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Smart factories Industry 4.0 on the basis of collaborative cyber-physical systems represents a future form of industrial networks. Supply 
chains in such networks have dynamic structures which evolve over time. In these settings, short-term supply chain scheduling in smart 
factories Industry 4.0 is challenged by temporal machine structures, different processing speed at parallel machines and dynamic job 
arrivals. In this study, for the first time, a dynamic model and algorithm for short-term supply chain scheduling in smart factories Industry 
4.0 is presented. The peculiarity of the considered problem is the simultaneous consideration of both machine structure selection and job 
assignments. The scheduling approach is based on a dynamic non-stationary interpretation of the execution of the jobs and a temporal 
decomposition of the scheduling problem. The algorithmic realisation is based on a modified form of the continuous maximum principle 
blended with mathematical optimisation. A detailed theoretical analysis of the temporal decomposition and computational complexity is 
performed. The optimality conditions as well as the structural properties of the model and the algorithm are investigated. Advantages and 
limitations of the proposed approach are discussed.

Keywords: supply chain scheduling; smart factory; structure dynamics; flexible flow shop; alternative machines; optimal programme 
control

1. Introduction

Most of the new factory concepts share attributes of smart networking (Dolgui and Proth 2010; Ivanov, Sokolov, and

Pavlov 2013; Chick, Huchzermeier, and Netessine 2014; Davis et al. 2012; Villa, O’Brien, and Burlat 2012). That is

why it becomes a timely and crucial topic to consider supply chains (SC) as collaborative cyber-physical systems

(Camarinha-Matos and Macedo 2010; Zhuge 2011; Ivanov, Sokolov, and Dilou Raguinia 2014). Cyber-physical systems

incorporate elements from both information and material subsystems which are integrated and decisions in them are

cohesive (Zhuge 2011).

In addition, such systems evolve through adaptation and reconfiguration of their structures, that is through structure

dynamics (Ivanov, Sokolov, and Kaeschel 2010; Ivanov, Sokolov, and Dolgui 2014; Ivanov and Sokolov 2012b). Smart

factories Industry 4.0 on the basis of collaborative cyber-physical systems represents a future form of industrial net-

works. According to a PWC survey (PWC 2013), 50% of German enterprises plan a networking and 20% are already

involved into a smart factory Industry 4.0. Industry 4.0 represents a smart manufacturing networking concept where

machines and products interact with each other without human control. SCs in such networks have dynamic structures

which evolve over time. In these settings, short-term SC scheduling in smart factories Industry 4.0 is challenged by tem-

poral machine structures, different processing speed at parallel machines and dynamic job arrivals. In terms of schedul-

ing theory, scheduling in smart factory Industry 4.0 can be classified as flexible job or flowshop (Pinedo 2008;

Rajabinasab and Mansour 2011; Sawik 2012; Na and Park 2013). This results in a dynamic scheduling environment with

structure dynamics. We regard this domain as an opportunity for research and development.

In scheduling theory, considerable achievements can be stated regarding assignment and sequencing problems in the

context of multi-stage systems (Blazewicz et al. 2001; Lauff and Werner 2004). Most papers on multi-stage systems deal

with problems, where the computational complexity represents the most critical challenge (Chiou et al. 2012). Another

challenge is the different processing speed at the machines which influence the task times (Kyparisis and Koulamas 2006).
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In this study, we study a multi-objective, multi-stage flexible flow-shop scheduling problem with alternative

machines at each stage with different time-dependent processing speed, time-dependent machine availability and ordered

jobs where job splitting is allowed. Examples of such problems can be found in the studies by Kyparisis and Koulamas

(2006) and Tahar et al. (2006) and Bożek and Wysocki (2015). The peculiarity of the problem under consideration is

the simultaneous consideration of both machine structure selection, continuous flows, and job assignment. In these set-

tings, an interesting constellation of discrete and continuous elements can be observed. On the one hand, an assignment

problem is discrete by nature and requires the introduction of binary variables, that is discrete optimisation techniques

can be correctly used here. At the same time, a non-stationary job execution can be correctly described in terms of

continuous optimisation (Shah and Ierapetritou 2012; Subramanian et al. 2013). An additional peculiarity of such simul-

taneous consideration is that both the machine structures and the flow parameters may be uncertain and change in

dynamics and are, therefore, non-stationary.

The remainder of this study is organised as follows. Section 2 is devoted to a literature review. Section 3 presents

the methodology and problem statement. In Section 4, the model is described and a scheduling problem in terms of

OPC is stated. Section 5 presents the algorithm and analyses the computational procedure. In Section 6, the optimality,

existence and complexity are analysed. The study concludes by discussing the main findings.

2. Literature review

Beginning with the work of Johnson (1954), flow-shop scheduling models (i.e. models where a set of jobs must be processed

on a number of machines sequentially disposed and the operations for different jobs have to be processed in the same order)

have been extensively considered in the literature, including, for instance, Gupta, Neppalli, and Werner (2001), Kubzin, Potts,

and Strusevich (2009), Dugardin, Yalaoui, and Amodeo (2010), Ribas, Leisten, and Framiñan (2010). Since the problems of

this class, with a few exceptions, have been proved to be NP-hard (Gonzalez and Sahni 1978), heuristic solutions are predomi-

nantly applied in practice (Jungwattanakit et al. 2008, 2009; Laha and Sarin 2009; Martin 2009; Werner 2013).

Scheduling with alternative parallel machines has also been a large research avenue over the past few decades. In such

systems, the goal is to optimise both the selection of machines for each part and the loading sequences of the parts to the

machines to improve the productivity (Hankins, Wvsk, and Fox 1984) or to minimise the makespan (Weglarz 1976).

Blazewicz, Dror, and Weglarz (1991) review showed that these problems are NP-hard. Józefowska et al. (2002) presented a

heuristic approach to allocating a continuous resource in discrete–continuous scheduling problems to minimise the make-

span. In some cases, for example for identical processors with unit processing times, such a scheduling problem can be

transformed to a transportation problem and solved with integer programming (IP) methods (Graham et al. 1979). Kyparisis

and Koulamas (2006) considered a multi-stage flexible flow-shop scheduling problem with uniform parallel machines at

each stage and makespan minimisation. This study proposed a heuristic schedule computation for this strongly NP-hard

problem. Tahar et al. (2006) considered the problem of scheduling a set of independent jobs with sequence-dependent set-

up times and job splitting on a set of identical parallel machines such that the maximum completion time (makespan) is

minimised. For this NP-hard problem, this study developed a heuristic algorithm using linear programming (LP).

