allows us to use a
branch-and-cut solver to improve the original solution. The
integer linear formulation of the daily plan problem (DP) and
the MIP-based heuristic approach are described in the two
next sections.

A. Mathematical formulation DP

In this problem, new parameters and variables are intro-
duced. Constraints (9) on time windows are replaced by a
piecewise linear penalty function on service time deviation.
For each task j, the function is decreasing until A, equal to
zero between A; and B; and decreasing after B;, where A;
is set to a quarter before the service time of the weekly plan
solution and B; a quarter after. Early starting time and late
ending times of routes of each resource are also penalized
by linear functions.

In the following, we propose a four-index MIP formulation
of the daily plan problem (DP). The objective of the DP is
to minimize the total cost of transportation and penalties on
earliness and lateness compared with the initial plan. DP
is based on WP. Constraints related to the target workload
are removed and new constraints are added. Additional
parameters and variables are listed below.

- [A},B;] is the new soft time window defined for task ;.

- [TG.,TD.] are the starting and ending time of the route
of resource r at period ¢ in the initial plan.

- EA; and EB; measure the earliness (resp. tardiness) of
task j.

- AV, and RV. measure the earliness (resp. tardiness) of
route r at period t.

-1 and O are the penalization weights of both types of
time deviation from the weekly plan.

DP:minZ=Y Y Y ) X] (11)

reRIET jeV(rt)keV (rt)

+u ) EAj+u) EB

JEA JEA
+6Y Y (TG, —AV)+8) Y (Rv,—TD))
reRteT reRteT
subject to constraints (2), (3), (4), (7), (8) and

AVL<TG. VreRteT (12)
AVL<S, VreRteT (13)
RV.>TD. VreRteT (14)
RL.>S., VreRteT (15)
S, +EA;j>A; VreRteT,jeA(nt) (16)
S,;—EBj<B; VreRteT,jecA(nt) (17)
S, >0, VjeAreRteT (18)
EAj,EBjZO VJEA (19)
AV RV. >0 VreRteT (20)

Constraints (12)-(13) compute the minimum between so-
lution starting time and the initial one. Constraints (14)-(15)
do the same for ending route times. Earliness and lateness
of service times are computed in constraints (16) and (17),
respectively.

B. MIP-based heuristic

Several researchers tried to exploit the efficiency of solvers
and convergence properties of exact methods, based for
instance on linear programming or constraint programming,
to design heuristic or metaheuristic algorithms. Such ap-
proaches form a part of matheuristics. For further details,
the reader is sent to two surveys on matheuristics for rout-
ing problems [20] and [21]. Such approaches can perform
well on improving already good solutions when classical
metaheuristics fail to get improvements. Another interesting
feature gives robustness to such schemes, as it is easy to add
side constraints using solver interfaces.

The heuristic proposed here follows this line of research
by applying intensive search on series of sub-problems.

In a first phase, a list algorithm inserts all uncovered tasks
in the solution obtained by solving WP. A best insertion only
based on travel time minimization is used here. Finally, all
tasks of the current day are covered in what we call initial
solution.

The day of visit of nodes is kept from the initial solution,
but the period can change to morning or evening. Our
heuristic considers one DP for each pair of periods in the
same day.

From the initial solution, some sub-sequences of routes
are fixed. The MIP DP is run with additional constraints
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that enforce selected sub-sequences, as in equation 21. In
other words, sub-sequences becomes nodes in the routing
problem. Sub-sequences can therefore be assigned to any
resource with required skills. A limited number of sub-
sequences are randomly generated. This number is defined by
the computational capacity of the solver to provide optimized
solutions within a time limit. That scheme allows us to
consider complex combinations of basic moves.

Y Y Xji=1, if jprecedes k in the sub-sequence (21)
reRteT

VI. COMPUTATIONAL EXPERIMENTS

This section reports the results of a series of computational
experiments for evaluation of our two step approach and of
our modeling.

To the best of our knowledge no paper deals with weekly
planning of home health care, including dynamic demands
and detailed traveling workload. No benchmark instances
exist to test our approach. We built instances in the following
way. Ratios of type of tasks are set from historical data of the
HHC service in Sallanches (France). We derive parameters
from data and experience of that HHC center, in order to
generate sets of instances. One half require nurses and have
durations between 10 and 30 minutes, 20% require nursing
auxiliary with duration between 30 and 60 and other tasks
concern logistics and have durations of 5 minutes (drug
delivery in general). Employees are distributed with 50%
of nursing auxiliary, 40% of nurses and 10% of logisticians.
Task nodes are uniformly generated in a square 100x100 and
travel times are set as euclidean distances. Only one depot
is considered as the HHC center and is placed in the middle
of the square.

Algorithms have been coded in C++ and run on a 2.4
GHz processor. IBM Ilog Cplex 12.5 software is used to run
the branch-and-cut algorithms in the second step heuristic.
The complete models WP and DP have also been run on
some instances but Cplex fails to find any feasible solution
even for problems on 3 periods, 5 resources and less than 60
tasks. Ten instances have been generated with 10 resources
(4 nurses, 5 nursing-auxiliaries and 1 logistician), 380 tasks
(known before the week) and 10 periods of 4 hours (2
per day). All objectives are expressed in minutes and their
weights in objective functions (¢, it and &) are set to 1.

