
HAL Id: emse-01109346
https://hal-emse.ccsd.cnrs.fr/emse-01109346

Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybridization of tabu search with feasible and infeasible
local searches for periodic home health care logistics

Ran Liu, Xiaolan Xie, Thierry Garaix

To cite this version:
Ran Liu, Xiaolan Xie, Thierry Garaix. Hybridization of tabu search with feasible and infeasi-
ble local searches for periodic home health care logistics. Alpha Omegan, 2014, 47, pp.17-32.
�10.1016/j.omega.2014.03.003�. �emse-01109346�

https://hal-emse.ccsd.cnrs.fr/emse-01109346
https://hal.archives-ouvertes.fr

1

Hybridization of Tabu Search with Feasible and Infeasible Local

Searches for Periodic Home Health Care Logistics

Ran LIU
a,b

, Xiaolan XIE
 a,b

, Thierry GARAIX
 a

a
 Center for Health Engineering & LIMOS-ROGI CNRS UMR 6158

Ecole Nationale Supérieure des Mines de Saint Etienne

158 Cours Fauriel, 42023 Saint Etienne, France

b
 Department of Industrial Engineering & Logistics Management

Shanghai Jiao Tong University

800 Dong Chuan Road 200240 Shanghai, China

Corresponding author: Prof. Xiaolan XIE, Ecole Nationale Supérieure des Mines de Saint

Etienne, 158 Cours Fauriel, 42023 Saint Etienne, France. Phone: 33-4-77426695, Fax:

33-4-77420249, Email: xie@emse.fr

Abstract: This paper addresses a periodic vehicle routing problem encountered in home

health care (HHC) logistics. It extends the classical Periodic Vehicle Routing Problem with

Time Windows (PVRPTW) to three types of demands of patients at home. Demands include

transportation of drugs/medical devices between the HHC depot and patients’ homes, delivery

of special drugs from the hospital to patients, and delivery of blood samples from patients to

the lab. Each patient requires a certain number of visits within a planning horizon and has a

set of possible combinations of visit days. Daily routing should meet time window constraints

associated with patients, the hospital and the lab. The problem consists in determining the

visit days of each patient and vehicle routes for each day in order to minimize the maximal

routing costs among all routes over the horizon. We propose a Tabu Search method combined

with different local search schemes including both feasible and infeasible local searches. The

proposed approaches are tested on a range of instances derived from existing Vehicle Routing

Problem with Time Window (VRPTW) benchmarks and benchmarks on special cases of our

problem. Numerical results show that local search scheme starting with an infeasible local

search with a small probability followed by a feasible local search with high probability is an

interesting hybridization. Experiments with field data from a HHC company show that the

proposed approach reduces the total cost and better balances the workloads of vehicles.

Keywords: Home health care, Periodic vehicle routing, Tabu search, Infeasible local search,

Feasible Local search

2

1 Introduction

In this paper, we consider a special periodic vehicle routing problem with time windows

constraints arising in the home health care industry in France. Home Health Care (HHC) is a

growing medical service in France. The objective of the HHC operation is to provide high

quality services to the patients at home in order to help them recover from the illness or injury

in a personal environment. This paper addresses the logistic issues in HHC operation. The

typical logistic services in the HHC involve delivering the medicines and medical instruments

to patients, picking up the biological samples from patients at home and bring them to a

medical laboratory, collecting medical waste from patient’s home and bring them back to

dispose, etc. Such distributing and collecting jobs are served by the HHC company for a large

number of patients stayed at their own home. From the view of the HHC company, the core

component in the home health care logistics is to find a feasible working schedule to their

drivers and vehicles, so as to satisfy the requirements of patients, reduce operating cost, and

improve service quality. Apart from these vehicle routing decisions, planning decisions also

need to be made to determine the days each patient is served as patients of an HHC often

require more than one delivery or pickup services. In practice, HHC usually builds a weekly

logistics plan that of course needs to be adapted to face random events such as emergency

demands.

Roughly speaking, the HHC logistics problem considered in this paper consists in

assigning visit days for each patient to meet demands of patients and designing vehicles routes

for each day to visit each assigned patient during that day within a specified time window.

Some patient visits are preceded by a hospital visit to pick up special drugs or followed by a lab

visit to drop blood samples. Clearly, assigning suitable visiting days to each patient and

optimizing these repetitive operations can generate significant cost savings for the HHC

logistics operation. In this paper, we address this special optimization problem in HHC

logistics and call it the Periodic Home Health Care Pickup and Delivery Problem (PHHPDP).

The PHHPDP is similar to the Periodic Vehicle Routing Problem with Time Windows

(PVRPTW) [1], a combination of the Vehicle Routing Problem with Time Windows (VRPTW)

and the Periodic Vehicle Routing Problem (PVRP). The PVRPTW considers how to serve

customers during a planning horizon under time window constraints. Although the VRPTW

and PVRP have received considerable attention both in theoretical research and in real world

applications, the literature on the PVRPTW is rather limited.

Our PHHPDP has its own characteristics and cannot be solved as a PVRPTW directly due

to the following reasons. First, in the PVRP and PVRPTW, vehicles only take goods from the

depot to each client to satisfy its demand. In our problem the distribution and collection tasks

are more complex. According to the origin and destination of the transportation requirements,

3

there are four types of logistic demands faced by the HHC company: (1) distribute

drugs/medical devices from the HHC depot more precisely the HHC pharmacy to patients’

homes; (2) collect the load (unused drugs/medical devices) from the patients’ homes back to

the depot; (3) deliver special drugs, from a hospital to patients, e.g., chemotherapy drugs for

cancer treatment; (4) pick up the blood samples from patients’ home to the lab. A patient may

have different types of demands, simultaneously. For example, a patient’s daily request may

consist of both getting the medicines from the hospital, and sending the biological samples

from his home to the lab.

In practice, workload balancing among different vehicles/drivers is as important as

minimizing the total travel distance usually optimized in the literature. We adopt a special

objective in our problem, minimizing the length of the longest route in the planning horizon.

Similar objective function is called min-max in the VRP and multiple traveling salesman

problem (m-TSP). The reader is sent to [2] for a survey on m-TSP, and to [3] for an

application in newspaper printing industry, where a parallel machines with sequence

dependent setups problem is modeled as a m-TSP with workload balancing.