Consideration has also been given to continuous flows which are typical for the processing industry, for example

petrochemistry, energy supply, oil and gas industries (Mujawar, Huang, and Nagi 2012; Subramanian et al. 2013). A

practical challenge is that at each stage, alternative machines may perform the operations. This creates flexibility in the

process plan and requires both a machine assignment and sequencing the tasks (Yu et al. 2011). The optimiszation

objectives in practice are multiple ones and may be related to the maximisation of the processed jobs, completing the

jobs on time (e.g. minimisation of maximal lateness) and an equal machine utilisation over time.

Bożek and Wysocki (2015) analysed continuous flow flexible job shop (CF-FJS) problem that combines the flexible

job shop (FJS) problem and a dedicated continuous material flow model (MFM). In this study, the operations are

represented by material flow functions derived by integration of arbitrarily defined speed patterns. Variable speed of

processing and continuous material flow lead to position-dependent processing times and overlapping in operations. A

tabu search scheduling algorithm is proposed to solve the model.

Let us turn to the OPC applications. The studies by Holt et al. (1960), Hwang, Fan, and Erikson (1967), Zimin and

Ivanilov (1971) and Moiseev (1974) were among the first to apply the OPC and the maximum principle to multi-level

and multi-period master production scheduling that determined the production as an optimal control with a correspond-

ing trajectory of the state variables (i.e. the inventory). This stream was continued by Kimemia and Gershwin (1983),

who applied a hierarchical method in designing a solution procedure to the overall model, and by Khmelnitsky, Kogan,

and Maimom (1997) for planning continuous-time flows in flexible manufacturing.

The managers are always interested in non-deterministic approaches to scheduling where scheduling is intercon-

nected to the control function (Maccarthy and Liu 1993). The studies by Sarimveis et al. (2008) and Harjunkoski et al.
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(2014) showed a wide range of advantages regarding the application of control-theoretic models in combination with

other techniques to production and logistics. They include, first of all, a non-stationary process view and accuracy of

continuous time. In addition, a wide range of analysis tools from control theory regarding stability, controllability,

adaptability, etc. may be used if a schedule is described in terms of control. However, the calculation of the OPC with

direct methods of the continuous maximum principle has not been proved to be efficient (Ivanov and Sokolov 2012a).

So the application of OPC to scheduling is not a trivial problem for two reasons. First, a conceptual problem consists of

the continuous values of the control variables. Second, a computational problem with a direct method of the maximum

principle exists. These shortcomings set limitations on the application of OPC to purely combinatorial problems.

3. Problem statement and methodical approach

3.1 Problem statement

Consider the problem statement subject to the following list of notations:

Sets
�B ¼ f�BðiÞ; i 2 �N ; �N ¼ ð1; . . .; �nÞg is the set of jobs

D ¼ fDi
l ; l 2 �S; �S ¼ ð1; . . .; siÞg is the set of operations

M ¼ fM j; j 2 N ;N ¼ ð1; . . .; nÞg is the set of machines

C is the set of precedence operations

Q xðtÞð Þ is the domain of feasible control inputs
~~Q xðtÞð Þ is the extended domain of feasible control inputs
~K is the initial class of feasible control inputs
~~K is the extended class of feasible control inputs

Parameters

a is the planned processing volume
~~R is the total machine capacity

T0 is the start instant of time of the scheduling horizon

Tf is the end instant of time of the scheduling horizon

c is the processing intensity

nðtÞ is the vector of perturbation impacts

Dt is the step length of integration for the main and the conjugate system

h
ðoÞ
0 , h

ðoÞ
1 are known differentiable functions that determine the end conditions of the vector

Indices

i is the job index

j is the machine index

μ is the operation index (i.e. number of the operation in the job)

l is the index of the flow-shop stage

o is the index of parameters and variables in the model Mo

k is the index of parameters and variables in the model Mk

f is the index of parameters and variables in the model Mf

z is the number of the Hamiltonian function

r is the number of the iteration of the algorithm

Continuous variables and functions

t is the current time instant

r is the duration of the planning interval

xðoÞ is a variable characterising the state of an operation, where (o) indicates the relationship of the state

variable x to the operation states

eðtÞ is the given preset matrix time function of time-spatial constraints

3



~~u(t) is the decision control action at the moment t in the extended class
~~K

J is a performance indicator

aðsÞ is the penalty function in the mathematical model of the operation control processes

bðsÞ is the penalty function in the mathematical model for the flow control

x
ðkÞ
j is a state variable characterising the total employment time of machine M( j)

xðf Þ is a state variable characterising the processed flow volume

uðtÞ is a feasible schedule

u � ðtÞ is an optimal schedule

H is the Hamiltonian function

wðtÞ is the conjunctive vector

qð1Þ and qð2Þ are vector functions, defining the main spatio-temporal, economic, technical and technological conditions

for the machine functioning process

d~aðtÞ,q~bðtÞ are coefficients of the conjunctive system

k is the vector of the weight coefficients of the performance indicators

Discrete variables

uðoÞðtÞ is the decision control action at the moment t
��m1 is the maximal dimensionality of the assignment problem
~�n is the maximal number of parallel executed jobs within the planning interval

Others

Mo is the mathematical model for the operation control processes (model)

Mk is the mathematical model for the machine control

Mf is the mathematical model for the flow control

M is the integrated model of the problem PS

PS is an optimal programme control problem

Λ is the relaxed problem

R is an operator in the optimal control algorithm

At each l-stage, some uniform alternative machines M ðjÞ from the set M ¼ fM ðjÞ; j 2 N ; N ¼ ð1; . . .; nÞg exist. At

each l-stage, some uniform alternative machines M ðjÞ exist. Consider the operations D
ðiÞ
l from the set

D ¼ fD
ðiÞ
l ; l 2 �S; �S ¼ ð1; . . .; siÞg, each of which belongs to a job �BðiÞ from the set �B ¼ f�BðiÞ; i 2 �N ; �N ¼ ð1; . . .; �nÞg.

The independent jobs consist of a chain of operations. All jobs are assumed to be available for processing at time 0. Each

machine M ðj;lÞ is capable of producing all the operations at the l-stage, but it can handle only one job at a time. Note that

for a simplification, the stage index l is omitted in the further progress of this study, and it is assumed to be considered in

the machine indexes j subject to the non-stationary machine availability at each stage (i.e. ‘availability windows’), which

is expressed in the preset matrix time function eijðtÞ. The structure considered is presented in Figure 1.

