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Abstract—This paper describes the results of the practical
measurements done to determine the path delay associated with
each bit of a hardware AES FPGA implementation using a
clock glitch injection tool. We illustrate how the measured
path delays can constitute a characteristic fingerprint of an
Intellectuel Property (IP) and can be used to detect the insertion
of hardware trojans. The influence of synthesis options and inter
die variations on the measurements is also studied. Compared to
trojan detection schemes based on path delay characterisations
already proposed in the literature, our approach does not require
any additional test circuit to be inserted in the IP. Moreover our
results are based on practical measurements.

I. INTRODUCTION

The authenticity and integrity of hardware modules has
become a hot topic lately, in particular for security-related
applications. The first phenomenon justifying this is the de-
localisation of production facilities: even though a particu-
lar design is specified and implemented within one’s own
premises, the manufacturing of the hardware chip might be
done in some (far away) different facility being less security-
stringent leading to one having doubts on whether the chip sent
back is the original design or whether a trojan has not been
inserted into the original design. The second phenomenon is
the “de-materialization” of hardware designs due to the advent
of cheap and powerful FPGAs. The design of complex systems
for such programmable devices might involve the integration
of several blocks (or IPs) from different design houses. End
users of such systems might want to make sure that the critical
blocks (like encryption machines) used in the end system is
actually the one coming from a trusted/certified provider and
that it is not a rogue functional copy or that it has not been
modified through the insertion of a trojan.

In this paper we illustrate how measured path delays can
constitute a characteristic fingerprint of a IP and be used to
detect the insertion of hardware trojans. We describe the results
of the practical measurements done to determine the path delay
associated with each bit of a hardware AES FPGA implemen-
tation using a clock glitch insertion tool. The influence of
synthesis options and inter die variations on the measurements
is also studied. Our scheme is based on practical measurements
and does not require the addition of any dedicated circuitry in
the IP under test.

This paper is organised as follows: we first review the
principles already proposed for authenticating and verifying
the integrity of integrated circuits (or IPs), with a focus on
the use of path delays for detecting hardware trojans. Next

we describe our design under test, a straight forward hardware
implementation of the AES encryption algorithm and some of
the trojans devised for our measurements. The practical set-
up used is then detailed and the practical results obtained are
covered. Then we conclude with a discussion on the potential
of our proposed scheme.

II. INTEGRITY FOR IP VERIFICATION

We shall use the term Intellectual Property (IP) to refer to
the implementation of some mathematical functionality or state
machine, designed using some hardware abstraction language
(VHDL, Verilog, etc.) that is intended to be embedded into an
FPGA (The FPGA target is the main target of our study) or to
be synthesized into some integrated circuit (IC) technology.

A hardware trojan is composed of two parts, the trigger and
the payload [1]. The trigger is the mechanism that determines
the condition under which the ‘malicious’ effect of the trojan
should start. The trigger can either be generated externally
(external signal or a special external physical condition) or
internally (internal state of the IC, special data configurations,
etc.). Moreover the trigger can either be combinational where
the sought condition is the result of a logical operation among
several signals or sequential where the signal is generated by
a state machine. The payload is the ‘malicious’ effect of the
trojan: it can either be explicit where signals or logic blocks are
directly added, removed or de-activated [2] or implicit where
the effect cannot be directly observed like, for example, the
thinning of particular wires or hiding information into one of
the side channels of the IC [3].

Most research works have indeed focused on the detection
of trojans. Detecting trojans is a complex, multi-dimensional
problem which depends on the type of the trojan (functional
or parametric), its size, its distribution over the IC’s surface
and its structure. A taxonomy for detecting trojans is proposed
in [4]. Apart from classical IC analysis techniques either based
on Failure Analysis or on ATPG (Automatic Test Pattern
Generation) which are limited in terms of coverage of the IC,
novel techniques have been proposed. For example side chan-
nels have been studied in [5], [6]. However such techniques
are limited by the size of the trojan with respect to the IC

under analysis. More sophisticated region-based analyses have
been proposed in [7]. In [2], the authors propose a method
of detecting trojans by measuring the delay paths of a DES
circuit.