In most HHC applications the vehicle capacity is hardly a limiting factor as goods under

consideration (e.g., a box of medicine, a piece of blood sample) often have small size. For this

reason, we assume unlimited vehicle capacity in our PHHPDP. Based on this condition,

another important logistics problem TSP with Time Windows [4] can be seen as a special case

of PHHPDP with one day planning horizon, one vehicle and no hospital and lab visits. Since

the TSP with time windows has been proven to be NP-hard, and finding a feasible solution is

NP-complete [5], the PHHPDP is also NP-hard.

In this paper, we will build several Tabu Search (TS) algorithms to address this special

periodic vehicle scheduling problem. The TS scheme is similar to that of Cordeau et al. [6]

with some innovative elements: (1) an augmented criterion taking into account constraint

violations with penalty factors dynamically adjusted according to the feasibility of the

resulting solution, (2) neighborhood search with both inter-route and intra-route local searches,

(3) combination of feasible and infeasible local searches. Especially, numerical results show

that infeasible local search with small probability followed by feasible search with high

probability is an interesting combination in TS.

The rest of this paper is organized as follows. Section 2 is a survey of relevant literature.

Section 3 gives the notation and problem definition. Section 4 proposes TS algorithms for

solving the problem. Section 5 presents the computational experiments on the instances

derived from existing VRPs benchmarks and on real-life data. Finally, Section 6 presents the

conclusions and future research directions.

https://www.researchgate.net/publication/222792707_Scheduling_pre-printed_newspaper_advertising_inserts_using_genetic_algorithms?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==
https://www.researchgate.net/publication/221704714_A_Generalized_Insertion_Heuristic_for_the_Traveling_Salesman_Problem_with_Time_Windows?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==
https://www.researchgate.net/publication/221704676_Local_search_in_routing_problems_with_time_windows?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==

4

2 Literature review

Despite the importance of HHC services, only a few papers deal with the HHC problems.

Begur et al. [7] designed a decision support system for home health care in United States.

Classical savings algorithm and nearest neighbor heuristics were used for optimizing routes.

Cheng and Rich [8] studied a HHC model of scheduling full time nurses and part time nurses.

The problem, similar to the Multi-depot VRPTW, is to find an optimal schedule such that

each nurse leaves from his/her home, visits a number of patients within their time windows,

and return home. Two mixed integer programming models and a two-phase construction

heuristic were proposed. Bertels and Fahle [9] solved their HHC problem with a hybridization

of constraint programming and meta-heuristics including simulated annealing and tabu search.

In the decision support system LAPS CARE by Eveborn et al. [10], the HHC problem is

formulated as a set partitioning problem with the objective of matching visits to staff

members and solved by repeated matching algorithm. Kergosien et al. [11] addressed an

assignment and routing problem of HHC workers to care activities. The problem is equivalent

to the m-TSP with time windows under some specific constraints. An integer linear program

was proposed and solved with a commercial solver. Two more recent research are formed by

Trautsamwieser et al. [12] and Nickel et al. [13]. Trautsamwieser et al. [12] considered the

HHC services problem during natural disasters (especially flood disaster) in Austria. The

problem is formulated as a rich VRP with state-dependent breaks in order to minimize the

sum of driving times and waiting times, and the dissatisfaction levels of clients and nurses. A

mathematical formulation and a variable neighborhood search based approach were proposed

for the daily HHC problem. Nickel et al. [13] considered routing and scheduling problems

arising in the context of HHC services in Germany. A two stage approach was proposed to

determine an optimal weekly service plan. A constraint programming heuristic generates a

weekly schedule by minimizing the number of nurse visiting tours. Different heuristic

approaches then modify and improve the initial solution to incorporate changes into existing

plan. With two real-world data sets they showed the benefit of using the proposed approaches

in HHC context.

Compared with existing researches, our study considers HHC operations from a new

perspective. We focus on picking up and delivering materials and goods (e.g., medicines,

medical instruments, and biological samples) among HHC depot, patient homes, medical

laboratory, and hospital. To our best knowledge, our paper is the first to incorporate the

schedule of visiting medical laboratory, and hospital in the HHC service problem.

As mentioned above, our PHHPDP model is similar to the PVRPTW. As the PVRPTW

has attracted little attention in the literature, we focus our review on the PVRP and its variants.

The PVRP has been widely studied in the literature. The first problem motivating the PVRP

was introduced by Beltrami and Bodin [14]. The PVRP was formally defined by Russell and

5

Igo [15] as the ‘assignment routing problem’, and first formulated by Christofides and

Beasley [16]. Early heuristics for the PVRP focused on classical construction heuristics [15]

[16]. From the mid of 1990s, some meta-heuristics have been proposed. Chao et al. [17]

developed a two phase, record-to-record travel algorithm for the PVRP. Cordeau et al. [6]

proposed a sophisticated tabu search for the PVRP, which allows infeasible solutions during

the search process. Mourgaya and Vanderbeck [18] constructed an approximate solution for

the PVRP using a truncated column generation procedure followed by a rounding heuristic.

Hemmelmayr et al. [19] and Pirkwieser and Raidl [20, 21] adopted variable neighborhood

search methods for the PVRP. Pirkwieser and Raidl [22] presented a column generation

approach for obtaining strong lower bounds to the PVRP with time windows. Then,

Pirkwieser and Raidl [23] investigated two new variants of heuristics and tested them on the

PVRP with time windows, in which variable neighborhood search and evolutionary algorithm

were combined with parts of a column generation approach. Gulczynski et al. [24] developed

a heuristic for the period vehicle routing problem by using an integer program and the

record-to-record travel algorithm. Vidal et al. [25, 26] proposed hybrid genetic algorithms for

the PVRP and multi-depot PVRP. Very recently, Cacchiani et al [27] presented a new hybrid

optimization algorithm and apply it to solving PVRP and PTSP. This algorithm is based on the

linear programming relaxation of a set-covering-like integer linear programming formulation

of the problem with additional constraints. A recent sophisticated exact method for the PVRP

has been proposed by Baldacci et al. [28].

Besides the basic PVRP, some variants have also been presented and studied. Lacomme et

al. [29] introduced and solved a problem called periodic capacitated arc routing problem,

where the vehicles must serve a set of arcs in the graph. Cornillier et al. [30] developed a

heuristic for the periodic petrol stations replenishment problem in order to maximize the total

profit equal to the revenue, minus routing costs and regular and overtime costs. Angelelli et al.