At each of the stages, each machine M ðjÞ has a speed (i.e. an effective processing intensity) cilj that is subject to the

total machine capacity
~~R j. The impact of the speed ciljðtÞ is that the machine M ðjÞ can process ailj units subject to the

Figure 1. Problem structure.
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planned processing volume ail and ciljðtÞ. An operation D
ðiÞ
l may start only after the previous operation D

ðiÞ
l�1 has been

completed. All jobs have to be completed by time Tf. For a simplification of the model and the algorithm presentation

in this study, we allow pre-emptions and do not consider setups (i.e. in Figure 1, the operations may be partially

executed on different machines at each of the stages as known from the job splitting literature, e.g. Tahar et al. 2006).

The problem consists of scheduling the operations taking into account flow dynamics control subject to three

objectives: J1 – minimisation of total lateness (subject to Tf), J2 – maximisation of the volume of the fully completed

jobs (subject to ail and ailj; i.e. in the ideal case ail = ailj for all jobs subject to ciljðtÞ and eijðtÞ; a strong requirement

on the full completion of all jobs by the time Tf may also be included) and J3 – equal utilisation of the machines

(subject to
~~R j).

3.2 Methodical approach

The underlying theory for studying multi-stage, multi-period dynamic systems with continuous variables and

performance indicators accumulated over time is optimal control theory in general and optimal programme control

(OPC) in particular (Athaus and Falb 1966; Lee and Markus 1967; Sethi and Thompson 2000). At the same time, a

direct application of OPC to a pure combinatorial problem is questionable.

The basic technical idea of our approach is that the elements of OPC can extend the existing MP scheduling tech-

niques. For this reason, we do not use OPC for solving the combinatorial problem but rather to enhance the existing

MP algorithms regarding the non-stationarity, flow control and continuous material flows. If the control variables are

presented as binary variables, it might become possible to incorporate them into the assignment problem. We apply

methods of discrete optimisation to combinatorial tasks within certain time intervals and to use the OPC with all its

advantages (i.e. accuracy of continuous time, integration of planning and control, and the operation execution parameters

as time functions) for (1) the flow control within the operations and (2) interlinking the decomposed solutions.

The basic computational idea of this approach is the fact that the operation execution and machine availability are

dynamically distributed in time over the planning horizon. As such, not all operations and machines are involved in the

decision-making at the same time. Therefore, it becomes quite natural to transit from large-size allocation matrices with

a high number of binary variables to a scheduling problem that is dynamically decomposed. Following an approach to

decompose the solution space and to use exact methods over its restricted sub-spaces, we propose to use the OPC the-

ory for the dynamic decomposition of the scheduling problem. OPC is mainly used for the dynamic decomposition but

not for the calculations. The computational procedure is transferred to the MP methods (Ivanov, Sokolov, and Pavlov

2013, 2014). The solution at each time point is calculated with MP. OPC is used for modelling the execution of the

operations and interlinking the MP solutions over the planning horizon. Hence, the solution procedure becomes indepen-

dent of the continuous optimisation algorithms and can be of discrete nature, for example an integer assignment model.

The maximum principle guarantees that the optimal solutions of the instantaneous problems give an optimal solution to

the overall problem (Pontryagin et al. 1964; Boltyanskiy 1973; Sethi and Thompson 2000).

The original dynamic interpretation of the assignment of the operations to a non-stationary set of machines can be

exemplified in the following way. Consider four machines and six jobs �BðiÞ, each of which is composed of 3–6

operations D
ðiÞ
l . At each time instant, only one operation can be processed on one machine (see Figures 2–5).

Note that in this example, for a simplification, we consider only a one-stage system with four alternative uniform

machines. In the model, a multi-stage flow shop will be considered as shown in Figure 1. In Figures 2–5, the execution

Figure 2. Dynamic representation of the scheduling model.
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dynamics of six jobs is presented for four time instants t ¼ t1; t2; t3; tf . Note that in this example of a continuous prob-

lem statement, t ¼ t1; t2; t3; tf corresponds to l = 1,2,3,4 in the discrete case as presented in Figure 1. Different colours

describe current execution states. The operations marked in black have already been completed. The operations marked

in grey may be executed subject to the machine availability and precedence relations. The operations marked in white

cannot be executed yet because of the precedence relations. For example, at t ¼ t2, the operation D
ð4Þ
2 cannot be

assigned since the operation D
ð4Þ
1 is still being processed with the use of the machine M ð4Þðu

ðoÞ
il jðt2Þ ¼ 1Þ.

From Figures 2–5, it can be observed that at each time instant, the assignment decisions consider only the grey

coloured operations subject to some available (‘competing’) machines, that is the large-scale multi-dimensional

combinatorial matrix is decomposed. The assignment of a machine M ðjÞ to the execution of the operation D
ðiÞ
l can be

described by the piecewise continuous function u
ðoÞ
il jðtÞ that becomes equal to 1 in the case of an assignment. In the

Figure 3. Dynamic representation of the scheduling model.

Figure 4. Dynamic representation of the scheduling model.

Figure 5. Dynamic representation of the scheduling model.
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following course of this study (see Section 4), these functions will play the role of OPC within the proposed dynamic

model of the execution of the operations.

In the upper part of Figures 2–5, the machines M ðjÞ are listed which are available at the current time instant. At

t ¼ t1; t2; tf , the four machines M ð1Þ;M ð2Þ;M ð3Þ;M ð4Þ are available. At t ¼ t3, only the three machines M ð1Þ;M ð2Þ;M ð4Þ

are available. This non-stationary set of machine availability will be represented in the model (see Section 5) with the

help of the preset matrix time function eijðtÞ.
It can be observed from Figures 2–5 that the current dimensionality of the considered scheduling problem for

t ¼ t1; t2; t3; tf is determined by the dimensionality of the grey coloured area. The operations in the black and white

areas are not considered at the given time points and, therefore, will not influence the mathematical model for the

assignment.

4. Mathematical model

The formal statement of the scheduling problem will be produced, as it has been noted above, via a dynamic interpreta-

tion of the execution processes of the operations. In the remainder of this section, we will consider the partial dynamic

models in more detail.

4.1 Mathematical model for the control processes of the operations (model Mo)

Let us consider the mathematical model for processing the operation D
ðiÞ
l in the job �BðiÞ. The following notations can be

introduced:

x
ðoÞ
il is a variable characterising the state of the operation D

ðiÞ
l , where (o) indicates the relationship of the state

variable x to the operation states.

eijðtÞ is the given preset matrix time function of the time-spatial constraints.

u
ðoÞ
ilj ðtÞ is the decision control action at the moment t.

t is the current time instant; t 2 T ¼ ðT0; Tf � is the planning horizon.

T0 ðTf Þ is the start and end time instant of the planning horizon.