Althought there is framework which does not require a
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golden IC [8], most of the techniques proposed in the literature
rely on the availability of a “golden reference”. The “golden
reference” is an implementation of the IC which is trojan-
free and onto which the reference side-channel or delay
path measurements are made and later used as a reference
when implementing the trojan detection scheme onto other
instantiations of the IC. Such a “golden” is only available once
the circuit has been fabricated and totally reverse-engineered
(which is an expensive and time consuming process) to make
sure that it contained no trojan.

III. USE OF PATH DELAYS’ MEASUREMENTS AS AN IP’S

FINGERPRINT

Lately, several research papers have proposed schemes for
detecting trojans based on the measurement of path delays
within an IC. The use of “shadow registers” is very widespread.
In [9], the “shadow registers” worked with a “shadow clock”
which runs at the same frequency as the main clock. A
ajustable phase offset permits to measure path delays along
an arbitrary large number of paths in the design. In [10], the
authors propose a mechanism where “shadow registers” are
added to a given set of critical data paths. Those “shadow
registers”, whose sampling times are monitored via a dedicated
clock signal, are used to measure the associated delay path: if
a trojan is present on this particular path, then the measured
delay path is expected to be different from the data path
without trojan. By extending this principle to several data paths
and by considering that the monitoring of the sampling time
of each “shadow register” as a Challenge, then the IC can be
authenticated through a PUF-like challengeresponse pair CRP.
A similar philosophy is proposed in [11] where existing test
structures are modified to introduce “embedded test structures”
that detect delay anomalies introduced by a trojan.

A detection of trojans based on path delays without ad-
ditional circuitry is discussed in [2]: the measurement of the
path delays corresponding to each of the 64 bits of the DES
ciphertext are determined by simulation.

In this paper, we pushed forward the principle lain in [2]
to show that the path delays associated with the data bits of
an IC running an encryption algorithm like the AES can be
measured in practice and can be used to detect modifications
within the circuit. Our first contribution is to perform concrete
measurements of the path delays associated with individual
bits of the principal data path. The main advantages and
differentiators of using this technique are the following:

• We only require an access to the clock of the targeted
IP and to the inputs and outputs of its principal
data path. We do not need any additional circuit or
modification of any existing scan chain.

• We do not actually determine the delay incurred by
the longest path of the IP but the delay corresponding
to each bit of the longest data path.

• The trojans don’t need to be activated for being
detected by our scheme.

IV. DEVISING PROOF-OF-CONCEPT TROJANS FOR A

HARDWARE AES

To investigate about our proposed methodology, practical
clock glitch injections were done on a hardware AES imple-

Asset trojan’s payload Comments

Plaintext Direct output of plaintext

into ciphertext register

Attacker has access to the plaintext di-

rectly.

Encrypting with a hard-

wired known key

Attacker knows the key & can decrypt

ciphertext.

Key Direct output of key into

ciphertext register

Attacker has access to the encryption

key.

Modifying state machine

of AES

By reducing the number of rounds the

attacker can crack the encryption.

Outputting the round key

into the ciphertext register

From the round key, the attacker can

calculate the original key.

Injecting a (known) fault

into the AES calculation

With erroneous ciphertexts, & their cor-

responding correct ones, the attacker can

perform differential cryptanalysis (like

proposed in [13]).

Outputting M1 for a

known plaintext

The key is recovered by the XOR be-

tween M1 and the known plaintext.

Forcing all round keys to

zero

K1 to K10 are known, only K0 is un-

known & can be calculated.

Fixing the value of the

state matrix

M1 to M10 are hence known, the orig-

inal key can be calculated.

TABLE I. TROJANS IN A HARDWARE AES

mented in VHDL and synthesized for and tested on a SpartanIII
FPGA. The AES is a standard established by the NIST [12] for
symmetric key cryptography.

A. Trojan definitions for AES

In our use case, we view the AES block as an IP where
we only have access to the inputs (plaintext, key), outputs
(ciphertext) and configuration bits (start, process end). We
hence do not cover trojans that use covert channels like the
power consumption or electromagnetic emissions to convey
sensitive information out the chip [3]. In order to exhaustively
search for the trojans that could be implemented on such an
AES IP, we performed a security analysis of such a design.
Two main asset were identified:

• The plaintext is an asset in the case the AES IP is used
to protect the confidentiality of data. The attacker may
want to insert a trojan that would output the plaintext
itself instead of the ciphertext and hence have access
to any sensitive data that was meant to be encrypted
by the AES IP.