[31] and Wen et al. [32] studied the dynamic PVRP in which customer orders are dynamically

revealed over time. Angelelli and Grazia Speranza [33] studied an extension of the PVRP

where vehicles can renew their capacity at some intermediate facilities. Francis et al. [34]

considered a special PVRP in which service frequency is a decision of the model. Gulczynski

et al. [24] addressed the PVRP while considering reassigning customers to new routes, and

balancing the workload among drivers across routes. When only one vehicle is available

every day and vehicle capacity and traveling duration are not considered, the PVRP becomes

the Periodic Traveling Salesman Problem (PTSP). Some heuristics for the PVRP can be

adopted for the PTSP. Specialized heuristics for the PTSP can be found in [6, 16, 19, 24].

Compared with the PVRP, the PVRPTW receive much less attentions. Cordeau et al. [1]

introduced this problem and designed a tabu search to solve it. Recently, Yu and Yang [35]

used an ant colony optimization to solve the PVRPTW.

6

In our research the objective is to minimize the length of the longest of all the routes, i.e.,

the min-max objective. In the field of the VRPs, PVRPs and m-TSPs, the research with the

min-max objective is very limited. The m-TSP is a special case of the VRP with unlimited

vehicle capacity. França et al. [36] proposed a tabu search algorithm for the min-max m-TSP,

which minimizes the cost of the most expensive route among all salesmen. Somhom et al. [37]

and Modares et al. [38] developed self-organizing artificial neural network approaches for the

m-TSP with min-max objective function. Arkin et al. [39] proved the NP-hardness of the

min-max VRP and provided constant ratio approximation algorithms. Golden et al. [40]

proposed a tabu search based adaptive memory procedure for both the VRP and m-TSP with

min-max objective. Valle et al. [41] investigated an interesting min-max selective VRP, where

not all customers have to be served.

Although a large number of methods have been proposed for periodic VRPs, e.g., PVRP,

PTSP and PVRPTW, we find that all these research try to generate routes that minimize total

vehicle traveling distance or time, or the number of the vehicles, etc. To the best of our

knowledge, no literature considers the min-max VRPs with time windows in a planning

horizon, i.e., min-max PVRPTW. Actually, even neglecting time windows constraints, the

remaining min-max PVRP has never been considered in the existing literature.

Note that the PHHPDP can be seen as a special kind of Pickup and Delivery problem

(PDP) [42-44]. For example, we can split the hospital (lab) into several demand-based

auxiliary nodes; each one represents the original of a patient needing medicines from hospital

(who has bio samples to be send to the lab). Then, the PHHPDP can be transformed into a

Periodic Pickup and Delivery Problem with Time Windows at the cost of an artificial increase

of the problem size. Although some heuristics [45] and exact approaches [46, 47] have been

designed for the PDP with Time Windows, there is no research about the Periodic PDPTW.

Even for a relatively simple version, the Periodic PDP, we cannot find any literature about this

problem.

3 Notation and problem definition

The PHHPDP in home health care logistics is defined formally on a graph as follows. Let

G = (V, A) be a graph, with node set V= {0, 1, ..., n, n+1}∪{h, l} and arc set A={(i, j): i, jV,

i≠j}. N = {1, ..., n} denotes the set of patient locations, h and l denote a hospital and a lab,

nodes 0 and n+1 the origin and destination depots of the home health care company. Node

n+1 is the same location as node 0, implying that each vehicle starts and ends at the depot.

The location of each node (its x- and y-coordinates) is known. A homogeneous fleet of K

vehicles, initially located at the depot, is available to serve the patients. Vehicle capacity is not

considered, as it is hardly the limiting constraint in practice.

There are three classes of patients. A patient of class 1 denoted as P1 requires delivery

7

from the depot to home or pick up from home to the depot. A patient of class 2 denoted as P2

requires delivery from the hospital to home. A patient of class 3 denoted as P3 requires pick

up from home to the lab. Each service requested by a patient is called a demand. A patient

may require different classes of demands. For example, for a patient iP2∩P3, the HHC

company has to pick up blood samples from patient i and bring it to the lab, and deliver drugs

from the hospital to this patient.

Each node iN is associated with a time window [ai, bi], where ai, bi represent the earliest

and latest service time. The depot node also has a time window, representing the earliest

departure time and the latest return time. Each arc (i, j)A has a routing cost cij and a traveling

time tij. Without loss of generality, the service time for each node i is included in the traveling

time tij and is not explicitly considered.

A vehicle is allowed to arrive at a location i before ai and wait until the patient becomes

available, but arrivals after bi are prohibited. Each vehicle starts at time 0 from node 0, travels

to the location of the first node i1 on its route, waits till the availability of the node at ai1, then

travels to the location of the second node and so on and so forth till visiting all nodes on its

route and returning to the node n+1. We call the length of a route the total routing costs of

arcs visited by the vehicle. A route is said infeasible if the vehicle arrives at a node i after bi,

or a P2-patient visit is not preceded by a hospital h visit, or a P3-patient visit is not followed

by a lab l visit. The set of days in the planning horizon is denoted by D= {1,…, d}, and d

represents the number of days. Each patient iN has a visit frequency fi, and a set of

allowable service patterns Ri. Each rRi is a subset (combination of days) of the planning

horizon D. Patterns of each patient contain the same number of days in which the patient is

visited.

The visit frequency, the service patterns, and time windows are defined for patients

instead of demands. This implies that all demands of a patient share the same visit frequency

and visiting a patient on a given day implies serving all its demands. Extension to patients

having demands of different visit frequency and different time windows is addressed at the

end of this section.

The PHHPDP consists in selecting a service pattern for each patient and designing daily

vehicle routes, such that: (1) visits to patients match to selected patterns, (2) each patient is

visited at most once a day, (3) at most K routes starting from and ending at the depot are used

each day, (4) each route must satisfy time windows and precedence constraints on each patient

node, (5) minimizing the length of the longest route in the planning horizon. As the vehicle

capacity is infinite, each vehicle requires at most one daily visit to the lab and to the hospital.

Table 1 summarizes the defining notations of the PHHPDP.

Table 1. Defining elements of PHHPDP

D Planning horizon

8

N Patient set

h Hospital

l Lab

P1 Set of patients requiring delivery between the depot and home

P2 Set of patients requiring drugs from the hospital

P3 Set of patients having blood samples to be delivered to the lab

ai, bi Earliest and latest visit time of node i

fi Visit frequency of patient i

Ri Set of allowable service patterns of patient i

K Set of available vehicles

cij Routing cost from node i to node j

tij Traveling time from node i to node j

The definition of the PHHPDP can be extended to include other operating constraints. We

consider patients with demands of different visit frequencies, visit patterns and demand

specific time windows. Multiple visits to a patient are also allowed. This extended PHHPDP

can be transformed into a basic PHHPDP by transforming a patient into several demand-based

fictive patients. For example, for a patient i has two demands pi1 and pi2 and should be served

two and four times weekly respectively, we delete patient i and generate two fictive patients i'

and i'', each representing a demand and associated with the related visit frequency and time

window. The locations of i' and i'' are the same as that of patient i, i.e., the distance between i'

and i'' is zero and the distance between i' (i'') and another node j equals the distance of i and j.

