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Abstract—This paper addresses the dynamic assignment of a 
given set of surgeries to multiple identical operating rooms (ORs). 
Surgeries have random durations and planned surgeon arrival 
times. Surgeries are assigned dynamically to ORs at surgery 
completion events. The goal is to minimize the total expected cost 
incurred by surgeon waiting, OR idling, and OR overtime. We 
first formulate the problem as a multi-stage stochastic 
programming model. An efficient algorithm is then proposed by 
combining a two-stage stochastic programming approximation 
and some look-ahead strategies. A perfect information-based 
lower bound of the optimal expected cost is given to evaluate the 
optimality gap of the dynamic assignment strategy. Numerical 
results show that the dynamic scheduling and optimization with 
the proposed approach significantly improve the performance of 
static scheduling and First Come First Serve (FCFS) strategy. 

Note to Practitioners—Hospitals usually consider ORs as the 
most critical resources and are used to manage patients and 
human resources to avoid OR idle time. As surgeons are becoming 
another critical resource, providing surgeons with reliable 
surgery starting times becomes more and more important. 
Unfortunately, uncertainties of surgery durations make the 
problem of setting reliable surgery starting times challenging. We 
propose an efficient algorithm for dynamic surgery assignment in 
a multi-OR system by taking into account given surgeon arrival 
times while best balancing surgeon waiting time and OR idle and 
overtime. The proposed approach significantly outperforms 
benchmark strategies. Various sensitivity analyses provide 
valuable managerial insights to hospital decision makers. 

Index Terms—Operating room, appointment scheduling, 
dynamic scheduling, stochastic programming. 

I. INTRODUCTION 

SURGERY needs different resources, including an 
operating room (OR), a post-anesthesia care unit, an 

intensive care unit, ward, diagnostic equipment and human 
resources such as surgeons, nurses, anesthesiologists, and other 
staff. Surgery planning and scheduling need the coordination of 
all the resources [1]. The OR is one of the most critical and 
most expensive resources in most hospitals [2]. Hospital 
managers usually pursue the high utilization of ORs, which 
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may result in wasted time of other resources.  
We have performed a field study in a large university 

teaching hospital. It is one of the best hospitals in China and is 
hence overcrowded with patients from all over China. In such a 
hospital, human resources, especially surgeons, become more 
and more busy. This hospital uses an open-booking system for 
surgery planning in which each medical unit is given an amount 
of OR time each day. At the end of a day, each medical unit 
submits to an OT its list of surgeries for the next day and the OT 
is responsible for the surgery-to-OR assignment and surgery 
scheduling. Currently, top surgeons are scheduled to operate at 
the beginning of the day in order to avoid waiting. Other 
surgeons must wait for availability of the OR. As surgery 
durations are often random, these surgeons usually do not know 
their surgery starting times and have to wait for the call from the 
OT. This blind waiting negatively impacts the availability and 
service quality of these surgeons for their other duties. Therefore, 
it is very important for the OT to provide surgeons with 
appointment of arrivals in advance. This can be achieved by two 
complementary solutions: (i) surgery starting time planning by 
taking into account uncertainties of surgery durations, (ii) 
dynamic assignment scheduling to avoid extra waiting of 
surgeons. 

This field study raises two new OR planning/scheduling 
problems in an OT with multiple ORs shared among different 
medical units. The first problem, called proactive problem in 
this paper, consists of determining surgeon arrival times by 
taking into account OR capacities and random surgery durations. 
The second problem, called dynamic assignment problem or 
reactive problem, is the reassignment of surgeries to ORs during 
the course of a day as surgeries progress by taking into account 
planned surgeon arrival times. Dynamic scheduling has been 
shown to contribute a larger portion of the cost reduction in 
many systems such as surgery scheduling [3] and patient flow [4, 
5], which motivates us to focus on the reactive problem. 

This paper addresses the dynamic assignment problem of a 
multi-OR system for a given set of surgeries with planned 
surgeon arrival times. Dynamic decisions are made to determine 
the next surgery in the OR released at each surgery completion 
event. The objective is to minimize the total expected cost 
incurred by surgeon waiting, OR idling, and OR overtime. A 
multi-stage stochastic programming model is formulated. A 
solution strategy based on a two-stage stochastic integer 
programming (2SIP) approximation is proposed to deal with 
the dynamic assignment of surgeries to ORs. A mathematical 
formulation is given for the proactive problem to determine 
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surgeon arrival times. Extensive numerical experiments are 
performed to show the performance of the proposed methods.  

Our contributions are multifold. First, we propose a 
multi-stage stochastic programming formulation of the dynamic 
assignment problem by allowing decision revision at all surgery 
completion events. It is more realistic than the model of [3] 
which allows only one given decision revision point. Second, 
we propose a dynamic assignment algorithm based on a 2SIP 
approximation, look-ahead strategies and some valid 
inequalities. Third, we propose an efficient algorithm for 
surgeon arrival times determination based on local search and a 
new optimal rule for sequencing two surgeries in an OR. Note 
that this paper is an extended version of a preliminary work [6] 
which proposed a dynamic assignment model for small-size 
problems based on mixed-integer programming. 

The remainder of this paper is organized as follows. Section 
II is a brief review of relevant literature. Section III gives a 
detailed description of the dynamic assignment problem and 
proposes a multi-stage stochastic programming model and a 
lower bound of the optimal cost. Section IV proposes various 
2SIP approximations of the dynamic assignment problem. 
Section V addresses the optimization of the proactive problem. 
Numerical results are presented in Section VI. Section VII 
concludes the paper. 

II. LITERATURE REVIEW 

This section reviews existing work on appointment 
scheduling (AS). This issue has been widely studied in the 
health care service literature including surgery scheduling [7] 
and clinic patient scheduling [8, 9]. A complete review of 
operating room scheduling is given by [10], and detailed 
reviews of AS in health care systems are provided by [1112]. 
We limit ourselves to work that take into account uncertainties. 
In this section, we use “customer” and “surgery” 
interchangeably. 

Earlier work on AS concerns single-server systems. A 
newsvendor model was proposed in [13] for the two-customer 
case. An analytical solution of optimal appointment times was 
derived, and convex ordering was proved to give an optimal 
customer sequence under the condition of equal unit waiting 
cost. Based on [13], a stochastic linear program was proposed in 
[14] for the case of multiple customers. The optimal customer 
allowances (i.e., scheduled inter-arrival times) were 
characterized by a dome shape with allowances first increasing 
then decreasing. 

Several extensions were proposed by considering customer 
sequencing, discrete AS and robust AS, etc. Several heuristics 
were proposed in [15] for sequencing customers, including 
smallest variance first (SVF), smallest mean service duration 
first, smallest coefficient of variation first and an interchange 
sequence heuristic. Numerical experiments showed that SVF 
performed the best among these heuristics. A 2SIP formulation 
was proposed in [16] for joint optimization of customer 
sequencing and arrival times. It was proved that the sample 
average approximation problem belongs to NP-complete when 
the waiting costs differ among customers. Problem instances 

with up to 12 customers were solved by using L-shaped 
algorithm similar to [14], and this method was shown to be 
significantly better than SVF rule and a perturbed sort by 
variance rule. Under similar conditions as in [13], convex 
ordering was also proved in [17] to give optimal ordering 
between two blocks of customers of i.i.d. service durations 
within each block. 

Dynamic AS with random service duration and random 
number of customers was considered in [18, 19]. In [18], 
customers were scheduled dynamically, one at a time under the 
condition of FCFS, as they requested appointments. The value 
of stochastic solution is significant in the dynamic environment. 
The assumption of FCFS was further relaxed in [19] to jointly 
optimize the sequence and arrival scheduling in dynamic 
environment. A 2SIP model was proposed and properties of 
optimal customer sequence were derived for the two-customer 
case. 