In Table I, we show the results obtained by the tabu
search algorithm. For each instance, 3 runs of 1000 iterations
(few improvements happen after 500 iterations) have been
performed. Average computing times and objective values
(total working time, gap with the target working time and
time windows constraints violation) can be found in the last
three columns, given in minutes. Values obtained for the 10
instances are aggregated on each row by average, minimum
and maximum value, respectively. The total workload (about
5 hours per day, since the value in column work is given in
minutes and concerns 10 employees for 5 days) seems low,
but some time is required for next arrivals and employees
also have to deal with other activities in the center. Total

extra working time is large but it is computed from a rough
estimation (the tasks duration plus one half of the distance
to the depot). The most important behavior to notice is the
decreasing workload obtained in Table II, where one can see
the impact of the objective on expected workload. Although
time windows are defined as hard constraints in WP, our tabu
search is not always able to find feasible solutions (it may
not exist). The total number of minutes of deviations over the
week is given in column TW. Minimal and maximal values
of Table I indicate that the solutions obtained are stable on
the 10 instances generated. But in Table II, the gap between
minimal and maximal planned workload on the weekly basis
can vary by more than 40%. It means that depending on the
geographical distribution of patients, the algorithm let more
or less idle time on different days.

TABLE I
Results of Tabu search on the weekly plan

cpu (s.) work extra work. ™
avg 14.0 14355.3 3019.1 86.7
min 13 13007 2076 0
max 16 14898 3446 267
TABLE II

Daily workload in the weekly plan

Mon. Tue. Wed. Thu. Fri.
avg 4015.9 3092.1 2735.3 2372.4 2139.6
min 3600 2431 2385 1765 1521
max 4721 3714 3383 2663 2822

New demands are generated for each day of the week
to reach 475 tasks over the week. It matches real data
where about 20% of tasks are revealed during the week.
Our algorithm has been run three times on each instance
following three different policies. The initial model (P1) is
compared to two other policies: in (P2) the weekly plan does
not allow flexibility on the period for task realization (the
preferred period is enforced); in (P3) the step penalization
based on expected demand is discarded. Ten iterations (one
iteration requires around 1 minute) of our second heuristic
are performed for each day (a pair of periods). Average
results obtained at the first and second phase are listed for
each policy in Table III. The final total costs (sum over five
days) and different objectives values are given in minutes
(earliness and tardiness on tasks service, and on round of
resources). Results obtained for two instances are in the two
first sets of three rows. The last three rows are average values
over the 10 instances. The working time obtained after the
first phase for P(1) is not minimal compared to other policies,
but the final total cost after the second phase is minimal for
P(1). Thus, on this set of instances the policy P(1) allows to
provide more robust solutions than P(2) and P(3) considering
a combination of five objectives.

Even if the total working time is higher in the first phase
solution for policy P(1), it allows to reach, in average, a
better solution after the insertion of new demands after the
second phase.
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TABLE III

Comparison of three policies

first phase second phase
Pol. work ex. work ™ Tot. cost travel task earl. task tard. res. earl. res. tard.
P(1) 15129 3468 96 15867 10027 143 2733 54 2874
P(2) 14825 3166 31 16609 10461 66 2736 88 3223
P3) 14586 0 28 16423 10457 81 2877 18 2954
P(1) 15274 3730 97 15102 10116 93 2184 63 2623
P2) 14872 0 69 16310 10838 89 2377 101 2874
P@3) 14768 3224 56 16387 10378 196 2613 66 3114
P(1) 14241 2939 69 15328 9786 87 2352 0 2699
P(2) 14981 3677 105 15932 10457 96 2581 26 2745
PQ3) 14258 14258 85 15664 9912 99 2610 40 2974
VII. CONCLUSIONS [4] Eveborn, P., Flisberg, P., & Ronnqvist, M. (2006). LAPS CARE: an
operational system for staff planning of home care. European Journal

This paper investigates a human resources planning prob- of Operational Research, 171(3), 962-976.
lem in HHC services including some specific characteristics [5] Nickel, S., Schrder, M., & Steeg, J. (2012). Mid-Term and Short-Term

Planning Support for Home Health Care Services. European Journal
of the French system. of Operational Research, 219, 5747587.

Our problem is related to highly complex vehicle routing (6] Bard, J. F., Shao, Y., & Wang, H. (2013). Weekly scheduling models
problems including PVRP (Periodic Vehicle Routing Prob- i(;rlggzelmg therapists. Socio-Economic Planning Sciences, 47(3),
lem) and PVRPTW (Periodic Vehicle Routing Problem with [7] Campbell, A. M., & Wilson, J. H. (2014). Forty years of periodic
Time Window). It can be easily proved that our problem is vehicle routing. Networks, 63(1), 1097-0037.
strongly NP-hard because it covers classical VRP problems [8] Baldacci, R., Bartolini, E., Mingozzi, A., & Valletta, A. (2011). An

R R A exact algorithm for the period routing problem. Operations research,
as a particular case. Even for a small-sized HHC service, 59(1), 228-241.
the literature on periodic vehicle routing problems shows [91 Gulezynski, D., Golden, B., & Wasil, E. (2011). The period vehicle

that problems with at least 400 hundreds nodes become
intractable for state-of-the-art exact approaches. Thus we
design a heuristic able to provide solutions to two related
problems: the weekly and the daily planning where new de-
mands are revealed. Despite the lack of information about the
position of demands, our computational experiments show
that the planner can take advantage of a rough estimation of
the uncertain demands and an accurate routing estimation.
This work can be continued following two ways. First, the
algorithms can be improved, especially the second phase. It
seems that a faster heuristic can be applied before running the
second phase matheuristic. The Tabu Search of the first phase
can be easily adapted to this problem. A second line of work
deals with further evaluations of this approach on real-world
applications and benchmarking with other applications.
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