The processing dynamics of the operation D
ðiÞ
l can be expressed as follows:

dx
ðoÞ
il

dt
¼ _x

ðoÞ
il ¼

X

n

j¼1

eijðtÞu
ðoÞ
ilj ðtÞ: (1)

Equation (1) represents the operation execution dynamics in which the non-stationarity of the execution of the

operations is reflected. We have eijðtÞ ¼ 1, if machine M ðjÞ is available, and eijðtÞ ¼ 0, otherwise (e.g. a constraint on

the production shift from 7 am to 4 pm). u
ðoÞ
ilj ðtÞ is a decision variable. We have u

ðoÞ
ilj ðtÞ ¼ 1 at the time point t, if the

operation D
ðiÞ
l is assigned to the machine M ðjÞ, and u

ðoÞ
ilj ðtÞ ¼ 0, otherwise.

The continuous time allows to represent the execution of the operations at each time point and, therefore, to obtain

additional information about the execution of the operations. An example of a control profile for the execution of the

operations is given in Figure 6.

In Figure 6, an example of a control profile for the execution of one operation on one machine is presented. The

usage of continuous time allows a non-stationary analysis of the schedule execution (e.g. the machine availability

Figure 6. Example of the execution dynamics and an assignment decision profile.
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between 8:00 and 10:00 am or between 9:00 and 10:00 am may have a different impact on the schedule performance).

The state variable x(t) accumulates the executed (processed) volume of the considered operation. Assuming that the

planned execution volume is 6 units, it can be observed from Figure 6 that the given operation can be fully executed

(i.e. a
ðoÞ
il ¼ x

ðoÞ
il ) on the given machine and completed on time (by Tf ) with a processing time of 13 time units. In this

case, the control variable u
ðoÞ
ilj ðtÞ (Equation 1) will switch to 1, which means that the assignment is possible. Such

principles are equivalent to those used in the further models.

The control actions are constrained as follows:

X

�n

i¼1

X

si

l¼1

u
ðoÞ
ilj ðtÞ� 1; j ¼ 1; . . .; n;

X

n

j¼1

u
ðoÞ
ilj ðtÞ� 1; i ¼ 1; . . .; �n; l ¼ 1; . . .; si; (2)

X

n

j¼1

u
ðoÞ
ilj

X

a2C�
il1

ða
ðoÞ
ia � x

ðoÞ
ia Þ þ

Y

b2C�
il2

ða
ðoÞ
ib � x

ðoÞ
ib Þ

2

4

3

5 ¼ 0; (3)

u
ðoÞ
ilj ðtÞ 2 f0; 1g; (4)

where conditions (2)–(4) hold for i = 1, … , n, μ = 1, … , si, j = 1, … , �n; C
�
il1
, C

�
il2

are the sets of precedence

operations regarding the operation D
ðiÞ
l ,

Pn
j¼1 u

ðoÞ
ilj

P

a2C�
il1

ða
ðoÞ
ia � x

ðoÞ
ia ðtÞÞ ¼ 0 is an ‘and’ constraint, which denotes the

condition of the total processing of all the predecessor operations,
Pn

j¼1 u
ðoÞ
ilj

Q

b2C�
il2

ða
ðoÞ
ib � x

ðoÞ
ib Þ ¼ 0 is an ‘or’ constraint,

which denotes the condition of the processing of at least one of the predecessor operations.

Constraints (2) define the 1 × 1 assignment problem. Constraints (3) bring the natural time logic into the model and

determine the precedence relations by blocking the operation D
ðiÞ
l until the previous operations D

ðiÞ
a ; D

ðiÞ
b have been

completed.

In order to assess the results of the execution of the operations, we define the following start and end conditions:

h
ðoÞ
0 ðxðoÞðT0ÞÞ� 0; h

ðoÞ
1 ðxðoÞðTf ÞÞ� 0; (5)

where h
ðoÞ
0 , h

ðoÞ
1 are known differentiable functions that determine the start and end conditions of the vector

xðoÞ ¼ x
ðoÞT
11 ; . . .; x

ðoÞ
�nsi

� �T

: (6)

The initial and end conditions (7) and (8) specify the values of the variables at the beginning and end of the planning

period, namely:

at the moment

t ¼ T0 : x
ðoÞ
il ðT0Þ ¼ 0; (7)

at the moment

t ¼ Tf x
ðoÞ
il ðTf Þ ¼ a

ðoÞ
il : (8)

The OPC uðtÞ and the state trajectory _x ¼ fðx; u; tÞ should be determined so that the constraints (7) and (8) are met; in

other words, the desired values of the performance indicators should be achieved as an analogy to goal programming.

Constraint (7) reflects that, at the beginning, the volume of the executed operations is equal to zero (in the case that

a certain volume of the orders is to be transferred from the previous planning period to the beginning of the current

planning period, this should be reflected in (8)). Condition (8) reflects the desired end state, that is the completion of

the operations by the time Tf.

According to the problem statement, let us introduce the following performance indicators (objectives):

J
ðoÞ
1 ¼

1

2

X

�n

i¼1

X

si

l¼1

a
ðoÞ
il � x

ðoÞ
il ðTf Þ

� �2

; (9)

J
ðoÞ
2 ¼

X

�n

i¼1

X

si

l¼1

X

n

j¼1

Z

Tf

T0

a
ðoÞ
il ðsÞu

ðoÞ
ilj ðsÞds: (10)
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The performance indicator J
ðoÞ
1 (function (9)) characterises the accuracy of the accomplishment of the end conditions,

that is the volume of the completed operations by the time Tf. This can also express the extent of losses caused by a

non-fulfilment of the end conditions. The objective function (10) minimises total maximum lateness using penalties. The

function a
ðoÞ
il ðsÞ is assumed to be known for each operation.

4.2 Mathematical model for the machine control (model Mk)

Let us introduce Equation (11) to assess the total machine availability time:

dx
ðkÞ
j

dt
¼ _x

ðkÞ
j ¼

X

�n

i¼1

X

si

l¼1

u
ðoÞ
ilj ðtÞ; (11)

where (k) indicates the relationship of the state variable x to the machines. Equation (11) represents the machine utilisa-

tion. The variable x
ðkÞ
j characterises the total employment time of machine M( j). Equation (11) corresponds to Equation

(1) subject to the control variable u
ðoÞ
ilj ðtÞ. We have u

ðoÞ
ilj ðtÞ ¼ 1 at the time point t, if the machine M ðjÞ is occupied by the

operation D
ðiÞ
l and u

ðoÞ
ilj ðtÞ ¼ 0 otherwise.