A so-called discrete AS problem with discrete service 
duration distribution was addressed in [20] for a single server 
with a given sequence of customers. It was proved that there 
exists an optimal integer arrival schedule that can be found in 
polynomial time on mild condition of cost functions. 
Closed-form formulas were proposed in [21] for the 
subdifferential of the objective function. A bi-criteria 
appointment sequencing problem was considered in [22] and a 
set of Pareto solutions were derived using genetic algorithm. 
Robust optimization of AS was considered in [17, 23]. The 
service durations were random with limited information of 
mean and covariance estimates. A convex conic optimization 
model was formulated with the objective to minimize the 
expected cost under the worst distribution. Specifically, [23] 
considered a robust arrival scheduling problem and [17] 
considered a robust appointment sequencing problem. 

We now present the literature of AS of multi-OR systems. An 
assignment scheduling problem in a multi-OR setting was 
considered in [24] by considering OR opening costs and 
overtime costs. Decisions include the number of ORs to open 
each day and assignments of surgeries to ORs. A 2SIP model 
was proposed under the full knowledge of surgery duration 
distributions and a robust counterpart under limited knowledge 
(i.e., upper bounds and lower bounds on surgery durations). 

The 2SIP model of [24] was extended in [3] by allowing a 
one-time re-assignment scheduling in dynamic multi-OR setting. 
Specifically, surgeries not yet started at the re-assignment point 
could be revised. The joint optimization of the surgery 
assignment and re-assignment was very complicated due to the 
extremely large state space. A special case with the 
re-assignment decision made under perfect information was 
solved by using L-shaped algorithm and a progressive 
hedging-based heuristic. The re-assignment was shown to 
significantly reduce the cost especially when the overtime cost 
is high but the benefit depends on the surgery sequence. The 
LEPT (the longest mean service duration first) sequence was 
shown to perform the best among several heuristics. 

An OR scheduling and surgery AS problem was considered 
in [7] in a multi-OR setting. Rescheduling of surgery 
assignment was not taken into account. Surgeries could be 



T-ASE-2013-216 
 

3

performed in parallel in a multi-OR operating theater by a 
primary surgeon with the assistance of other staff. The decisions 
included the number of ORs to open each day, the assignment of 
surgeries to ORs, the sequence of surgeries within each OR, and 
the arrival time for each surgeon. A 2SIP model was proposed 
and solved by an L-shaped-based branch-and-cut algorithm. 
Numerical experiments showed that the benefit of OR pooling is 
significant.  

Compared with the aforementioned literature, this paper is the 
first to consider the multi-stage dynamic assignment problem in 
a multi-OR setting. It will be shown through numerical 
experiments that the proposed dynamic assignment scheduling 
brings a significant cost reduction. 

III. PROBLEM DESCRIPTION AND MATHEMATICAL MODELS 

In this section, we describe and formulate the dynamic 
assignment problem as a multi-stage stochastic program. A 
mixed integer programming model is then proposed to provide a 
lower bound of the optimal cost for dynamic assignment 
problem. 

A. Problem setting 

This paper considers the problem of the dynamic assignment 
scheduling for a multi-OR operating theater and for a given day. 
The operating theater is composed of M identical and 
interchangeable ORs. A given set of N surgeries are planned for 
the day under consideration. Surgery durations are independent 
random variables with known distributions, and are independent 
of ORs and the dynamic scheduling. 

Each surgery is associated with a surgeon and each surgeon is 
assumed to have only one surgery in a day. As a result, we will 
use interchangeably the terms of surgery and surgeon. Each 
surgeon has been given a planned surgery starting time that was 
called promised surgery starting time in our preliminary work [6] 
and called surgeon arrival time in this paper. Each surgeon is 
assumed to arrive on time. Patients are assumed to be available 
for surgery.  

The operation of the operating theater during the day is as 
follows. At the beginning of the day, say at time t = 0, the first M 
surgeons arrive and immediately start their surgery separately in 
the different ORs. When one surgery completes and the OR is 
released, the dynamic assignment strategy selects and assigns an 
unassigned surgery i to be the next surgery in the released OR. 
The surgery becomes the state of waiting for the surgeon or in 
process if the surgeon arrives. The OR is not available for other 
surgeries till the completion of i. As a result, there are N−M 
decision epochs corresponding to the first N−M surgery 
completion events among N such events. 

The problem is to determine a dynamic assignment strategy 
with the objective to minimize a weighted linear combination of 
OR idle time, OR overtime and surgeon waiting time. The OR 
idle time is incurred if an OR is assigned to a surgery but the 
surgeon is not yet arrived. The OR overtime is incurred if an OR 
is released by its last surgery after a regular opening time called 
OR session. The surgeon waiting time is incurred if no OR is 
available at the arrival of a surgeon.  

Note that we restrict ourselves to event-based strategies, i.e., 
the assignment decisions are made at the occurrence of surgery 
completion events. Once an unassigned surgery is assigned to 
the released OR, the decision will not change. This restriction is 
quite reasonable in practices. 

Although this paper focuses on the dynamic assignment 
scheduling, we will provide an efficient algorithm for 
determination of surgeon arrival times in Section V. 

We now justify major assumptions of our model through a 
series of remarks. 

Remark 1: Each surgeon is assumed to have only one surgery 
a day. Results of this paper directly apply if multiple surgeries 
per surgeon are allowed but all surgeries of each surgeon are 
performed in the same OR without interruption. In this case, 
surgeries of each surgeon can simply be considered as a single 
aggregated surgery. An interesting future research is the 
dynamic assignment scheduling with fixed order constraint for 
all surgeries of each surgeon. In this case, it is necessary to take 
into account this precedence constraint, waiting of the same 
surgeon for different surgeries. 

Remark 2: ORs are assumed to be identical. This assumption 
is often made in OR planning and scheduling literature [7, 24]. 
To increase their usage, ORs tend to be housed in an integrated 
OT to share material/human resources and to serve different 
medical units. ORs with special equipment are often dedicated 
to some medical units such as cardio-surgery and are managed 
separately. However, our approach can be extended to the 
general case where each surgery can only be performed in a 
subset of ORs. 

Remark 3: Patients are assumed to be available for surgery. 
No-shows due to surgery cancellations or surgeon absenteeism 
are not considered. Other uncertainties such as emergency 
demands and delayed patient preparations also disturb the 
operation of the OR. Literature on OR planning and scheduling 
with taking into account these uncertainties is scarce. The 
dynamic scheduling approach of this paper can be extended to 
take into account these uncertainties by allowing rescheduling at 
extra events such as emergency arrival and the patient’s 
no-show being notified. The proactive problem of planning 
surgeon arrival by taking into these uncertainties in a multi-OR 
setting is an interesting future research issue. 

Remark 4: We consider surgeon waiting instead of the usual 
patient waiting costs in most healthcare scheduling literature. 
This is appropriate as most surgery patients are inpatients and 
the focus of this paper is to release surgeons from blind waiting. 
For this reason, a surgery cannot start before the planned arrival 
time of the surgeon. However, surgeon waiting costs and patient 
waiting costs lead to the equivalent formulation. The primary 
difference is in their estimation. 

B. Notation 

To summarize, the dynamic assignment problem is 
characterized by the following notations. 

N number of surgeries or surgeons; 

M number of identical ORs with M < N; 
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J set of surgeries or surgeons indexed by i, j; 

E set of ORs indexed by r; 

Ai arrival time of surgeon i with Ai = 0, i  {1, …, M} 
and Ai-1 ≤ Ai, i  {M+1, …, N}; 

T OR session, i.e., the regular capacity of each OR; 

 unit OR overtime cost; 

i unit waiting time cost of surgeon i; 

pi random duration of surgery i; 

,̅  ; mean and standard deviation of piߪ

Fi(·) probability distribution function of pi. 

The unit OR idle time cost is assumed, without loss of 
generality, to be 1. Otherwise, the overtime cost  and the 
surgeon waiting cost i can always to be scaled to make this 
assumption true. 