All time window and precedence constraints can be transformed accordingly..

4 Solution procedure for the PHHPDP

In this section, we propose a tabu search (TS)-based algorithm to solve the PHHPDP. The

proposed TS algorithm in Figure 1 is based on the general TS framework developed by

Cordeau et al. [6]. Similar attribute set and augmented criterion function for constraint

violations have been successfully adapted in TS algorithms to solve some variants of the VRP

[48-50]. The algorithm starts from an initial solution s that can be feasible or infeasible. The

tabu list and aspiration value of each attribute are then initialized. Neighbor search is applied

to solution s by executing some inter-route local moves. The best solution s′ is selected from

neighbor solutions that are either not tabu or satisfy some aspiration criterion. Solution s′ is

further modified and improved by intra-route local search methods (Section 4.4). We then

update the tabu list, aspiration level of each attribute and some algorithm parameters. The TS

restarts from s=s' till a stopping criterion is met.

Although the basic structure of our approach is similar to that proposed in Cordeau et al.

[6], there are some key differences with respect to: (1) the construction method of the initial

solution, (2) the evaluation of the objective function, (3) the update rules of penalty

9

parameters, (4) the construction of the neighborhood of a solution taking into account the lab,

hospital and precedence constraints. Most important, Cordeau et al. used GENI heuristic to

perform insertion and removal of customers from routes to construct the neighborhood. At

each iteration, GENI heuristic performs intra-route local search to some routes within the best

neighbor solution. In our approach, we adopt standard insertion and removal of nodes to

identify inter-route neighborhood search. Furthermore, we apply two intra-route local search

strategies to improve and diversify each route in the current solution. In the following, we

give the detailed functions of our approach.

1. Generate an initial solution s

2. Initialize the tabu list, set aspiration levels

3. Generate neighbor solution set N(s) of s

using inter-routes moves (Section 4.3)

4. Identify a solution s' in N(s), which has the

least cost function f and which either is not

tabu or satisfies aspiration criterion

5. Use intra-route moves to improve solution s'

(Section 4.4)

6. Update tabu list, aspiration levels, penalty

parameters; set s=s'

 7. Stop criterion?

8. Output result

No

Yes

Figure 1. General structure of TS algorithm

4.1 Augmented criterion function

In our approach, each solution corresponds to a set of routes for each day. For each route,

the visit times at different nodes are determined by taking into account the visiting sequence

and the earliest available time of each node. As both feasible and infeasible solutions are

allowed, a solution s is evaluated by an augmented cost function

f(s)=c(s)+α q(s)+β g(s)

where c(s) is the original objective function, i.e. the length of the longest route, q(s) and g(s)

denote the total violation of time window and precedence constraints of all the routes,

10

respectively,  and  are penalization parameters. q(s) and g(s) are defined as follows:

() []
k

i i

k
k K i U

q s t b


 

  

()
h k lk

g s N N 

where [x]
+
 =max{0, x}, Uk is the set of nodes visited by vehicle k, k

i
t is the visit time of node

i in route k, bi is the latest allowed visit time of i, Nhk (Nlk) is the number of P2 (P3) patients

visited before the hospital visit (after the lab visit) in route k. Clearly, if s is a feasible solution,

q(s)=0, g(s)=0, and f(s) = c(s).

In TS, parameters  and  are dynamically adjusted to facilitate the exploration of the

search space. TS algorithm starts from
0

 and
0

 , which are set to be 1 and 100, respectively.

Meanwhile, we set two intervals [αmin, αmax] and [βmin, βmax] for these two parameters, which

limit their maximum and minimum values during the search process. The values of  and

 are increased or decreased throughout the iterations. At the end of iteration, if the resulting

solution is feasible,  is divided by a factor 1+
1

 . If the resulting solution is infeasible and

the time window constraints are violated,  is multiplied by a factor 1+
1

 . If the resulting

solution is infeasible but the time window constraints are satisfied,  is divided by a factor

1+
2

 (
2 1

0   ). Parameter  is adjusted by the same rules. The following values,

m in
 =

m in
 =0.01,

m a x
 =

m a x
 =1000,

1
 = 0.2 and

2
 = 0.05 are used in our approaches.

4.2 Initial solution

We first apply the following heuristic procedure to generate an initial solution of PHHPDP

for the TS algorithm. Time windows are not considered here and hence the initial solution can

be infeasible.

Step 1: Select randomly a service pattern for each patient.

Step 2: Repeat 3-6 to build the vehicle routes for each day d' = 1, …, d.

Step 3: Sort patients of day d′ in ascending order of their angular coordinate in the polar

coordinate representation with the depot at the origin.

Step 4: Determine the patient i which is closest to the depot. Generate the first route on

day d′ to serve patient i. Initialize the counter k=1 of the route number.

Step 5: Repeat 6 for each patient j in cyclic order of Step 2 starting from patient i.

Step 6: Insert j into a route k'{1,…, min(K, k+1)} with the minimal route length after

insertion of j.

At Step 1 each patient is assigned a random pattern. We then solve the VRPs with

min-max objective on each day by neglecting time windows. We first generate in Step 4 a

route from the depot to the closest patient i. If this patient i belongs to P2 or P3 set, the first

11

route is (depot-h-i-depot) or (depot-i-l-depot) in order to include the corresponding hospital or

lab visit. The other patients are then inserted in step 6 in ascending order of their angular

coordinate by starting from patient i. Each patient j is inserted in an existing route or a new

one such that the length after its insertion of the selected route is minimized. The position in a

route of the patient j to insert is determined by exhaustive search. For the insertion of a P2 or

P3 patient in a route k, the position of the hospital or lab must be considered simultaneously

by exhaustive search. If j is the first P2 patient in route k, we should also insert the hospital

visit at the least cost position. If a hospital already exists in the route k, we also try to relocate

it at each possible position (before all P2 patient) when inserting patient j.