The end conditions are identical to Equations (5)–(8).

According to the problem statement, let us introduce the following performance indicator:

J
ðkÞ
1 ¼

1

2

X

n

j¼1

ðT � x
ðkÞ
j ðTf ÞÞ

2
: (12)

The indicator J
ðkÞ
1 helps to estimate the uniformity of the machine use at the end point t ¼ Tf of the planning period.

For example, in the supply chain scheduling context, this may be a requirement for a supply chain collaboration.

4.3 Mathematical model for the flow control (model Mf)

The interrelations and mutual impacts of the assignment and flow control still remain an open research question. In the pro-

posed approach, these decisions are considered simultaneously. Recall that the task times may differ regarding different

speeds ciljðtÞ and machine availabilities eijðtÞ. For instance, the assignment of an operation from Figure 6 to another

machine could result in a different execution control profile and task time. For this reason, the assignments from the model

Mo (made on the basis of the volumes ail) are now subject to further optimisation regarding the flow dynamics control.

An assignment of an operation to a machine and the starting execution of the operations cause dynamic flows of the

processed products. Let us introduce a model for the flow dynamics control (13):

dx
ðf Þ
ilj

dt
¼ _x

ðf Þ
ilj ¼ u

ðf Þ
ilj ; (13)

where (f) indicates the relationship of the state variable x to the flows. Equation (12) corresponds to Equations (11) and

(13). The economic sense of Equation (13) consists in the dynamic representation of the material flows resulting from

the execution of the operations on the machine M ðjÞ. The meaning of Equation (13) is very close to a system dynamics

model to balance the flows in a system. However, the proposed approach also considers the strictly defined logic of the

execution of the operations (model Mo). Moreover, the models of operations and flow control are interlinked linearly by

Equation (14) and the conjunctive system (27)–(29).

In contrast to model Mo, the control variable u
ðf Þ
ilj ðtÞ is not a binary variable, but is equal to the processed flow vol-

ume x
ðf Þ
ilj at each time point t. The model Mf uses the assignment results from the model Mo in the form of the control

variables u
ðoÞ
ilj ðtÞ and extends them by the actual processing speed of the machines subject to the following constraints:

0� u
ðf Þ
ilj ðtÞ� c

ðf Þ
ilj � u

ðoÞ
ilj ; (14)

X

�n

i¼1

X

si

l¼1

u
ðf Þ
ilj ðtÞ�

~~R
ðf Þ

j � nðf ÞðtÞ: (15)

Inequalities (14) use the assignment decisions (u
ðoÞ
ilj ðtÞ) from the model Mo and the processing speed ciljðtÞ of the

machines M ðjÞfor the optimisation problems (13)–(18).

Constraints (15) reflect that the processing speed is constrained by
~~R
ðf Þ

j taking into account the lower and upper

bounds of some perturbation impacts 0� nðf ÞðtÞ� 1 which may decrease the capacity availability.
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Remark: Equations (15) and (16) set up the attainable set (AS) of the OPC in a dynamic system, that is all possible

states of the schedule execution subject to different variations of the parameters (e.g. the capacity availability). The

introduction of Equation (15) allows to analyse feasible schedule executions under conditions of non-stationary perturba-

tions. If so, an AS can be used to analyse the schedule robustness that is an ability to continue the schedule execution

subject to the specified objectives in the presence of perturbations.

The end conditions in Mf are identical to (5)–(8).

According to the problem statement, let us introduce the following objectives:

J
ðf Þ
1 ¼

1

2

X

�n

i¼1

X

si

l¼1

X

n

j¼1

ða
ðf Þ
ilj � x

ðf Þ
il ðTf ÞÞ

2
; (16)

J
ðf Þ
2 ¼

1

2

X

�n

i¼1

X

si

l¼1

X

n

j¼1

Z

Tf

T0

b
ðf Þ
il ðsÞu

ðf Þ
ilj ðsÞds: (17)

The economic meaning of the objectives (16)–(17) is identical to the objectives (9)–(10). The function b
ðf Þ
il ðsÞ is

assumed to be known for each operation.

Remark 2. Note that the constraints (2)–(4) and (14)–(15) are identical to those in the MP models. However, at each

t-point of time, the number of variables in the calculation procedure is determined by the operations, which are currently

in the ‘active zone’ of scheduling, that is the operations marked in grey in Figures 2–5. For the problem sizes subject to

the ‘active zone’, known methods for the solution of the MP models (e.g. the Hungarian method for Mo or linear

programming (LP) for Mf) can be applied to the problem (1)–(17).

4.4 Formulation of the scheduling problem

The models described above can be presented in an integrated form (model M). As mentioned above, the model should

provide the decision-makers with alternatives to handle. The performance indicators may be weighted in different propor-

tions depending on the planning goals and operational strategies. The preference relations (minmax, maxmin, etc.) form the

Pareto space and allow the calculation of a general relative quality index (QI) (18) within the corresponding schedule uðtÞ.

min JðxðtÞ; uðtÞ; nðtÞ; tÞ ¼ ðJ
ðoÞ
1 ; J

ðoÞ
2 ; J

ðkÞ
1 ; J

ðf Þ
1 ; J

ðf Þ
2 Þ

T
�

�

�

�

�

� (18)

where J
ðoÞ
1 ; J

ðoÞ
2 ; J

ðkÞ
1 ; J

ðf Þ
1 ; J

ðf Þ
2 are the values of the performance indicators.

For a simplification, it is assumed that the transition from the vector form J to a scalar form JG has been performed

on the basis of the weight coefficients k
ðoÞ
1 ; k

ðoÞ
2 ; k

ðkÞ
3 ; k

ðf Þ
4 ; k

ðf Þ
5 .

Now, the scheduling problem can be formulated as the following problem of dynamic system control. The task is to

find a feasible control uðtÞ, ½T0; Tf Þ which ensures that the dynamic control model meets the constraint functions and

guides the dynamic system (i.e. the schedule) _x ¼ fðt; x; uÞ from the initial state to the specified final state subject to

given end conditions and the uncertainty area under the disturbances nðtÞ. If there are several feasible controls

(schedules), then the best one (optimal) should be selected in order to maximise (minimise) the components of JG. We

refer to this problem as PS.