Let  be the set of all possible realizations also called 
scenarios of the surgery duration vector. Let ሺωሻ denote the 
duration of surgery i under scenario ω. Each scenario can be 
represented by a random vector ሺωሻ ൌ ሼଵሺωሻ,… ,  .ேሺωሻሽ

C. A multi-stage stochastic programming modeling 

Additional notations are needed to rigorously characterize the 
dynamic assignment problem. Each event is characterized as 
follows: 

݁ሺ݊ሻ nth completed surgery; 

ݐ   completion time of ݁ሺ݊ሻ withݐ ൌ 0  ଵݐ  ⋯   .ேݐ

The decision made at event n is denoted as: 

݅ሺ݊ሻ surgery to be performed next in the OR released at 
event n. 

The states of the system at event n after decision ݅ሺ݊ሻ are 
characterized by the following state variables: 

 ሺ݊ሻ  set of completed or on-going surgeries including ݅ሺ݊ሻܬ
at event n with ܬሺ0ሻ = {1, 2, …, M }; 

ሺ̅0ሻܬ ሺ̅݊ሻ  set of on-going surgeries at event n withܬ ൌ  ;ሺ0ሻܬ

ܽሺ݊ሻ   elapsed time or age of surgery i at event n; 

  ݏ starting time of surgery i; 

 .  completion time of surgery iܥ

The decision made at each event n is according to some 
strategy n based on state information available at this point: 
ሺ݊ܬ െ 1ሻ, ܬሺ̅݊ െ 1ሻ,	ࢇሺ݊ሻ, ݁ሺ݊ሻ, ݐ and fulfilling the following 
conditions: 

݅ሺ݊ሻ ൌ ሺ݊ܬሺߨ െ 1ሻ, ሺ̅݊ܬ െ 1ሻ, ,ሺ݊ሻࢇ ݁ሺ݊ሻ,   ሻݐ (1) 

݅ሺ݊ሻ ∈ ሺ݊ܬ\ܬ െ 1ሻ  (2) 

The scheduling problem at each decision epoch k for k = 1, …, 
N-M can now be formulated as follows. 

ܸ ൌ ݉݅݊
గೖ,…,గಿషಾ

݃  ఠሺ݃ఛሻܧ
ே

ఛୀାଵ
 (3) 

subject to constraints (1) and (2) for n = k, …, N-M  and 

ሺሻݏ ൌ max൫ݐ, ሺሻ൯ܣ , ∀݊   (4) ܪ

݃ ൌ ൫ݐ െ ሺሻ൯ܣ
ା
 ሺሻܣሺሻ൫ߚ െ ൯ݐ

ା
, ∀݊   (5)  ܪ

ሺ݊ሻܬ ൌ ሼ݅ሺ݊ሻሽ ∪ ሺ݊ܬ െ 1ሻ, ∀݊   ܪ (6) 

ሺ̅݊ሻܬ ൌ ሼ݅ሺ݊ሻሽ ∪ ሺ̅݊ܬ െ 1ሻ\ሼ݁ሺ݊ሻሽ, ∀݊  (7) 

ܥ ൌ ݏ  , ∀݅ ∈  (8)  ܬ

݁ሺ݊  1ሻ ൌ argmin∈ሺ̅ሻ ܥ , ∀݊  (9) 

ାଵݐ ൌ min∈ሺ̅ሻ ܥ , ∀݊  (10) 

݃ ൌ ݐሺߙ െ ܶሻା, ∀݊   (11)  ܪ

where ሺݔሻା ൌ maxሺ0,  .ሻ, and H = N–Mݔ
The objective function Vk includes two parts: the stage cost 

for assigning the surgery ݅ሺ݇ሻ at the current event k and the total 
expected cost related to remaining surgeries and OR overtime. It 
depends on the state observed at event k. We also extend the 
definition of Vk to k = 0 and k > H with the convention {i(k)} =  
and g0 = 0. As a result, V0 is the total expected cost of the 
dynamic assignment problem of the day. 

Constraints (4) determines the starting time of each newly 
assigned surgery at each event. Constraint (5) is the stage cost of 
assigning surgery i(n) at event n, including both OR idle cost 
and surgeon waiting cost for the first N–M events. Constraint (6) 
and (7) update ܬሺ݊ሻ and ܬሺ̅݊ሻ. Constraint (8) determines the 
completion time of each on-going surgery. Constraints (9) and 
(10) determine the next event and the event time. Constraint (11) 
defines the stage cost at event n>N–M, i.e., the overtime cost of 
each OR for the last M events. 

D. A lower bound cost 

This subsection provides a lower bound on the optimal cost of 
the dynamic assignment problem V0. The lower bound cost is 
obtained by applying the wait-and-see or perfect information 
solution [25]. Assuming that all surgeries durations are known 
immediately at time 0, surgery assignment and sequencing are 
determined independently for each scenario  to minimize the 
total cost ߠሺωሻ. ܧனሾߠሺωሻሿ is the lower bound cost proposed in 
this section. Similar lower bound of Vk can also be defined. 

Each scenario  is associated with the following variables: 

 ሺ߱ሻ binary variable equal to 1 if surgery i is assigned toݔ
OR r; 

 ሺ߱ሻ binary variable equal to 1 if surgery ݅ precedes surgeryݕ
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݆ in the same OR (݆ ് ݅); 

  ሺ߱ሻܥ completion time of surgery i in OR r; 

 ሺ߱ሻܫ total idle time of OR ݎ; 

ܱሺ߱ሻ  overtime of OR ݎ; 

ܹሺ߱ሻ  waiting time of surgeon ݅; 

ܴሺ߱ሻ completion time of surgery started at time 0 in OR r 
also called release time of OR r. Without loss of 
generality, ܴሺ߱ሻ ൌ  .ሺ߱ሻ

The lower bound problem is formulated as 

LB ൌ ሺωሻሿߠனሾܧ  ܸ (12) 

where 

ሺωሻൌߠ min ሺ߱ሻܫ
∈ா

 ߙ ܱሺ߱ሻ
∈ா

 ߚ ܹሺ߱ሻ
∈መ

 (13) 

subject to: 

∑ ∈ாݔ ሺ߱ሻ ൌ 1  (14) 

ሺ߱ሻݕ  ሺ߱ሻݕ  ሺ߱ሻݔ  ሺ߱ሻݔ െ 1 (15) 

ሺ߱ሻܥ   ሺ߱ሻ (16)ݔܯ

ሺ߱ሻܥ  ൫ܴሺωሻ   ሺ߱ሻ  (17)ݔሺ߱ሻ൯

ሺ߱ሻܥ  ሺ߱ሻܥ  ሺ߱ሻ െ ܯ ቀ1 െ ሺ߱ሻቁݕ െ

ܯ	 ቀ2 െ ሺ߱ሻݔ െ   ሺ߱ሻቁݔ
(18) 

ሺ߱ሻܥ  ሺ߱ሻܫ  ܴሺωሻ  ∑ ∈መ ሺ߱ሻݔሺ߱ሻ  (19) 

ܱሺ߱ሻ  ሺ߱ሻܥ െ ܶ (20) 

ܱሺ߱ሻ  ܴሺωሻ െ ܶ (21) 

∑ ሺ߱ሻ∈ாܥ ൌ ܣ  ܹሺ߱ሻ   ሺ߱ሻ  (22)

,ሺ߱ሻܫ ܱሺ߱ሻ, ܹሺ߱ሻ  0, ,ሺ߱ሻݔ ሺ߱ሻݕ ∈ ሼ0,1ሽ	 (23) 

∀݅ ∈ ,መܬ ݎ ∈ ,ܧ ߱ ∈ Ω where M is a large number and ܬመ ൌ
 .ሺ0ሻܬ\ܬ

The objective function (12) defines the lower bound of V0 as 
the assignment and sequencing of any feasible dynamic 
assignment strategy are also a feasible solution fulfilling 
(14)-(23) for any scenario. Constraint (14) ensures that each 
surgery is assigned to exactly one OR. Constraint (15) ensures a 
precedence relation between two surgeries assigned to the same 
OR. Constraints (16) and (17) link surgery completion times to 
OR assignment. Constraint (18) links completion times to 
precedence relation. Constraint (19) determines OR idle times. 
Constraint (20) and (21) define OR overtimes. Constraint (22) 

defines surgeon waiting times. Constraint (23) defines the 
domains of variables. 