4.3 Attribute set, tabu list, aspiration and stopping criterion

Generally, TS utilizes some form of adaptive memory, called tabu list and tabu duration,

to implement a diversification strategy. In our approach, each solution is characterized by an

attribute set B(s)={(i, k, d)| i N , k K , d D : patient i served by vehicle k on day d}. A

neighbor of a solution s is obtained by applying an operator that deletes a set of attributes

from B(s), and replaces it by a new set of attributes. Then, when a patient i is removed from a

route k on day d, we assign a tabu status to this attribute (i, k, d), and set a tabu duration  to

this attribute. In the next θ iterations, re-inserting patient i back into route k on day d is

forbidden. The tabu duration θ takes the values in [θmin, θmax] and starts from θ0. It

dynamically modifies during the search process: (1) after each improvement of the current

best solution,  is set equal to θmin; (2) after θ∅ consecutive unimproved iterations, θ is

updated to be min(θ +1, θmax).

One simple aspiration criterion is adopted in TS. Each attribute is associated with an

aspiration value, which is defined as the cost of the best feasible solution found with that

attribute. Thus, a neighbor solution s of the current solution s can be considered only when:

(1) all new attributes which are not in s but in s , are non-tabu, or (2) s is feasible

and ()f s is less than the aspiration values of these attributes.

Three stopping criterion in TS is: (1) after a fixed number N1 of iterations, or (2) after a

fixed number N2 of iterations without improving the current best solution, (3) after a fixed

total running time T.

4.4 Neighborhood

Essentially, TS algorithm keeps on finding the best neighbor of the current solution. A

solution that can be obtained from a given solution using an allowable move is called a

neighbor. Three inter-route local moves are considered in our TS algorithm:

(1) Remove a customer i from vehicle route k, and insert it at least cost into another route

k′ on the same day, k′ ≠ k. Note here route k′ may be nonempty or empty route. All customers i

and destination route k’ are considered each day. The size of this move is O(n·d).

12

(2) Exchange a patient i in vehicle route k and another patient j in vehicle route k′ on the

same day with k′ ≠ k. All pairs of customers (i, j) are considered each day, i.e. O(n
2
·d) moves.

(3) Replace the visit pattern rRi currently assigned to customer i with another pattern

r′∈Ri. For each day d′ in D, if day d′ belongs to pattern r but not r′, customer i is removed

from its route in day d′. If all the customers in this route are removed due to this operator, the

route is deleted from the solution. Meanwhile, if d′ belongs to pattern r′ but not r, customer i

is inserted into route k′ in day d′ while the increase in f(s) is minimized. Here, we allow route

k′ to be a nonempty or empty route. The size of this move is
1

(| | | |)

n

i r R i

i

O R r n




 

The neighborhood N(s) of a solution s consists of all the solutions that can be obtained by

performing one of the foregoing transformations. We should point out that, during each local

move when a patient is deleted from or inserted into a route, we do not modify hospital and

lab visits in this route. For example, when inserting a patient in route k′, we do not remove,

relocate or insert the hospital visiting or the lab visiting in the route even if it is necessary to

satisfy the new patient. When the best neighbor is obtained, we deal with each modified route

in this neighbor as follows: (1) we remove the un-necessary hospital or lab visit from a

modified route. That is to say, if there is no more P2 (P3) patient in route k after the move, we

remove the hospital (lab) in route k, (2) we insert the missing and necessary hospital or lab

visit into the modified route. For example, when a patient i is inserted into route k′ and i is the

only P2 (P3) patient in this route, we should add the hospital (lab) into route k′. We insert the

lab and hospital into the route at feasible positions with the smallest increment augmented

cost. At this step, the precedence constraints are satisfied and g(s)=0, i.e. the hospital is visited

before all P2 patients and the lab is visited after all P3 patients.

4.5 Hybrid Tabu Search with Local Search

Our approach hybridizes a Tabu Search algorithm and local search procedures. The Tabu

Search procedure applies inter-routes movements between pair of routes, as shown in Section

4.4. Then, the solution obtained by Tabu Search inter-routes movements is further improved

by means of intra-route Local Search procedures. Such combination of local search

procedures has been proved to be an effective strategy to improve the performances of

meta-heuristics. For example, Yu et al. [51] designed an improved ant colony system

algorithm to solve the VRP, in which intra-route search is adopted to improve individual

routes of current solution during the iteration. Jozefowiez et al. [52] proposed an evolutionary

algorithm for the VRP with route balancing, and an intra-route local search (2-opt) was

chosen to improve each route of each offspring solution. Some researchers adopted both

intra-route and inter-route search in their algorithms for the VRP [53-55]. Similarly, in a

weighted tardiness minimization problem of parallel machines, Della Croce et al. [56] applied

local search on each machine independently at each algorithm iteration. Concerning the Tabu

13

Search, the GENI heuristic in [6] plays a role as intra-route local search. Similar way was

used in the tabu search [57] for solving an open VRP. In Brandão’s tabu search, each iteration

of the TS modifies only two routes of the current solution. Two simple heuristics, the Nearest

Neighbor method and the Unstringing and Stringing procedure, were applied in Gendreau et

al. [58] to improve two modified routes. Both our approach and the TS of [6] use inter-route

local search to get the best solution s' from N(s). However, we adopt two special and new

local search strategies to improve each route independently, not only for the modified routes.

The first type of local search is called Infeasible Local Search (ILS) and the second Feasible

Local Search (FLS).

FLS is the widely used classical local search method. It can be used to improve route

construction methods [59], or be hybridized with meta-heuristics [60, 61]. FLS starts from a

feasible solution and improves it by local moves. Once a neighbor solution is identified, it is

compared against the current solution. If the neighboring solution is better, it replaces the

current solution, and the search procedure continues. In the FLS, each neighbor solution must

be feasible. Compared with FLS, ILS can be applied to both feasible and infeasible solutions.

Meanwhile, during the ILS search, both feasible and infeasible neighbor solutions may be

generated.

In the paper, the FLS starts from a feasible seed solution and improves each route by using

1-1exchange, 1-0 relocation, 2-Opt exchange. The 1-1 exchange tries to exchange the

positions of two nodes (patient, lab and hospital) in a route. The 1-0 exchange is the

relocation of one node, i.e., transferring a node from its position to another position in the

same route. The 2-opt exchange tries to improve the route by replacing two of its edges (i,

i+1), (j, j+1) by two new edges (i, j) and (i+1, j+1). The first-accept strategy is used, i.e. once

a feasible and better route is found, it is adopted as the new seed for repeating the local search.