5. Computational procedure and analysis of the algorithm

The computational procedure for the developed model is based on the integration of the main and conjunctive equation

systems subject to the maximisation of the following Hamiltonian (19)–(21):

Hðx�ðtÞ; u�ðtÞ; wðtÞ�Þ ¼ max
~~u2~~QðxÞ

X

2

z¼1

HlðxðtÞ; uðtÞ; wðtÞÞ; (19)

H1 ¼
X

�n

i¼1

X

si

l¼1

X

n

j¼1

½w
ðoÞ
il � eij þ w

ðkÞ
j þ w

ðoÞ
2 a

ðoÞ
ilj �u

ðoÞ
ilj ; (20)

H2 ¼
X

�n

i¼1

X

si

l¼1

X

n

j¼1

½w
ðf Þ
ilj þ w

ðf Þ
5 b

ðf Þ
il �u

ðf Þ
ilj ; (21)

where wðtÞ is the conjunctive vector.
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The maximisation of the Hamiltonian H1 for model (1) in combination with the constraints (2)–(4) solves the assign-

ment problem. The maximisation of the Hamiltonian H2 for model (13) in combination with the constraints (14)–(15)

solves the LP problem. At each time instant, only those jobs and constraints from the ‘active scheduling zone’ (i.e. the

area marked in grey in Figures 2–5) are considered in the models Mo and Mf which meet the requirements (2)–(4), (5),

(14) and (15). By a dynamic switching of the constraints (3) from inequalities to equalities, the size of the scheduling

problem at each time point is reduced. The Hamiltonians (20) and (21) can be maximised when the constraints (3)

satisfy the corresponding variables u
ðoÞ
ilj and u

ðf Þ
ilj . In this case, only a part of the constraints (3) and (14) is considered

for the current assignment problem since, when the control in (3) is switched to zero, then it becomes active in the

right-hand part of the Equations (14). Therefore, the reduction of the problem dimensionality at each time instant in the

calculation process is ensured due to the recurrent operation description.

Theorem 1 Let Λ be a relaxed problem for the problem PS. Then,

(a) If the problem Λ does not have a feasible solution, then this is true for the problem PS as well.

(b) If the OPC of the problem Λ is feasible, then it is the OPC for the problem PS as well.

Proof

(a) If the problem Λ does not have a feasible solution, then the control uðtÞ that transfers the dynamic systems

(1)–(4) and (11), (13)–(15) _x ¼ fðx; u; tÞ from a given initial state to a given final state does not exist.

(b) Let u�ðtÞ, ∀ t ∈ (T0, Tf], be an OPC in Λ and xðtÞ be a solution to model M subject to uðtÞ ¼u�ðtÞ. Then, u�ðtÞ
meets the requirements of the local cut method and maximises the Hamiltonian for the problem PS. Hence, the vectors

u�ðtÞ and x�ðtÞ return the minimum to the performance indicators (9)–(10), (12) and (16)–(17). The proof is complete.

Corollary 1. The PS problem can be transferred to a boundary problem.

Proof. As the dynamics of the state and conjunctive variables xðtÞ and wðtÞ is described by the differential equa-

tions, it becomes possible to calculate xðtÞ and wðtÞ at any time instant subject to the given initial conditions ðx0; w0Þ.
The Hamiltonian (19) turns into a function of only one variable uðtÞ that can be calculated at any t subject to

uðtÞ 2 Qu. Therefore, the PS problem can be reduced to a two-point boundary problem with the help of the local cut

method (Boltyanskiy 1973). The proof is complete.

A methodical challenge in applying the maximum principle is to find the coefficients of the conjunctive system

which change in dynamics. One of the contributions of this study is that these coefficients can be found analytically

from Equations (23) to (24). The coefficients of the conjunctive system play the role of the dynamical Lagrange

multipliers as compared with MP dual formulations.

The conjugate system can be written as follows (Boltyanskiy 1973; Moiseev 1974):

_w~~l
¼ �

@H

@x~~l

þ
X

~I1

~a¼1

d~aðtÞ
@ q

ð1Þ
~a xðtÞ; uðtÞð Þ

@x~~l

þ
X

~I2

~b¼1

q~bðtÞ
@ q

ð2Þ
b xðtÞ; uðtÞð Þ

@x~~l

(22)

The coefficients d~aðtÞ,q~bðtÞ can be determined by means of the following expressions (23)–(24):

q~bðtÞq
ð2Þ
~b

xðtÞ; uðtÞð Þ � 0; ~b 2 f1; . . .;~I2g; (23)

graduH xðtÞ; uðtÞ;wðtÞð Þ ¼
X

~I1

~a¼1

d~aðtÞgraduq
ð1Þ
~a xðtÞ; uðtÞð Þ þ

X

~I2

~b¼1

q~bðtÞgraduq
ð2Þ
~b

xðtÞ; uðtÞð Þ: (24)

In the formulas (22)–(24), x~~l
are the elements of the general state vector xðtÞ and ψ(t) are the elements of the conjugate

vector ψ(t). In accordance with the maximum principle, the following conjugate system can be written (25)–(27):

dw
ðoÞ
il

dt
¼ _w

ðoÞ
il ¼ �

X

n

j¼1

½w
ðoÞ
iðlþ1Þeij þ w

ðkÞ
j þ k

ðoÞ
2 a

ðoÞ
iðlþ1Þj�u

ðoÞ
iðlþ1Þj ; (25)

dw
ðkÞ
j

dt
¼ _w

ðkÞ
j ¼ 0; (26)

dw
ðf Þ
ilj

dt
¼ _w

ðf Þ
ilj ¼ 0 (27)
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The transversality conditions can be formulated in the following way (28)–(30):

w
ðoÞ
il ðTf Þ ¼ k

ðoÞ
1 ða

ðoÞ
il � x

ðoÞ
il ðTf ÞÞ; (28)

w
ðkÞ
j ðTf Þ ¼ k

ðkÞ
3 ðT � x

ðkÞ
j ðTf ÞÞ; (29)

w
ðf Þ
ilj ðTf Þ ¼ k

ðf Þ
5 ða

ðf Þ
ilj � x

ðf Þ
ilj ðTf ÞÞ; (30)

Let us consider the algorithmic realisation of the above-described modified maximum principle. After transforming into

a boundary problem, a relaxed problem can be solved to receive an OPC, for the computation of which the main and

conjunctive systems are integrated, that is the OPC vector u�ðtÞ and the state trajectory x�ðtÞ are obtained. The OPC

vector at time t = T0 and for the given value of ψ(t) should return the maximum to (9)–(10), (12) and (16)–(17), which

have been transformed to a general performance index and expressed in scalar form JG.