Note that any realization of a dynamic assignment strategy 
fulfilling (1)-(11) is a solution of the lower bound problem and 
hence fulfills (14)-(23). Constraint (14) obviously holds as any 
surgery is either assigned at time 0 to an OR or assigned at an 
event to the OR released. As an unassigned surgery is assigned 
to an OR only after the completion of the on-going surgery, (15) 
always holds. Constraints (16)-(22) are used to define surgery 
completion time, surgeon waiting time, OR idle time and OR 
overtime and hence trivially hold for any realization of a 
dynamic assignment strategy. 

IV. TWO STAGE STOCHASTIC INTEGER PROGRAMMING 

APPROXIMATION 

As the dynamic assignment problem is very difficult due to 
extremely large state space, we propose in this section various 
2SIP approximations to the multi-stage stochastic 
programming problem Vk at event k = 1, …, N–M.  

Roughly speaking, the 2-SIP approximation consists of 
selecting a surgery l to minimize the first stage cost related to l 
and the remaining cost. Two methods are proposed to estimate 
the remaining cost. The first one in Section IV.B simply 
approximates the remaining cost by the stage cost at next event. 
The second one in Section IV.C uses some simple scheduling 
rules to estimate the remaining cost. We choose these methods 
for their short computational time and their good numerical 
performances. 

A. A general approximation scheme 

The 2-SIP approximation relies on the following form of the 
dynamic scheduling cost function: 

ܸ ൌ min
∈\ሺିଵሻ

ො݃   ߆

ො݃ is the first stage cost if surgery l is selected at event k, i.e., 
݅ሺ݇ሻ ൌ ݈. It is related to the waiting time of surgeon l and idle 
time of the OR released at event k for the arrival of surgeon l. Its 
formal definition is as follows: 

ො݃ ൌ ሺܣ െ ሻାݐ  ݐሺߚ െ 		ሻାܣ (24) 

  is the expected value of the recourse function also called߆
the second stage cost related to all other unassigned surgeries 
and OR overtime, i.e., related to ∑ ఠሺ݃ఛሻܧ

ே
ఛୀାଵ  of (3). The 

exact evaluation of ∑ ఠሺ݃ఛሻܧ
ே
ఛୀାଵ  is again a complex 

multi-stage stochastic programming problem.  
The evaluation of ߆strongly depends the termination of the 

on-going surgeries or equivalently OR release times ܴሺ߱ሻ 
with assignment of surgery l at event k defined as follows: 

ܴሺ߱ሻ ൌ ,ೝೖܣ൫ݔܽ݉ ൯ݐ െ ܽೝೖሺ݇ሻ  ೝೖሺ߱ሻ (25) 

where irlk is the on-going surgery in OR r at event k. The 
probability distribution of each on-going surgery i becomes the 
following conditional probability depending on its age ܽሺ݇ሻ: 
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ܲ൫  |ݔ  ܽሺ݇ሻ൯ ൌ
ሻݔሺܨ െ ൫ܽሺ݇ሻ൯ܨ

1 െ ൫ܽሺ݇ሻ൯ܨ
	 (26) 

The first stage decision ݅ሺ݇ሻ, i.e., the selection of next surgery 
for the OR ݎሺ݇ሻ released at event k, is made by exhaustive 
search by algorithm 1. The best candidate surgery with minimal 
total two-stage cost is selected as the next surgery in the released 
OR. The basic steps to solve the two-stage approximation 
problem at a given event k are described as the following 
algorithm. 

 

Algorithm 1: Surgery assignment at event k
Step 1. Initialization: ݖ∗  ; 
Step 2. Update OR release times ܴ, ݎ∀ ്  ;ሺ݇ሻ by (25)ݎ
Step 3. For each remaining surgery l 
 Calculate ො݃ according to (24); 
 Update release times ܴሺሻ

  according to (25); 

 Evaluate the second stage cost ߆; 
 If ݖ∗ > ො݃   ො݃ ∗ݖ ,݈ ,݅ሺ݇ሻ ߆   ;߆
Step 4. Assign surgery ݅ሺ݇ሻ as the next surgery in OR ݎሺ݇ሻ. 

 
The main difficulty of this two-stage approximation approach 

is the evaluation of the second stage cost. A straightforward 
approach consists in evaluating as in the lower bound problem 
by assuming that all random outcomes, i.e., surgery durations of 
all on-going and unassigned surgeries, are known immediately 
for all scenarios. More specifically, 

߆ ൎ minܧఠ ቊ ܫ
∈ா

ሺ߱ሻ  ߙ ܱ
∈ா

ሺ߱ሻ

 ߚ ܹሺ߱ሻ
∈ೖ

ൠ (27) 

subject to constraints (14) – (23) with ܬመ replaced by the set 
ܬ ൌ ሺ݇ܬ\ܬ െ 1ሻ\ሼ݈ሽ and ܴሺωሻ by ܴሺωሻ. 

The expected recourse function (27) is still too 
time-consuming to solve directly. In order to estimate efficiently 
the second stage cost ߆, we propose a one-period look ahead 
heuristic and a rule based multi-period look ahead heuristic in 
subsection B and subsection C, respectively. 

B. One-period look ahead (OPLA) heuristic 

OPLA heuristic approximates ߆ by the average stage cost 
observed at the next event k+1 and hence selects the surgery 
݅ሺ݇ሻ that minimizes the total cost observed at stage k and stage 
k+1.  

More specifically, with OPLA, 

߆ ൌ min
∈\ሺିଵሻ\ሼሽ

 ߠ

where ߠ is the expected cost of stage k+1 conditioned on the 
state observed at event k and surgery l selected at event k and 
surgery j selected at event k+1. It is defined as follows: 

ߠ ൌ ఠܧ ቀܣ െ ାଵݐ
 ሺ߱ሻቁ

ା
 ାଵݐ൫ߚ

 ሺ߱ሻ െ ൯ܣ
ା
൨  (28) 

where ݐାଵ
 ሺ߱ሻ is the epoch of event k+1 if l is selected at event 

k and hence ݐାଵ
 ሺ߱ሻ ൌ min∈ா ܴሺ߱ሻ. The above expectation 

is taken under the condition of the state observed at event k. 
Proposition 1. ߠ    withߠ

ߠ ൌ ൫ܣ െ ାଵݐఠൣܧ
 ൧൯

ା
 ାଵݐఠൣܧ൫ߚ

 ൧ െ ൯ܣ
ା

 (29) 

Proof. Since the function ݂ሺݔሻ ൌ ሺܽ െ ሻାݔ  ܾሺݔ െ ܽሻା is 

convex, by Jensen’s inequality [25], ܧ ቂ݂ ቀݐାଵ
 ሺ߱ሻቁቃ 

݂൫ݐൣܧାଵ
 ሺ߱ሻ൧൯, which completes the proof. Q.E.D. 

Algorithm 2 presents the main steps to estimate the remaining 
cost by OPLA heuristic.  

 
Algorithm 2: Approximation of ߆with OPLA 
Step 1. (Initialization): ߆  ; 
Step 2. (next event time): determine the next event time 

ାଵݐ
 ሺ߱ሻ ൌ min∈ா ܴሺ߱ሻ  for each scenario ߱  and its 

mean ܧఠൣݐାଵ
 ൧;  

Step 3. Determine ߠ using (29); 
Step 4. For each remaining surgery ݆ ∈ ሺ݇ܬ\ܬ െ 1ሻ\ሼ݈ሽ 
 If ߠ 	 ො݃   ;go to Step 4 for the next j ,∗ݖ

 Calculate ߠ using (28), ߆	 min(߆	, ߠ); 

 If ො݃߆ ൏ ݖ ,∗ݖ∗  ො݃   .߆
 

Algorithm 2 is used jointly with Algorithm 1 in order to 
select the surgery l at event k that minimizes the total cost 
ො݃    evaluated by OPLA with Algorithm 2. The߆  with߆
lower bound from Proposition 1 is used to avoid the 
time-consuming computation of ߠ  when ߠ 	 ො݃   ∗ݖ
where ݖ∗ is the current minimal total cost. 