• The key is the secret that is used by the AES IP to
encrypt/sign the plaintext. An attacker might want to
output the secret key in order to then be able to decrypt
the ciphertext.

Table I summarizes how the above assets could be output by
a trojan. Note that the table only looks at the payload of the
trojan and not its trigger as there are in our opinion too many
different possibilities of the later.

B. Description of implemented trojans [14]

We implemented two kinds of trojans inserted at RTL level.
Both of them have the same trigger. The activation mecanism
of the trojan relies a specific plaintext sent externally.

• The first one allows us to directly have the key K0
instead of the ciphertext (Figure 1). We inserted a
multiplexer into the AES block. When the trigger is
activated, the key is written into the ciphertext register.

• The second one gives the subkey K10 instead of
the ciphertext (Figure 2). To do so the state matrix



is zeroed at the tenth round in the AddRoundKey
transformation. Thus, insofar as this step is composed
of an XOR operation between the State matrix and the
subkey K10, we get K10 in place of the ciphertext.

Fig. 1. First trojan implemented: AES HT1.

Fig. 2. Second trojan implemented: AES HT2.

Each of the above trojans’ only add less than 3% to the
number of slices occupied by our original AES implementation.
From now on AES INT shall refer to the original AES
without trojan, AES HT1 to the AES with the first trojan
and AES HT2 to the AES with the second trojan.

V. MEASUREMENT TOOL & SET-UP USED

Clock glitches are a well known fault injection means that
endanger data integrity of secure circuits [15]. However, it
can also be turned into a path delay measurement tool used
to detect hardware trojans. We used a clock glitch generator
similar to the one presented in [16] and [17] to allow such
measurements. In this section, the basics of timing constraints
and how their violation may be used to measure path delays are
given. Next we show how the uncertainty of the measurement
may be almost nullified. The device under test is described.
Finally, the way we have conducted measurement experiments
is reported.

A. Principle of path delay measurement with clock glitches

Data is released from the first register bank on a clock
rising edge and then processed through the logic before being
latched into the next register bank on the next clock rising
edge. Thus, in a first approximation the clock period (Tclk) has

to be longer than the maximum data propagation time through
the logic (DpMax) to ensure correct operation. Besides, a
precise writing of the timing constraint equation requires to
take into account three other parameters: Dclk2q the delay
between the clock rising edge and the actual update of a
register’s output; Tskew the skew or slight phase difference that
may exist between the clock signals at the clock’s inputs of two
different registers; Tsetup the set-up time which is the amount
of time for which a D flip-flop input must be stable before
the clock’s rising edge to ensure reliable operation. There also
exists a hold time (Thold) which expresses the same constraint
but after the clock edge. Hence, the timing constraint equation
(eq. 1) is obtained:

Tclk > Dclk2q +DpMax + Tsetup − Tskew (1)

A set-up time violation arises if the last signal transition is
too close to the clock’s rising edge. Then the DFF’s output goes
into a metastable behaviour [18]: it may stabilize either on a
high or low state generating an error or not. Consequently the
violation of the timing constraint is a straightforward means to
inject faults into a circuit. This may be achieved by reducing
progressively the clock period (a so called clock glitch) until
a setup time violation occurs.

B. Delay measurements model

As mentioned above, path delay measurement is not deter-
ministic. However, we developed a measurement methodology
intended to reduce this uncertainty. Several measurements are
done with the same experimental settings. These measurements
lie within the interval limited by Tsetup + Thold, arranged in
what we call a timing distribution. Moreover, provided that
there is enough measurements (a few thousands as revealed
by our experiments) they feature a Gaussian-like shape. Using
GNU Octave tool [19], we approximated these distributions
with Gaussian curves and saw that these approximations fitted
well in all cases. One of these approximated Gaussian is
depicted in Figure 3.

Fig. 3. Distribution for bit 32 of State matrix

This allowed us to choose to represent the distribution
corresponding to each measured path delay by the mean of
the best fitted Gaussian curve.

C. Description of the device under test

As explained before, we have chosen a programmable
circuit (FPGA) running the AES algorithm as a test vehicle to
conduct this study. The test chip’s nominal clock period is 100
MHz, and its core nominal voltage is 1.2V. As the delays in the
encryption module are greater than the delays in the cipher’s



other modules we can assume that the encryption module will
be faulted before any other module (FSM, UART, ...). Hence,
the path delays of the encryption module will be measured
first by using clock glitches. These path delays will be used
in our trojan detection methodology.