The whole local search stops when no additional improvement can be obtained. Note that

during the search procedure, time window and precedence constraints must be satisfied. For

each route o, FLS uses its real distance c(o) to evaluate the cost of a local move. Compared

with FLS, infeasible moves are allowed in the ILS, i.e., the time window and precedence

constraints can be violated at each move. For each route r, ILS uses the augmented criterion

function c(o)+ () ()q o g o  to evaluate the cost of a local move, where q(o) and g(o) denote

the violation of time window and precedence constraints of this route, respectively. Note that

even ILS starts from a feasible seed solution it may generate an infeasible result when the ILS

procedure completes.

FLS and ILS play different roles in our method. FLS is used to intensify TS algorithm,

just like the classical local search procedure integrated in other meta-heuristics. ILS can be

seen as a way for diversifying the search of TS method. For example, when the algorithm

sinks into a local optimal solution, ILS may generate a new infeasible neighbor solution and

14

leads to a new search direction. For these reasons, we give two probabilities, pFLS and pILS, for

applying FLS and ILS, respectively. Meanwhile, to test different strategies of applying the

FLS and ILS, we design and test following five TS strategies:

TSC TS without any additional local search, i.e., pFLS = pILS=0.

TSFLS Improve feasible current solution s′ with FLS, i.e., pFLS =1 and pILS=0.

TSILS Improve current solution s′ with ILS, i.e., pFLS =0 and pILS=1.

TSF-I-P Use either FLS or ILS to the current solution s′ according to its feasibility. If s′ is

feasible, FLS is used; otherwise, ILS is applied.

TSI-F-S Use FLS and ILS sequentially with probabilities pILS and pFLS. It first uses ILS with

probability pILS. If the resulting s′ is feasible, FLS is used with probability pFLS.

To our best knowledge, such hybridization scheme has never been proposed for solving

the VRP and relative problems. Thus, in our experiments, we will intensively test and

compare these five tabu search algorithms.

5 Computational experiments

This section presents computational experiments designed to assess the performance of

the proposed method. Since there is no benchmark data available for the problem of this paper,

we construct some test instances based on existing VRPTW benchmarks. We also test our

algorithm on the classical min-max Multiple Traveling Salesman Problem (min-max MTSP),

which can be seen as a special case of our problem with a planning horizon of one day and

without hospital, lab and time windows. We extend TS algorithm and test it on another rather

classical problem, Periodic Traveling Salesman Problem (PTSP), which is similar to our

problem but with only one vehicle, with a different objective function and without hospital

and lab visit. Concerning the latter two problems, our approaches are compared with the state

of the art algorithms. Finally, we also compare solutions obtained by our algorithm against

real-life routing plan built by a French home health care company.

All algorithms of this paper are implemented in C on a 3.2 GHz Dual Core computer with

a 2 GB memory under Linux. All tabu search algorithms run 10 times for each test instance.

The best, the average, the worst results and the average running time are obtained from 10

runs for each TS algorithm, and used to assess the performances of these algorithms. Table 2

summarizes the parameter setting of the algorithms used in the computational experiments.

15

Table 2. Parameter setting in the experiment

Symbol Explanation Value in experiment

α0, αmin, αmax Initial, minimum and maximum values of  1, 0.01, 1000

𝛽0, 𝛽min, 𝛽max Initial, minimum and maximum values of  100, 0.01, 1000

φ1, φ2 Parameters for updating ,  0.2, 0.05




Number of consecutive unimproved iterations to update

tabu duration

30

0


Initial tabu duration  1 0
m a x 4 lo g , 7n  

,
m in m a x

  Maximum and minimum values of tabu duration
0

4  ,
0

8  .

5.1 PHHPDP instances derived from VRPTW benchmarks

We first derive test instances from existing VRPTW benchmarks of Solomon [62], and

Gehring and Homberger [63]. Solomon’s VRPTW instances are divided into three classes that

differ by the geographical distribution of the customers: C, R and RC type instances. Each

class is divided into two series: the 100-series instances with tighter time windows and the

200-series instances with wider time windows. We select 6 C type instances, 6 R type

instances and 6 RC type instances. Among 6 instances of each type, both the 100-series

instances and 200-series ones exist. Based on each selected Solomon instance, we derive 3

new instances for our problem with 3Z patients as follows. We randomly choose 3Z

customers from the Solomon instance as the P1 patients, then, Z P2 and Z P3 patients are

randomly selected from P1 patients. Therefore, the generated instances contain 5Z demands

required by 3Z patients. The depot is located as in Solomon instances at (40, 50) for C-type

and RC-type instances and at (35, 35) R-type instance, and the locations of lab and hospital

are (90, 50) and (10, 15). For each Solomon-based instance, the planning horizon is 7 days,

and service frequency is generated uniformly in [1, 5]. The service days are randomly selected

in the 7 days. For each patient, the time window in Solomon instance is used directly.

Concerning the depot, lab and hospital, the earliest times of their time windows are inherited

from Solomon’s depot time window. The latest time of depot time window in the Solomon

instance is multiplied by 120%, and assigned to the depot, lab and hospital in our test instance

as the end of new time window. Even so, there may exist some ‘violative’ P3 (or P2) patients,

e.g., even if a vehicle starts from depot and goes to a P3 patient directly, then goes to lab and

returns back to the depot, this vehicle still breaks the time window of the depot (later than the

end of the depot time window). If such violative patients exist in our instance, the latest time

of time windows of lab, hospital and depot are multiplied by 120% again until all violative

patients are eliminated. In the preliminary experiment, we find that violative patients are

eliminated after two tries.

For each Solomon instance, the above constructing procedure is repeated twice,

generating one small size (Z=10 and total 50 demands), one medium size (Z=20 and total 100

demands) instance. For each small/medium size instance, 10 and 15 vehicles are available,

16

respectively. For these small and moderate test instances, the stopping criteria of tabu search

algorithms are: N1=15000, N2=9000 and T=∞, i.e., the whole search stops after 15000

iterations, or 9000 unimproved iterations.

Besides Solomon’s instances, we also create 18 large instances from VRPTW instances of

Gehring and Homberger [63]. These VRPTW instances are similar to but larger than Solomon

instances, containing hundreds of customers. We choose 6 instances from Gehring and

Homberger VRPTW benchmarks, each of which contains 400 customers. Each instance

undergoes the same procedure described above three times with Z=70. The coordinates of the

depot are kept at (100, 100), and the locations of lab and hospital are still (90, 50) and (10, 15).