C. Rule-based multi-period look ahead (MPLA) heuristic 

The second method approximates the second stage cost ߆ 
with the total cost incurred by all remaining surgeries and OR 
overtime under some given dynamic assignment strategies. For 
the sake of computational complexity, it is based on the 
following simple scheduling rules. 

Rule 1: Remaining surgeries are assigned in the 
scenario-independent order of minimal expected first stage cost, 
i.e., the surgery selected at event n > k minimizes ܧఠൣ ො݃ሺ߱ሻ൧ 
among all surgeries in ܬ\ܬሺ݊ െ 1ሻ with 

ො݃ሺ߱ሻ ൌ ቀܣ െ ሺ߱ሻቁݐ
ା
 ሺ߱ሻݐ൫ߚ െ ൯ܣ

ା
 (30) 

Rule 2: Remaining surgeries are selected in non-decreasing 
order of their surgeon arrival times Ai at any event n > k. 

A better but more time-consuming alternative of Rule 1 is the 
scenario-dependent ordering determined by OPLA heuristic at 
each event epoch ݐሺ߱ሻ. 
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Algorithm 3 presents the main steps to estimate the remaining 
cost. At each time, we obtain two remaining costs by using rule 
1 and rule 2, respectively. We will choose the smallest one as 
final remaining cost. 

 
Algorithm 3: Approximation of ߆ by MPLA heuristic 
Step 1. (Initialization): Set the event counter n=k+1; 
Step 2. Determine next event time ݐሺ߱ሻ ൌ min∈ா ܴሺ߱ሻ; 
Step 3. Determine ො݃ሺ߱ሻ, ∀݆ ∈ ሺ݊ܬ\ܬ	 െ 1ሻ by (30); 
Step 4. Determine the surgery ݅ሺ݊ሻ according to Rule 1 and the 

stage cost ݃ ൌ ఠൣܧ ො݃ሺሻ,ሺ߱ሻ൧; 
Step 5. Assign ݅ሺ݊ሻ to the OR ݎሺ݊, ߱ሻ released at event n and 

update OR release times ܴሺ߱ሻ; 
Step 6. n = n+1, repeat steps 2-5 till n = N−M; 
Step 7 (Second stage cost): 

߆
ோଵ ൌ  ݃

ேିெ

ୀାଵ

 ఠܧ ߙሺܴሺ߱ሻ െ ܶሻା

∈ா

൩ 

Step 8. Repeat steps 1-7 with Rule 1 replaced by Rule 2 and let 
߆
ோଶ be the second stage cost; 

Step 9. ߆ ൌ minሺ߆
ோଵ, ߆

ோଶሻ. 
 
As for Algorithm 2, Proposition 1 can also be used to 

accelerate the determination of the next surgery i(n) in Steps 3 
and 4. We also stop the simulation of Rule 1 or Rule 2 when the 
following holds: 

ො݃   ݃



ୀାଵ

  (31) ∗ݖ

where z* is the current minimum total cost. The use of the lower 
bound of Proposition 1 and condition (31) cuts by 3 the 
computation time needed for dynamic assignment scheduling 
with Algorithms 2 and 3. 

V. THE PROACTIVE PROBLEM 

This section provides a mathematical formulation and an 
algorithm for the proactive problem, i.e., the optimization of 
surgeon arrival times. The goal is to determine surgeon arrival 
times such that the dynamic assignment strategies of the 
previous sections perform better. 

We propose a two-stage stochastic programming 
approximation of this proactive problem. The first stage 
determines the surgeon arrival times Ai, surgery-to-OR 
assignment ݔ  and surgery sequencing ݕ . The second stage 
eavluates the cost when all random durations are realized. 

The proactive problem denoted P(S) is formulated as follows: 

minܧఠ ቊ ሺ߱ሻܫ
∈ா

 ߙ ܱሺ߱ሻ
∈ா

 ߚ ܹሺ߱ሻ
∈

ൠ (32) 

subject to constraints (14) – (23) with ܬመ replaced by ݔ ,ܬሺ߱ሻ  
by ݔ, ݕሺ߱ሻ by ݕ, and ܴ ൌ 0 and 

0  ܣ  ܶ, ∀݅ ∈  (33) ܬ

When the assignment and sequencing decisions are given, the 
proactive problem P(S) becomes a linear program (LP) model, 
which can be efficiently solved. However, the problem of joint 
optimization of the arrival times as well as the assignment and 
sequencing decisions is a stochastic integer program (SIP), 
which is quite difficult to solve. The L-shaped algorithm was 
used in [7, 16] to solve SIP. However, the algorithm is quite time 
consuming. 

In order to efficiently solve the proactive model, we proposed 
a heuristic approach. We first propose sequencing heuristic for 
the single OR problem denoted SOR. We then propose a local 
search heuristic for the optimization of the multi-OR problem. 
Local search improves the assignment decision and each 
complete surgery assignment is evaluated by the heuristic of the 
SOR problem. 

The SOR problem is solved by the following heuristic. 
SOR heuristic: Sequencing surgeries in the decreasing order 

of the following index: 

߮ ൌ ߚ ሺߚ  1  ⁄ߪሻߙ߳  

where ߳ ൌ ܲ൫∑ ∈  ܶ൯ is the overtime probability without 
OR idle time.  

The SOR heuristic is motivated by the following results for 
optimal sequencing of two surgeries in a single OR. 

Proposition 2. Consider an SOR problem with two surgeries 
of uniformly distributed durations  ൌ Uሺ݈, ሻݑ  such that 
ݑ  T. If ݑଵ  ଶݑ  ܶ or ݈ଵ  ݈ଶ  ܶ, the sequence {1, 2} is 
optimal if and only if 1 > 2.

Proof. Consider first the sequence {1, 2} and hence s1 = 0. It 
can be easily shown that s2  [l1, u1].   

Consider first the case ݑଵ  ଶݑ  ܶ. The total cost z12(s2) of 
the sequence {1, 2} is 

ଶሻݏଵଶሺݖ ൌ ଶݏሾሺܧ െ ଵሻାሿ  ଵሾሺܧଶߚ െ  ଶሻାሿݏ

By taking derivative of z12(s2) and letting it equal to 0,  

∗ଶݏ ൌ ݈ଵ  ଶ∆ଵߚ ሺߚଶ  1ሻ⁄  

ଶݏଵଶሺݖ
∗ሻ ൌ ଶ∆ଵߚ 2ሺߚଶ  1ሻ⁄  

where ∆ൌ ݑ െ ݈. Similarly, the optimal cost of sequence {2, 1} 
under the solution ݏଵ∗  is ݖଵଶሺݏଵ∗ሻ ൌ ଵ∆ଶߚ 2ሺߚଵ  1ሻ⁄ . Since 
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߮ ൌ ߚ3√2 ሺߚ  1ሻ∆⁄ , the sequence {1, 2} is optimal if and 
only if 1 > 2.  

Consider now the case ݈ଵ  ݈ଶ  ܶ. Let ̅=E[pi]. 

ଶሻݏଵଶሺݖ ൌ ଶݏሾሺܧ െ ଵሻାሿ  ଵሾሺܧଶߚ െ ଶሻାሿݏ 
ଵ̅ሺߙ  ଶ̅  ଶݏሾሺܧ െ ଵሻାሿ െ ܶሻ  

leading to:  

∗ଶݏ ൌ ݈ଵ  ଶ∆ଵߚ ሺߚଶ  1  ⁄ሻߙ  

ଶ∗ሻݏଵଶሺݖ ൌ ଶ∆ଵሺ1ߚ  ሻߙ 2ሺߚଶ  1  ⁄ሻߙ  ଵ̅ሺߙ  ଶ̅ െ ܶሻ 

Since ߮ ൌ ߚ3√2 ሺߚ  1  ⁄ሻ∆ߙ , the sequence {1, 2} is 
optimal if and only if 1 > 2. Q.E.D. 