The set-up and hold times of the device’s DFFs have mini-
mum values of 180ps and zero respectively (for a speed grade
-5 component). Hence, the minimal measurement’s uncertainty
is 180ps. Note that, the width of the Gaussian’s bottom in
Figure 3 is around 200ps which is close to the measurement’s
uncertainty.

D. Measurement experiments

In our implementation, an AES round is executed in one
clock cycle. For every bit in the cipher block, the propagation
delay varies depending on the data processed. Thus the critical
path may change at each clock cycle. Path delay measurements
were consequently done with the same plaintext and key in
order to obtain fair comparisons between the tested ICs. A
measurement series is done by progressively reducing the clock
period during the 10th AES round by steps of 35ps until
it becomes too short to comply with the timing constraints.
Hence, the value of the ciphertext stored in the register is
corrupted. As a consequence, a progressive increase of the
stress applied (i.e. the stepwise reduction of the clock period)
successively induces an increasing number of faults into the
longest paths. At the bit level, the clock period related to the
first fault occurrence is then recorded for every bit to build the
aforementioned timing distributions. As enough measurements
are achieved, the corresponding Gaussian curves are calculated
and the mean path delay of every faulted bit is retrieved.

Note that for some bits, which we shall call the ghost bits,
measurement errors occurred and no associated measured path
delays were available. The reason for this is that for such
bits, at some point, the generated glitch corrupted the state
machine of the AES in addition to the data path resulting in
the chip not responding: this of course is an artefact due to
our measurement tool, artefact which, as we shall discuss later,
might provide useful information in the end.

VI. PRACTICAL RESULTS

For a constant plaintext (all ones) and a known constant
key, we ran 4000 tests whereby for each test the clock glitch
is increased by steps of 35 ps and the resulting corrupted
ciphertext recorded and analysed (We determined which bit/s
of the State matrix has/ve been corrupted [16]). For each test,
one or several bits of the measured ciphertext is corrupted
and for each of those bits the corresponding number of steps
(which gives the duration of the clock glitch, which in turn
gives the associated delay path) is recorded as a measured
path delay (MPD). Hence for each of the 128 bits, we have a
distribution of measured delay paths as shown in Figure 3 for
the AES INT.

A. Distribution of measured path delays for all 128 bits

We also chose to have a graphical representation where
we represent the mean (associated with the Gaussian ap-
proximation as explained earlier) of the measured path delay
associated with each bit of the State matrix of the AES. Such

a representation (Figure 4) gives a characteristic picture of the
MPDs associated with each bit of the AES State Matrix, along
with a distribution of the ghost bits (In our representation, we
tried to have a “curve” linking the values of each bit’s MPD,
but could not show values for ghost bits resulting in the curve
being discontinuous) relative to our measurement tool. Such a
representation shall be called measured path delays’ - MPD -
distributions.

Fig. 4. Distribution for the first 32 bits for two different keys and plaintexts

B. Factors impacting the measurements of the MPDs

When performing such measurements, several factors influ-
ence the measured propagation time for each bit of the State
matrix:

• The value of the chosen plaintext and key: in our
experiment we kept the value of the key and plaintext
constant (Figure 4).

• The external physical conditions like temperature,
voltage, etc.: this aspect was covered. Voltage glitchs
have the same effect as clock glitches. The minor
variation of the voltage and the temperature has no
significant effect on the measurements done. The
experiments were performed at room temperature with
almost no fluctuations in the voltage supplied [20].

• The VHDL code of the IP: Our measurements showed
that recompiling a same VHDL code, while keeping all
synthesis options the same, generated MPD’s distribu-
tions which were the same showing that this factor
shall have no effect on our trojan detection scheme.

• Synthesis options: We looked at the effect of
playing with synthesis options like the KEEP

HIERARCHY [21]. As expected when this option was
switched on, on average, the MPD associated with each
bit was longer but at the same time, the path delays’
distribution was also modified. This phenomenon is
illustrated in Figure 5.

• The FPGA: due to “inter-die” process variations, we
expected to have to subtle variations in propagation
times for a same bitstream being run on different dies
of the same FPGA. For doing so, we had four different
SpartanIII boards (labelled B1 to B4) onto which we
loaded the same AES INT bitstream and performed the
measurements. The dispersion phenomenon observed
is illustrated in Figure 6 for bit 32 of the State matrix
(similar trends are observed on the other bits).