The basic peculiarity of the boundary problem considered is that the initial conditions for the conjunctive variables

ψ(t0) are not given. At the same time, an OPC should be calculated subject to the end conditions (5)–(8). To obtain the

conjunctive system vector, we use the Krylov–Chernousko method of successive approximations (MSA) for an OPC

problem with a free right end which is based on the joint use of a modified successive approximation method (Krylov

and Chernousko 1972). We propose to use a heuristic schedule �uðtÞ to obtain the initial conditions for ψ(t0). Then, the

algorithm DYN can be stated as follows:

Step 1 An initial solution �uðtÞ; t 2 ðT0; Tf � (a feasible control, in other words, a feasible schedule) is selected and

r ¼ 0.

Step 2 As a result of the dynamic model run, xðrÞðtÞ is received. Besides, if t ¼ Tf , then the record value JG ¼ J
ðrÞ
G

can be calculated. Then, the transversality conditions (30)–(32) are evaluated.

Step 3 The conjugate system (27)–(29) is integrated subject to uðtÞ ¼ �uðtÞ and over the interval from t ¼ Tf to

t ¼ T0. For the time t ¼ T0, the first approximation w
ðrÞ
i ðT0Þ is obtained as a result. Here, the iteration number r ¼ 0 is

completed.

Step 4 From the time point t ¼ T0 onwards, the control uðrþ1ÞðtÞ is determined (r ¼ 0; 1; 2; . . . denotes the number

of the iteration). In parallel with the maximisation of the Hamiltonian, the main system of equations and the conjugate

one are integrated. The maximisation involves the solution of several MP problems at each time point.

The assignments (i.e. the control variables u
ðoÞ
ilj ) from the model Mo are used in the flow control Mf (13)–(17) by

means of the constraints (14). At the same time, the model Mf influences the model Mo through the transversality con-

ditions (28)–(30), the conjunctive system (25)–(27) and the Hamiltonian function (19). In addition, the possible machine

structure dynamics and flow control dynamics through perturbation impacts are taken into account in (11) and (15).

In each iteration, the main part of the functional JG is negative and has a maximal absolute value among the main

parts of increments computed for all possible variations of the control variables. In contrast to gradient methods and

classical formulas of calculus of variations, it is sufficient to use a smallness of the integral increment norm jjd ujj for
decreasing JG. The smallness jd uj at the planning interval r ¼ ðTo; Tf � is not necessary. The advantage of MSA is that

it allows to implement needle control variations subject to the whole area of feasible control actions subject to the given

constraint system, that is the area of feasible schedules. Another MSA advantage is that the search for an optimal con-

trol in each iteration is performed in the class of boundary (e.g. pointwise or relay) functions which correspond to the

discrete nature of decision-making in scheduling.

Note that the MSA in its initial form has not guaranteed the convergence. By now, a number of MSA modifications

with proved convergence exist (Lyubushin 1979). The following MSA modification can be used for the considered

scheduling algorithm. In step 4, formula (31) is used for the maximisation of the Hamiltonian:

u~ðrþ1ÞðtÞ ¼
RuðrÞðtÞ; t 2 ½t0; t00�
uðrÞðtÞ; t 62 ½t0; t00�

�

; (31)

where ½t0; t00� is selected so that a decrease

J
ðrþ1Þ
G \ J

ðrÞ
G (32)

is ensured.

J
ðrÞ
G ; J

ðrþ1Þ
G are the values of the goal functional subject to uðrÞ; uðrþ1Þ, respectively. In Equation (31), the operator

R corresponds to step 4 of the DYN algorithm. The selection of t0; t00 in each iteration is based on the values of the

Hamiltonian functions of two subsequent iterations. An example is provided in Figure 7.
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At the Y-axis, the values of the Hamiltonian function (19) are presented. The X-axis represents the instants of the

time interval [0, 29]. The three lines correspond to three computational iterations and depict the values of the Hamilto-

nian function (19) at different time instants. The red line (starting at t = 0 with the value 500) refers to the first iteration;

the blue line (starting at t = 0 with the value 550) refers to the second iteration; and the green line (starting at t = 0 with

the value 650) refers to the third iteration. It can be observed that within t 2 ½0; 12�, the schedule calculated at the third

iteration provides better results. For instance, H1 (Equation 20) increases in the case of lower penalties. Similarly, H2

(Equation 21) increases in the case of higher values of u
ðf Þ
ilj which means a higher volume of processed goods.

However, within t 2 ½12; 27�, the first scheduling iteration outperforms the other iterations. For t 2 ½27; 29�, the third

iteration does not improve the results of the second iteration, that is the schedule of the second iteration for t 2 ½27; 29�
shall be used. In combining the upper bounds of the Hamiltonian functions, an optimal schedule is calculated. It con-

tains, for this example, the results of the third iteration (green line) for t 2 ½0; 12�, the first iteration (red line) for

t 2 ½12; 27� and the second iteration (blue line) for t 2 ½27; 29�.
The dynamic coordination parameters are conjunctive variables which change their values during the iterative pro-

cess of the corresponding two-point boundary problem solution. At each time instant, the global objective function is

the Hamiltonian (19). The locally coordinated sub-problems are partial combinatorial assignment problems (Equations

(20), (2)–(4)) and LP problems (Equations (21), (14)–(15)) which are formed dynamically in dependence on the current

active scheduling zone (see Figures 2–5).

If so, the values of the conjunctive variables (i.e. the coordinated signals) change from one iteration to the next itera-

tion and can be considered in some sense as a generalisation of the coordination parameters previously considered in

the decomposition–coordination procedures of Dantzig and Wolfe (1960) (goal coordination) and Kornai and Lipták

(1965) (resource coordination). In the proposed approach, the conjunctive variables and the Hamiltonian function allow

at each time instant to perform both the goal and the resource coordination of the solutions which are found in the

combinatorial sub-problems.

In addition, the developed modification of the MSA method guarantees a monotonic change of the conjunctive vari-

able values by both the transversality conditions (28)–(30) and a situational selection of the Hamiltonian function values.

The transversality conditions interconnect the state parameter values in the main and conjunctive systems (see Equations

(1), (11), (13), (25)–(27)) at the time moment that corresponds to the end of the planning interval. The values of the

Hamiltonian function (19) are saved during the iterative search procedure (see Figure 7). The theoretical convergence of

the considered iterative procedure has been previously proved in Lyubushin (1979) and Chernousko and Lyubushin

(1982).

6. Optimality and complexity analysis

In this section, we analyse the model and the algorithm from Sections 4 and 5.

6.1 Optimality and existence analysis

Proposition 1 The optimal programme control uðtÞ is an optimal flow-shop schedule.