SOR heuristic becomes the SVF rule of [15] when all 
surgeons have equal waiting cost, i.e., ߚଵ ൌ ⋯ ൌ ேߚ . It 
becomes highest waiting penalty first (HPF) rule (which are 
widely used in the hospitals we observed) when all surgeries 
have equal variances, i.e., ߪଵ ൌ ⋯ ൌ  ே, SOR heuristic is closeߪ
to SVF when the waiting time costs of surgeons are much higher 
than that of OR idle time and OR overtime such that ߚ ≫ 1 
,ߙ ∀݅. 

For multi-OR problems, we propose a simple two-phase 
heuristic. The first phase determines an initial surgery 
assignment in order to best balance the expected workloads 
∑ ∈̅ݔ /ܶ of different ORs, i.e., 

min	max
∈ா

 ݔ
∈

 ̅

subject to ∑ ∈ாݔ ൌ 1, ∀݅ ∈ ݔ and ܬ ∈ ሼ0,1ሽ. It can be easily 
solved by any standard MIP solver. 

The second phase improves the initial assignment by local 
search. The local search is performed by OR pairs. For each OR 
pair, pair-wise swaps are considered for surgeries of the two 
ORs. The best improving swap is accepted, and the process 
continues until no improving swap exists for the OR pair under 
consideration. Local search then tries to improve the assignment 
of other OR pairs. In the whole process, when the set of 
surgeries assigned to an OR changes, the SOR heuristic is 
applied to evaluate its new cost. This local search algorithm is 
termed ASB (All OR-pairs, Swap-based Best improving). 

The main steps of ASB are as follows where SOR(P) denotes 
the cost of the single OR problem with the set P of surgeries. It 
is solved by the SOR heuristic to determine the sequence and an 
LP solver to determine surgeon arrival times. 

 
Algorithm 4 (ASB heuristic) 
Step 1. Select an OR pair with surgery sets (P, Q).  
 Compute SOR(P), SOR(Q); 
 Set * ← SOR(P) + SOR(Q); 
Step 2 (Identify the best swap). For all iP and jQ: 
 Set ܲ ←ܲ⋃ሼ݆ሽ\ሼ݅ሽ and ܳ  ← ܳ⋃ሼ݅ሽ\ሼ݆ሽ; 
 Solve SOR( ܲ) and SOR( ܳ) problems; 

 If * > SOR( ܲ) + SOR( ܳ), * ← SOR( ܲ) + SOR( ܳ), 
i*←i, j*←j; 

Step 3. If * < SOR(P)+SOR(Q), swap (i*, j*), go to Step 2;  
Step 4. Otherwise, go to Step 1 until no OR-pair can be 

improved. 
 
The SOR and ASB heuristics are tested numerically. The 

SOR heuristic is evaluated on randomly generated single OR 
problem instances with 2 to 6 surgeries for weakly or heavily 
loaded OR with 75% or 125% of the regular OR capacity. Over 
10,000 tested instances, SOR performs the best with 69% best 
solutions compared to 60% for SVF and 39% for HPF. 

The ABS heuristic is compared with an "optimal" assignment 
obtained by partial enumeration with no more than 5 or 6 
surgeries per OR and with optimal surgery sequencing and 
surgeon arrival times. 80 instances of 2-OR problem and 40 
instances of 3-OR problem are generated as in Section VI. The 
average optimality gap of ASB is less than 1% and the worst 
8.6%. 

VI. NUMERICAL RESULTS 

This section presents numerical results to evaluate the 
performance of the proposed methods. Our purpose is to 
investigate the value of dynamic scheduling, the value of 
dynamic scheduling optimization, the optimality gap of the 
proposed scheduling strategies, and the value of proactive 
decision, i.e., surgeon arrival times. 

A. Experimental setting 

Three dynamic assignment strategies are considered and 
compared.  
 Strategy FCFS which assigns surgeries with the least 

surgeon arrival time when an OR is released; 

 Strategy I which is a two-stage approximation approach with 
second stage cost estimated by OPLA heuristic; 

 Strategy II, another two-stage approximation approach with 
second stage cost estimated by MPLA heuristic. 

The dynamic assignment strategies are also compared with a 
so-called static strategy with surgery assignment and 
sequencing being those of the proactive solution and the 
solution of the lower bound problem to check the optimality 
gap. 

Except where otherwise noted, surgeon arrival times are 
determined with ASB and SOR heuristics. However, we have 
also considered the impact of proactive decision optimization. 
Solutions obtained with ASB and SOR heuristics are compared 
with some reasonable rules for surgeon arrival time 
determination.  

All algorithms are coded in Microsoft Visual Studio .NET 
2010 and CPLEX 12.4. Experiments are conducted on Intel 
Core i5 PC running at 3.10 GHz with 4 GB memory. For solving 
the proactive problem, the initialization of the ASB heuristic is 
solved to within 1% optimality using Cplex MIP solver, and all 
linear programs of single OR problems are solved to optimality. 
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The proactive problem is solved with a common set  of K 
=1000 randomly generated scenarios, i.e., randomly generated 
surgery durations vectors. The expected criterion function (32) 
is replaced by the arithmetic average of their values in different 
scenarios, i.e., the expectation operation replaced by 1/K. The 
corresponding proactive model then becomes mixed-integer 
linear programming models. This sample size is large enough 
for these optimization problems as it has been shown in [16] that 
500 scenarios are able to provide a reasonable approximation 
with similar mean and variance of surgery durations. 

Dynamic assignment strategies and the lower bound cost are 
evaluated by a number of independent simulation runs. A 
common set ' of K' =5000 randomly generated scenarios is 
used for the simulation of dynamic assignment strategies and for 
evaluation of the lower bound cost (12). It will be shown that, 
this sample size is large enough as the 95% confidence intervals 
of the costs under different strategies are well separated. With 
the use of the same scenarios, equation (12) is indeed a lower 
bound cost of any feasible dynamic assignment strategy.  

At any event k of the dynamic assignment scheduling, a 
common set " of K" =1000 scenarios of OR release times and 
surgery durations is used in Algorithm 1 for evaluation of the 
second-stage costs. For the MPLA heuristic, at each future event 
n > k, another set "' of K"' =1000 scenarios of OR release 
times is used to evaluate the one-period look ahead cost by 
equations (28) and (29). 

B. Problem instances 

The problem instances of this paper are derived from our field 
observations of the OT in the Ruijin Hospital, Shanghai. The 
hospital has an integrated OT with 21 ORs. 9 ORs are laminar 
air flow rooms, and are dedicated to special surgeries, such as 
cardiosurgery, neurosurgery, etc. The 12 remaining ORs are 
identical and served for different general surgeries such as 
gastric surgery.  

The regular OR session is 480 minutes, and the overtime cost 
is 50% higher than the OR idle time cost (set to 1). That is, the 
value of  is estimated to be 1.5. Mean surgery duration varies 
from 60 minutes to 300 minutes. 

Surgeons in the hospital are divided as three classes: top 
surgeons, senior surgeons and ordinary surgeons. In the 
observed hospital, the partition of surgeons in the three classes is 
1/4, 2/4, 1/4. The following waiting costs are considered 
reasonable: 2.5 for top surgeons (sum of unit OR idle and 
overtime cost), 1.5 for senior surgeons (equally important as OR 
overtime), 0.5 for ordinary surgeon (less important than OR 
idle). 

The workload of the OT (ߩ ൌ ∑ ∈̅  varies during the (ܶܯ/
week with Monday being the busiest day and Friday the least 
busy day. The total average surgery duration of Monday 
accounts for 125% of the regular OT capacity, whereas that of 
Friday accounts for 75% of the OT capacity. 

In this paper, the following parameters are used in the 
generation of problem instances: M  {3, 6, 12}, T = 480, = 
1.5. Surgery durations are assumed to follow log-normal 
distribution. The mean surgery duration ̅  is randomly 
generated with uniform distribution U(60, 300). Surgeries are 

generated randomly one after another until the total average 
workload exceeds a target workload MT, i.e., until ∑ ∈̅   

MT with = 0.75 (low workload case) or 1.25 (high workload 
case). 