The mean path delay associated with each bit is hence shifted
when the same bitstream is transported from one board to



Fig. 5. Distribution for the first 32 bits without (thick brown line) & with
(thin blue line) KEEP HIERARCHY

Fig. 6. Distribution for bit 32 of State matrix on four different boards

another. This phenomenon is better illustrated by looking
at the MPDs’ distributions for all 128 bits. (We only show
the first 32 bits in figure 7 for a matter of clarity, but this
presented behaviour is the same for the 128 bits of the
State matrix): the “orders of appearances” are the same, the
ghost bits are the same, with just the ‘curves’ being shifted
vertically. Furthermore, this figure emphasizes the differences
between the used boards despite our Gaussian approximation.
Experiments showed that the inter-die variability was always
limited to a 300ps range. Futhermore, due to the change of
delay caused by the synthesis, the gaussian model allows us
to observe easily the differences between the curves.

Fig. 7. Path delays for first 32 bits of the State matrix on 4 different boards

C. Impact of the hardware trojans

The same measurements were done on the IP AES HT1.
Then we compared the MPDs distributions of the AES INT and
that of AES HT1 on the same board B1 (Figure 8 (For a matter
of clarity, we only show the first 32 bits but the trend is the
same for all 128 bits of the State matrix.)): we not only see that
the mean path delay associated with each bit has significantly
changed but also that their “orders of appearances” and the
distribution of the ghost bits have also been changed.

The modification in the MPDs’ distribution incurred by the

Fig. 8. Path delays distributions without (thick brown line) & with (thin
orange line) trojan for the first 32 bits of the State matrix

addition of the trojan (in this case modification of the VHDL

code) is more important than that incurred by simply porting a
same bitstream from one board to another. On a bit level, this is
illustrated in Figure 9 where, for the bit 32 of the state matrix,
on the left we have the four measurements for AES INT on
four different boards and on the right we have measurements
made on the same boards with AES HT1. This shows that this
tool is able, at least for the four samples we had, to detect
a significant change in the VHDL code beyond the variations
incurred by inter-die variations (Figure 10). Of course, this
needs to be confirmed on a much larger set of samples.

Fig. 9. Path delay measured for bit 128 on 4 boards without (left) and with
(right) trojan.

Fig. 10. Path delay distributions for the first 32 bits on 4 boards without
(thick brown line) & with (thin orange line) trojan.

With respect to synthesis options (KEEP HIERARCHY

option in our case), measurements showed that in each of
the cases where the option was activated or deactivated, the
measured MPDs’ distributions were significantly modified by
the presence of the trojan showing that the activation of
such an option does not reduce the detectability capacity of
our approach (Figure 11) even when the KEEP HIERARCHY

option is set.

Note that in this paper we reported results with respect



Fig. 11. Path delay distributions for the first 32 bits with KEEP HIERARCHY

without (thick blue line) & with (thin green line) trojan

to AES HT1 only as similar behaviours were obtained with
AES HT2.

CONCLUSION & DISCUSSION FOR FUTURE WORK

In this paper we illustrated how a tool used to inject clock
glitches into a cryptographic module can be used to perform
practical measurements of the mean path delay corresponding
to each bit of the principal data path of an AES IP. The
distribution of those propagation times is a characteristic
“fingerprint” of the module, suggesting that this might be a
practical means of authenticating a IP. Moreover since this
distribution is influenced by the addition of trojan horses, it
might also be used to qualify the integrity of a given IP,
without adding any other circuit to the IP. In this paper,
this “characteristic fingerprint” consists in visually comparing
MPD distribution curves. Future work shall consist of giving
a quantitative aspect of this “characteristic fingerprint”, such
as looking at the classification of the different bits in order of
increasing or decreasing propagation times or the distribution
of the “ghost bits”or even at the correlation between the curves
corresponding to the mean path delays. More experiments shall
also be conducted using other types of trojans. Our approach
could also be the base for devising a method/tool that would
automatically introduce in a given sensitive IP some test chain
that would give end users a (secure) access to a clock PIN and
the IP’s IOs to perform such characterisations and authenticate
and verify the IP under test. Ultimately we shall see if the
MPDs can be constructed by simulation which could get rid of
the “golden reference” problem.
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