Thus, we generate 18 new instances for our study. Each of these large instances contains 210

patients and 350 demands. For each instance, 15 vehicles are available, the planning horizon

is 7 days, and the maximal service frequency for each patient is 3 times. For these large size

instances, in order to save the computational time, we reduce the maximum number of

iterations in the TS, i.e., N1=5000, N2=3000 and T=∞.

5.2 Probabilities of feasible and infeasible local searches, and penalty

parameters update scheme

We first conduct some experiments to find appropriate probability parameters, pFLS and

pILS, in TSI-F-S approach. In a preliminary experiment, we find that the performance of TS can

be improved by using a relative high probability of FLS improvement methods. Thus, we set

pFLS equal to 80%. To the best of our knowledge, there is no research about the probability of

applying infeasible local search procedure. Among the instances generated from Solomon

VRPTW benchmarks, we select 10 instances randomly and apply TSI-F-S to these instances

with different values of pILS: 0%, 2%, 5%, 10%, 20%, 30%, 40%, and 50%. In order to

determine the appropriate pILS in TSI-F-S, we adopt four criteria. The first is the number of ‘best

run’, which represents the number of times a setting (TSI-F-S with a special value of pILS) is

able to find the best solution among all the settings (TSI-F-S with various values of pILS). For

example, as shown in Table 12, applying TSI-F-S with pILS=2% to instance R210_60 ten times

gets the best solution with the cost of 208.84 six times. The other three criteria are the best,

the average, and the worst solution costs obtained from 10 runs for each instance. In general,

the first criterion is rather stricter than others, particularly when the solution costs obtained by

different pILS settings are similar. Detailed computational results obtained on these 10

instances are presented in Table 12 in the Appendix.

In Table 3, we summarized computational results obtained with eight settings of pILS.

Column pILS is the value of pILS, column BR the total number of best runs over 100 runs with

10 for each instances, the other columns give the mean values over 10 instances of Best,

Average and Worst solutions. We observe the superiority of TSI-F-S with small pILS, e.g., pILS

17

equals 2% or 5%, over TSI-F-S with high values of pILS, especially concerning the number of

the best run. Therefore, we use pILS=0.02 and pFLS=0.8 as the stand setting of TSI-F-S, which are

used in every run of TSI-F-S on every test instance reported in following sections.

Based on this setting, we also test the way of updating the penalty parameters in the tabu

search. In Cordeau et al. [6], different penalty parameters, e.g., parameters for violation of

vehicle load and time window constraints, are adjusted with respect to solution’s feasibility,

simultaneously. That is to say, once a constraint is not satisfied in current solution, all penalty

parameters are modified by a factor larger than 1. Otherwise, parameters are divided by this

factor. In our approach, each penalty parameter is adjusted according to whether its

corresponding constraint is violated or not (See section 4.1). To compare these two updating

mechanism, we run TSI-F-S with both mechanisms to solve the 10 instances selected above. We

compare the results of two updating schemes in Table 4, with two major columns of

‘Synchronous update’ and ‘Asynchronous update’. We report the best, average and the worst

solution costs of 10 runs for each test instance. Meanwhile, we provide some detailed

information about the best solution, i.e., the number of routes, the number of visits to the

hospital, the number of visits to the lab, and the number of routes which visit neither lab nor

hospital. These numbers are listed in the bracket, beside the best solution cost and separated

by oblique line. Our ‘asynchronous update’ can find 9 better solutions, while ‘synchronous

update’ finds 8 better solutions. Concerning the sum of the best solution costs, the gap is only

−0.18%. Such gaps are rather small. But if we focus on ‘BR’ column, i.e., the number of best

solutions, ‘asynchronous update’ can find best solution 40 times, while ‘synchronous’ can

only find 29 times. Note that similar ‘asynchronous update’ is also used in Vidal et al. [25] to

dynamically adjust the penalty parameters during the iterations of their (GA) algorithm to favor

the generation of naturally feasible individuals.

Table 3. Comparison between different pILS settings in TSI-F-S

pILS BR Best Average Worst

0% 14 211.70 233.86 279.34

2% 40 210.44 214.26 224.87

5% 35 210.74 214.16 218.26

10% 33 211.21 215.06 225.21

20% 28 210.46 216.16 230.22

30% 24 210.39 216.50 231.14

40% 23 211.13 218.63 233.63

50% 23 211.14 219.68 235.48

Table 4. Comparison between different penalty parameter updating mechanisms

Asynchronous update Synchronous update

Instance Best Average Worst BR Best Average Worst BR

C101_30 207.06 (56/26/28 /11) 210.13 233.24 0 207.14 (48/23/23/11) 213.14 233.24 0

C104_30 175.62 (45/24/16/5) 194.68 221.71 2 175.62 (56/24/17/15) 195.23 221.62 2

18

C109_60 223.39 (48/25/25/9) 223.39 223.39 10 223.39 (54/34/27/8) 223.39 223.39 10

C201_60 215.20 (56/31/37/6) 219.08 223.70 0 214.00 (56/36/37/1) 217.25 220.33 0

R108_30 188.49 (49/27/24/9) 190.26 206.14 9 188.49 (53/24/24/11) 193.92 229.31 3

R207_30 234.83 (56/20/22/25) 236.09 245.23 0 234.83 (54/22/21/22) 236.62 244.02 0

R210_60 208.84 (56/32/29/11) 211.56 215.63 6 208.84 (53/34/25/10) 210.97 215.63 5

RC105_60 193.09 (70/39/39/11) 194.50 197.85 4 193.09 (70/42/43/11) 216.67 274.42 1

RC201_60 229.62 (56/38/32/3) 233.26 239.21 0 235.01 (56/35/36/4) 240.37 244.53 0

RC204_60 228.22 (56/40/25/6) 229.66 242.62 9 228.22 (55/35/26/10) 230.21 248.07 8

Total 2104.36

40 2108.63

29

5.3 Computational results on PHHPDP instances

The computational results obtained on the VRPTW-based PHHPDP instances are

summarized in Tables 5 and 6. Detailed computational results are presented in Tables 13-15 in

the Appendix. Table 5 shows the average min-max objective costs by grouping instances

according to the number of demands (column De) and the type of the instance (column Type).

The results are obtained from 10 independent runs for each instance of five approaches, TSC,

TSI-F-S, TSFLS, TSILS, and TSF-I-P. Columns ‘Best’, ‘Average’ and ‘Worst’ present the best, the

average and the worst solution costs over 10 runs. Column ‘CPU’ gives the average

computational time for one run in seconds. Table 6 shows the number of best run of each

algorithm on each type and scale instances.