The other parameters of the surgeries are generated as follows. 
Surgeon waiting cost i is randomly generated and is equal to 
2.5, 1.5, or 0.5 with probability 1/4, 2/4 and 1/4 respectively. 
The coefficient of variation, defined as CVi = ߪ/̅, is randomly 
generated and is equal to 0.2 or 0.5 with probability 1− and  
respectively and with = 0.7 (high variance case) or 0.3 (low 
variance case). 

C. Accuracies of the simulation results 

Trial runs are performed in this section to validate the 
simulation results by comparing the confidence intervals of the 
costs for different strategies.  

TABLE I is the results of 12 different problem instances with 
different combinations of M, , . For each of the three dynamic 
assignment strategies (FCFS, I, II), Table I gives its average cost 
and the 95% confidence half-width derived from its 5000 
independent simulation runs. The CPU time for each simulation 
run of strategy II is also given as the CPU times for other 
strategies are sufficiently small. 

From these results, the confidence intervals are sufficiently 
small for faithful comparison of different strategies. Further, 
even for a large instance for 12-OR, the dynamic assignment 
strategies are able to make timely decisions in short 
computational time. 

D. Value of dynamic scheduling 

This subsection evaluates the contribution of the dynamic 
scheduling. We implemented the static assignment strategy for 
comparison purpose, which assign surgeries according to the 
optimal assignment and sequencing decisions of the proactive 
model. As a result, each surgery is assigned to the same OR for 
all simulation runs under static assignment strategy. 

The value of dynamic scheduling is defined as follows: 

TABLE	I	
RESULTS OF 12 RANDOMLY SELECTED INSTANCES 

M. N (,) costFCFS costI costII CPUII(sec.) 

3 7 (0.3,75) 119±3 119±3 116±3 0.01  

3 6 (0.7,75) 302±6 292±5.6 286±5 0.01  

3 11 (0.3,125) 1087±9 1076±9 1061±9 0.06  

3 11 (0.7,125) 942±12 929±11 915±11 0.06  

6 11 (0.3,75) 202±4 198±4 191±4 0.01  

6 13 (0.7,75) 281±6 273±6 263±6 0.01  

6 24 (0.3,125) 1561±13 1555±14 1527±13 0.52  

6 22 (0.7,125) 1801±17 1801±17 1718±15 0.37  

12 24 (0.3,75) 307±5 299±5 285±5 0.13  

12 28 (0.7,75) 554±8 558±8 495±7 0.41  

12 38 (0.3,125) 3095±8 3306±8 2970±7 2.43 

12 38 (0.7,125) 3219±8 3286±8 3018±7 2.34 
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ܵܦܸ ൌ
ௌ௧௧ݐݏܿ െ ݐݏܿ

ௌ௧௧ݐݏܿ
	ൈ 100% 

where costStatic denotes the average cost under the static 
assignment strategy and costX that of a dynamic strategy. From 
the definition, the greater the value of VDSX, the higher the 
benefit of dynamic scheduling is. 

We tested 140 instances with 20 instances for 3-OR, 10 
instances for 6-OR and 5 instances for 12-OR for all the 
combinations of  and . TABLE II presents the average, min 
and max of VDSX for all instances of each combination of (M, , 
).  

The following observations can be made: 
 Dynamic scheduling always works as VDS is always 

positive.  

 The benefit of dynamic scheduling is more important for a 
larger OT. The average VDS is 10.46% for 3-OR instances, 
19.83% for 6-OR instances and 25.37% for 12-OR 
instances.  

 Dynamic scheduling is able to efficiently cope with surgery 
uncertainties as VDS increases when the variance of surgery 
duration increases.  

 VDS decreases as the workload of the OT increases. 

E. Value of dynamic scheduling optimization 

This subsection evaluates the importance of dynamic 
scheduling optimization and compares the dynamic assignment 
strategies with a default FCFS strategy. For this purpose, we 
define the value of optimized solution VOS as follows: 

ܸܱܵ ൌ
ிிௌݐݏܿ െ ݐݏܿ

ிிௌݐݏܿ
	ൈ 100%	

Positive VOSX means the strategy X outperforms FCFS 
strategy, whereas negative VOSX implies the opposite. 

TABLE III presents the VOS of the 140 instances for different 
combination of (M, , ). VOSII is non-negative except for two 
instances for which it is close to 0. This implies that strategy II 
outperforms FCFS. VOSII is consistently better than VOSI which 
implies that multi-period look ahead pays. 

The value of VOS depends on problem parameters and is 
explained in the following. 

Impact of the number M of ORs: VOSII increases as M 
increases. Compared to FCFS, strategy II is able to dynamically 
revise the surgery sequencing in order to improve the solution. 
The benefit becomes greater for a larger OT where the 
opportunities of dynamically matching surgery assignment and 
surgery sequencing become greater. 

In contrast, VOSI decreases as M increases. VOSI is even 
always negative for the case (M, , ) = (12, 0.7, 1.25). The 
myopic nature of OPLA heuristic makes it unable to identify 
appropriate surgery assignment, especially for a large OT. 

Impact of the variances: VOSII increases as  increases, i.e., 
the variance of surgery durations increases. This implies that 
strategy II is able to efficiently cope with the uncertainties 
through appropriate dynamic surgery assignment. VOSI 

increases as  increases for 3-OR instances but it decreases for a 
larger OT. The myopic nature makes it unable to take advantage 
of the dynamic scheduling in a highly uncertain environment. 

Impact of the workload: Both VOSI and VOSII decrease 
asincreases, i.e., the workload of the OT increases. For high 
workload case, the highest cost is the overtime cost. As a result, 
potential improvement by dynamic scheduling becomes 
smaller.  

TABLE	II	
VDS OF 140 INSTANCES 

M (,) 
VDSI (%) VDSII (%) 

Ave. Min. Max. Ave. Min. Max. 

3 (0.3,75) 9.7 2.6 22.7 10.6 2.6 22.9 

 
(0.7,75) 14.2 5.4 26.9 14.8 5.5 26.9 

 
(0.3,125) 6.2 1.9 14.0 7.4 3.9 14.1 

 
(0.7,125) 9.7 5.6 14.9 11.1 5.7 15.5 

 
Ave. 9.9 3.9 19.6 11.0 4.4 19.9 

6 (0.3,75) 23.7 18.5 31.4 25.4 18.7 31.6 

 
(0.7,75) 25.3 19.1 38.3 29.2 24.7 39.9 

 
(0.3,125) 9.2 4.6 13.9 11.1 7.1 15.5 

 
(0.7,125) 15.6 10.4 20.9 19.1 12.8 24.1 

 
Ave. 18.5 13.2 26.1 21.2 15.8 27.8 

12 (0.3,75) 30.4 27.3 33.9 33.6 30.1 37.9 

 
(0.7,75) 29.2 22.0 34.7 36.0 28.9 42.1 

 
(0.3,125) 10.4 1.8 14.7 18.6 17.2 20.4 

 
(0.7,125) 18.6 14.4 21.6 26.1 23.9 30.1 

 
Ave. 22.2 16.4 26.2 28.6 25.0 32.6 

 

TABLE	III	
VOS OF 140 INSTANCES 

M (,) 
VOSI(%) VOSII(%) 

Ave. Min. Max. Ave. Min. Max. 