Existence proof. The formulated model is a linear non-stationary finite-dimensional control system of differential

equations with a convex area of feasible control. This model form satisfies the conditions of the existence theorem in

Figure 7. Hamiltonian function values in different iterations.
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Lee and Markus 1967, Theorem 4, Corollary 2), which allows us to assert the existence of an optimal solution in the

appropriate class of feasible controls. According to Lee and Markus (1967, Theorem 4, Corollary 2), along with the ini-

tial class ~K formed via the constraints qð1Þ and qð2Þ describing the domain Q xðtÞð Þ, an extended class
~~K of control

inputs can be considered. In the extended class
~~K, the relay constraints u

ðoÞ
ilj ðtÞ 2 0; 1gf are substituted by a less strict

one u
ðoÞ
ilj ðtÞ 2 0; 1½ � (u is substituted by ~~u). In this case, an extended domain

~~Q xðtÞð Þ of feasible control inputs may be

formed by means of special transformations ensuring the convexity and the compactness of Q xðtÞð Þ (Moiseev 1974).

The theorem of Lee and Markus (1967) confirms that all the conditions for the existence of an optimal control for the

extended control class
~~K are valid. If in a given class of feasible control actions

~~K, an optimal control ~~uðtÞ exists, then,

as arises from the local cut method, the control ~~uðtÞ returns at each time instant t 2 ðT0;Tf � at the set
~~Q xðtÞð Þ the

maximum to the Hamiltonian (19)–(21). The proof is complete.

Optimality proof. An analysis of (19)–(21) shows that the Hamiltonian is linear in ~~u. Since
~~Q xðtÞð Þ is a linear

capsule of Q xðtÞð Þ, the maximisation of the Hamiltonian (19)–(21) over the sets Q and
~~Q leads to the same results. An

optimal control for the class ~K belongs to the class
~~K. Taking into account ~K � ~~K, this control is also optimal for the

class ~K. Therefore, the relaxed problem can be solved instead of the initial one to obtain an optimal feasible control for

the class ~K. The proof is complete.

Corollary 2 An analysis of the studies (Boltyanskiy 1973; Moiseev 1974) shows that for a linear non-stationary

finite-dimensional system (model M) with a convex area of an feasible control Q(x) and the goal vector, the stated

necessary optimality conditions are also sufficient conditions.

6.2 Analysis of the complexity of the algorithm

It is known from the literature that the MSA method can be easily implemented when programming an algorithm. It

also allows a fast computation. One MSA iteration corresponds to one iteration of a gradient method. The MSA differs

from the gradient methods in calculating the Hamiltonian function (19) in each iteration with the usage of the previous

iteration data.

Proposition 2 The computational complexity of the MSA in one iteration is polynomial. With regard to the consid-

ered scheduling problem, the complexity of the proposed algorithm in one iteration is determined by the complexity of

the IP assignment problem (20), (2)–(4) and the LP problem (21), (14)–(15).

Proof On the basis of the works on the Hungarian method, the complexity of the IP problem can be estimated

according to the formula

Oð��m3
1Þ

r

Dt

� �

; (33)

where Oð��m1Þ ¼
11��m

3
1þ12��m

2
1þ3��m1

6
is the maximal number of the ‘+’ operations at one time point of the planning period

ðTo; Tf � for the assignment problem being solved via the Hungarian method;
��m1 is the maximal dimensionality of the assignment problem, that is the number of independent paths in the

schedule execution network diagram. For example, in Figures 2–5, the dimensionality is equal to the job number �BðiÞ,

that is �n ¼ 6;

r is the duration of the planning interval;

Dt is the step length of integration for the main and the conjugate system.

Note that the integration of the differential equations in the main and the conjugate system is not necessary due to

their linearity. The computation can be performed subject to simple recurrent formulas. The step for the recurrent

calculations may be variable, subject to significant events which influence the current («active”) field of operations (grey

coloured operations in Figures 2–5). These events may include, for example the completion of one operation, a

pre-emption of an operation or an arrival of a new operation.

Complexity of the LP problem (21), (14)–(15) can be estimated according to the complexity of the simplex method

which can be used to solve the above-mentioned LP problem. This complexity can be estimated for one iteration as

Oðð~�n��s � nÞ2 þ ~�n��s � n2Þ, where ~�n is the maximal number of jobs executed in parallel within the planning interval, �s is the

average operation number of the jobs and n is the maximal number of machines working in parallel. Similar to (33), the

complexity of the LP calculation within the MSA can be estimated as follows:

Oðð~�n��s � nÞ2 þ ~�n��s � n2Þ � ð
r

Dt
Þ (34)
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Thus, the total complexity at one MSA iteration is as follows:

N\½Oð��m1Þ þ Oðð~�n � �s � nÞ2 þ ~�n � �s � n2Þ� � ð
r

Dt
Þ; (35)

where N is the average number of addition operations.

Since the complexity of the IP/LP problem at each cut is polynomial and the number of integration steps and

iterations increases linearly, the computational complexity of the DYN algorithm is polynomial. The proof is complete.

7. Conclusions

In this study, we considered non-deterministic issues in flow-shop scheduling where scheduling is interconnected to the

control function. We included such factors like temporal unavailability of machines and fluctuations of processing times

and technological constraints. This forms a dynamic scheduling environment which is important for short-term

scheduling in smart factories Industry 4.0.

The proposed dynamic decomposition is supported both with an algorithm of local coordination with the help of

MP (i.e. at each time instant) and an algorithm of global optimisation (i.e. upon the whole planning horizon). This

results in the formulation and solution of partial combinatorial problems of lower dimensionality.

The proposed modification of the classical OPC model helps to update (e.g. due to dynamic changes in capacity

availability) nonlinear constraints on a convex domain of feasible control inputs rather than in the right-hand sides of

differential equations. The coefficients of the conjunctive system (i.e. the dynamic Lagrange coefficients) keep the infor-

mation about the operational and logical constraints and can be explicitly defined via the local cut method (Boltyanskiy

1973).

Furthermore, we proposed to substitute the relay constraints by interval ones, that is instead of the relay constraints

uiμj ∈ {0,1} less strict ones uiμj ∈ [0,1] can be considered. The control takes Boolean values as it is caused by the line-

arity of the differential equations and the convexity. The proposed substitution enables us to use fundamental scientific

results of the OPC theory in scheduling.

In light of this result, the contribution of this study is directed towards a theoretical formulation of a practically

important scheduling problem for a new smarty factory domain with the help of a sophisticated scientific methodology.

Let us analyse some limitations and future research work. Since the DYN algorithm is launched by heuristics proce-

dures, the performance of these heuristics may be compared with each other and with the optimal DYN solution. This

research has not intended so far to outperform the heuristics or MP algorithms but rather extends them. This is the focus

of our future efforts.
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