3 (0.3,75) 1.8 -2.8 14.4 2.8 0.0 14.4 

(0.7,75) 4.6 -0.7 28.8 5.4 0.0 26.5 

(0.3,125) 1.0 -0.1 4.5 2.3 0.0 7.0 

(0.7,125) 1.5 -0.8 6.4 3.1 0.0 10.2 

Ave. 2.2 -1.1 13.5 3.4 0.0 14.5 

6 (0.3,75) 3.3 -0.1 12.6 5.4 -0.1 13.6 

(0.7,75) 0.9 -2.7 3.2 6.0 -0.1 11.3 

(0.3,125) 0.9 -0.8 3.7 2.9 0.0 5.0 

(0.7,125) 0.9 -1.5 3.2 5.0 0.6 8.7 

Ave. 1.5 -1.3 5.7 4.8 0.1 9.6 

12 (0.3,75) 2.5 0.5 3.2 7.0 5.8 7.8 

(0.7,75) -0.5 -2.1 2.2 9.3 6.1 11.8 

(0.3,125) -4.5 -13.8 0.2 5.0 3.4 6.8 

(0.7,125) -3.0 -6.7 -0.8 6.4 4.7 9.2 

Ave. -1.4 -5.5 1.2 6.9 5.0 8.9 
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F. Optimality of the dynamic assignment strategies 

This subsection assesses the degree of optimality of the 
dynamic assignment strategies by comparing them with the 
lower bound cost LB of Section III. More specifically, the 
following optimality gap is evaluated: 

ܲܣܩ ൌ
ݐݏܿ െ ܤܮ

ܤܮ
	ൈ 100% 

For the sake of the computational complexity of the LB 
model, we tested 80 instances of 3-OR problem. The results are 
presented on TABLE IV. The average gaps are less than 8% and 
9% for strategy II and strategy I, respectively. As LB is obtained 
with perfect information, this optimality gap is relatively small. 
Further, high surgery duration variance degrades the optimality 
gap while high workload reduces the optimality gap. The former 
is obvious as LB is obtained with perfect information. 

G. Impact of surgeon waiting time cost 

This subsection investigates the impact of surgeon waiting 
cost on surgeon waiting time, OR idling time and OR overtime. 
For this purpose, the unit surgeon waiting cost is multiplied by a 
parameter , i.e., i  {2.5, 1.5, 0.5}. Larger value of 
implies increased importance of the surgeons with respect to 
the OR utilization. Similar results are observed but only results 
of 3-OR cases are presented hereafter. 

We tested 80 instances for 3-OR problem with 20 instances 
for each combination of (, ). TABLE V presents the results. 
For each instance, we determine the total expected surgeon 
waiting time ഥܹ , OR idle time ܫ ̅and OR overtime തܱ. Table V 
gives their average values over 20 instances for each (, , ). 
The coefficients of variation of ഥܹ  and തܱ are less than 0.05̅ ܫ ,
which implies very small confidence intervals that are not given 
for the sake of readability. 

As  increases, or surgeons become more important, surgeon 
waiting times decrease, and the OR idle times and overtimes 
increase, which means the OT management changes from 
OR-oriented to surgeon-oriented. For example, when  changes 
from 0.5 to 1, with strategy II, ഥܹ  decreases by 33%, ܫ ̅increases 
by 105% and തܱ increases by 6.4%. The reduction of the surgeon 
waiting time is achieved by planning larger surgeon inter-arrival 
times in the proactive problem, leading to the increase of OR 
idle time. The higher increase of OR idle time than that of OR 
overtime is due to the higher cost of OR overtime. 

The wasted times of surgeons and the OT are also impacted 
by the uncertainty of surgery durations and the workload of the 
OT.  

H. Value of proactive solution 

This subsection evaluates the contribution of the stochastic 
optimization of surgeon arrival times. We introduce the value of 
proactive solution defined as follows: 

ܸܲܵ ൌ
തതതതതതݐݏܿ െ ݐݏܿ

തതതതതതݐݏܿ 	ൈ 100% 

where ܿݐݏതതതതതത denotes the average cost of the strategy X but with 
surgeon arrival times determined with mean surgery duration. 
To obtain the surgeon arrival times of ܿݐݏതതതതതത, as in ASB, we first 
determine the surgery assignment in order to best balance OR 
workload, and the surgeries assigned to each OR are then 
sequenced in decreasing order of unit surgeon waiting cost i. 
The surgeon arrival time Ai is set to be the total mean durations 
of surgeries scheduled before i in the same OR. 

We tested 80 instances for 3-OR with 20 instances for each 
combination of (, ). The results are presented on TABLE VI. 
VPS can be significant for both strategies I and II, which means 
that the proactive solution is very important to dynamic 
assignment scheduling. The negative VPS in some instances 
shows that the arrival times that optimize the proactive model 
may not be adjustable to the dynamic assignment scheduling. 

TABLE	IV
OPTIMALITY GAP OF DYNAMIC SCHEDULING 

(,) 
GAPI(%) GAPII(%) 

Ave. Min. Max. Ave. Min. Max. 

(0.3,0.75) 7.4 0.1 14.7 6.3 0.1 12.8 

(0.7,0.75) 8.5 5.1 14.8 7.7 3.8 18.4 

(0.3,1.25) 5.6 1.3 11.2 4.1 1.0 8.3 

(0.7,1.25) 7.8 1.9 17.3 6.0 1.6 9.6 

	

TABLE	V	
PERFORMANCE MEASURES VS SURGEON WAITING COST 

Strategy I Strategy II 

 (,) ഥܹ ̅ ܫ  തܱ ഥܹ ܫ   ̅ തܱ 

0.5 (0.3,75) 79.3  20.7  42.7  80.3  20.9  41.4  

(0.7,75) 105.3 22.7  64.3  107.2  24.2  63.3  

(0.3,125) 310.2 22.7  480.1  306.7  22.0  479.3 

(0.7,125) 374.0 29.6  508.5  372.4  29.5  508.5 

Ave. 217.2 23.9  273.9  216.6  24.2  273.1 

1.0 (0.3,75) 50.8  36.7  46.8  51.2  36.5  46.2  

(0.7,75) 69.9  44.7  68.3  72.0  45.6  68.0  

(0.3,125) 206.7 50.1  506.3  206.2  49.5  505.7 

(0.7,125) 255.8 66.6  542.6  253.0  66.3  542.4 

Ave. 145.8 49.5  291.0  145.6  49.5  290.6 

2.0 (0.3,75) 30.6  63.4  51.9  30.8  63.5  51.6  

(0.7,75) 40.8  80.6  76.6  41.5  81.0  76.4  

(0.3,125) 123.7 102.1  557.1  122.3  101.2 556.2 

(0.7,125) 154.0 134.4  608.3  152.0  134.5 608.3 

Ave. 87.3  95.1  323.5  86.7  95.0  323.1 

	
TABLE	VI	

VPS OF SMALL SIZE INSTANCES 

(,) 
VPSI(%) VPSII(%) 

Ave. Min. Max. Ave. Min. Max. 

(0.3,0.75) 7.2 -15.2 23.3 7.0 -20.9 22.6 

(0.7,0.75) 6.8 -11.1 20.4 6.4 -14.4 20.4 

(0.3,1.25) 9.8 1.1 23.1 10.0 0.9 21.6 

(0.7,1.25) 10.1 1.1 19.2 10.1 3.2 17.9 
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Joint optimization of surgeon arrival times and dynamic 
assignment policies is an open research issue. 

VII. CONCLUSION 

This paper addressed the dynamic assignment problem with 
given surgeon arrival times. We proposed a multi-stage 
stochastic programming model in which each stage corresponds 
to a surgery completion event. As the problem is hard to solve, 
we proposed a two-stage stochastic programming 
approximation approach. The second stage cost is evaluated by 
two heuristics: a one-period look ahead (OPLA) method and a 
multi-period look ahead (MPLA) method. A lower bound is 
provided based on perfect information. An efficient approach is 
also proposed to solve the proactive problem to determine 
surgeon arrival times. Numerical results showed that dynamic 
scheduling significantly improves static surgery scheduling, and 
the optimization of dynamic scheduling further improves the 
performance. The MPLA heuristic outperforms the myopic 
OPLA heuristic and is able to efficiently cope with surgery 
duration uncertainties and take advantage of large size of the 
operating theater. The results also showed that the quality of the 
proactive solution is very important. 

Future work will focus on the study of stochastic 
programming algorithms for the joint optimization of the 
proactive and reactive problems. Another research direction is 
to take a starting time reliability approach in order to ensure 
some given probability for surgeries to start at their planned 
time. Structural properties of the scheduling policies are highly 
needed for this purpose. 
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