We can assert some conclusions from the data in Tables 5 and 6. Firstly, concerning the

solution quality, the performance of TSI-F-S is better than the other tabu search approaches for

different scales and types of test instances. For 48 out of 54 test instances, TSI-F-S can find the

best solutions among five approaches. Concerning the best solution cost, TSI-F-S is better than

TSC, TSFLS, TSILS, TSF-I-P with deviations of 0.33%, 0.27%, 5.12% and 0.50%. The superiority

of TSI-F-S is even higher with respect to average and worst solution costs. For example, for all

test instances the average solution costs of TSFLS and other four approaches deviate by 6.66%,

2.65%, 10.74%, and 1.60%. Thus, we can draw a preliminary conclusion that the solution

quality of TSI-F-S is the best, followed by TSFLS and TSF-I-P. The solution quality of TSILS is not

as good as other approaches. The superiority of TSI-F-S can also be verified in Table 6. Among

540 runs on all test instances, TSI-F-S is able to find the best solution 313 times with respect to

166, 210, 82 and 224 times for TSC, TSFLS, TSILS, TSF-I-P.

 Figures 2 and 3 further compare different TS approaches. Figure 2 illustrates the number

of ‘best run’ of each TS approach over different scale-type instances. As shown in Figure 2,

the line of TSI-F-S is always the highest one, i.e. TSI-F-S has the highest number of ‘best run’ for

different scale-type of instances. Figure 3 illustrate the mean value of the average solution

costs among 10 independent runs for different instances of the same scale and the same type,

for different scale-type instances. The line of TSI-F-S is always the lowest one, i.e. TSI-F-S has

the ability of finding the smallest cost of solutions.

19

Apart from the TSI-F-S approach, TSFLS and TSF-I-P also generate good results. We do not

recommend TSC since its worst solution cost over 10 runs for each instance is significantly

worse than best approaches. As shown in Table 5, for all 54 test instance, concerning the

worst solutions costs, TSC is worse than TSFLS and TSF-I-P with deviations of 11.33% and

15.20%. Comparing TSFLS with TSF-I-P, there is no clear enough computational evidence for

choosing one strategy instead of the other. Over 54 test instances, the best solution cost of

TSFLS is slightly better than that of TSF-I-P with a deviation of 0.22% on the average best

solution cost. However the average and worst solution costs of TSF-I-P are better than those of

TSFLS with mean deviations of 1.07% and 4.35%.

Note that the improved solution quality of TSI-F-S is obtained at the cost of longer

computation time. Over total 54 test instances, the CPU time of TSI-F-S is on average 17.02%,

13.90%, 13.51% longer than that of TSC, TSFLS and TSF-I-P, respectively. The differences of

computation time between TSI-F-S and other approaches are especially true for problem

instances of the largest size. We also try to extend the running time of TSC, TSFLS and TSF-I-P to

that with TSI-F-S for some randomly selected sample instances. The superiority of TSI-F-S

remains true and TSFLS and TSF-I-P are still the next two best approaches.

These experimental results also indicate that the local search procedures play a useful role

in the TS algorithm. The performance of basic TS (TSC) can be improved by integrating the

classical local search FLS (TSFLS). Further improvement can be obtained by combining FLS

and ILS whether sequentially (TSI-F-S) or in parallel (TSI-F-P). Of course, we must point out

that only using IFS in basic TS (TSILS) leads to the deterioration of TS performance.

20

Table 5. Average routing costs of 10 independent TS runs on PHHPDP instances

De Type

TSC TSI-F-S TSFLS TSILS TSF-I-P

Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU

50

C 208.89 233.09 297.12 52.4 207.46 211.36 218.93 55.8 211.40 232.04 313.13 58.0 208.11 216.66 238.67 54.2 207.69 214.04 230.15 53.2

R 192.91 208.31 231.92 43.6 192.82 198.15 208.78 50.2 192.82 202.99 213.74 48.2 192.82 197.98 207.06 52.6 192.80 198.53 208.76 50.7

RC 206.90 223.04 261.79 55.4 203.49 207.36 214.68 61.4 209.10 215.86 231.87 50.2 203.70 211.02 218.24 62.1 210.00 212.42 220.56 55.7

100

C 223.65 245.16 299.73 227.5 220.05 221.50 222.75 296.2 220.34 233.61 249.94 239.5 234.98 260.10 290.46 273.2 221.84 228.39 245.46 224.7

R 205.74 212.02 228.27 251.6 205.74 206.29 207.79 293.7 205.80 215.22 239.09 250.3 207.34 215.88 234.15 301.0 205.74 208.76 217.39 276.9

RC 226.61 242.48 265.34 263.2 227.21 228.51 230.62 329.1 225.88 236.11 253.83 277.6 235.54 260.24 298.01 288.3 231.68 244.50 264.21 284.8

350

C 514.64 557.13 684.48 5299.4 515.08 520.36 531.72 6014.5 515.08 524.48 552.91 5354.9 546.66 608.39 679.61 5292.1 514.13 522.78 539.53 5083.2

R 556.41 600.44 677.15 4631.9 554.42 562.50 578.01 5831.5 553.73 569.55 614.83 4605.6 604.89 647.10 715.61 5524.3 556.69 568.00 608.57 4798.2

RC 547.44 592.01 732.63 4926.2 547.44 550.17 555.64 6048.5 547.44 555.32 592.07 5458.7 594.62 638.40 682.75 5462.0 547.44 555.93 584.84 5588.7

Average 320.35 345.96 408.71 1750.1 319.30 322.91 329.88 2109.0 320.18 331.69 362.38 1815.9 336.52 361.75 396.06 1923.3 320.89 328.15 346.61 1824.0

Table 6. Number of best run on PHHPDP instances

De Type TSC TSI-F-S TSFLS TSILS TSF-I-P

50

C 14 36 21 17 22

R 18 23 18 20 21

RC 12 36 21 21 22

100

C 10 32 22 1 19

R 26 52 19 17 36

RC 16 32 25 6 24

350

C 21 29 29 0 27

R 19 30 22 0 19

RC 30 43 33 0 34

Total 166 313 210 82 224

21

10

15

20

25

30

35

TSC

TSILS

TSFLS

TSF-I-P

TSI-F-S

RC R C

N
u
m

b
e
r

o
f

b
e
s
t

s
o
lu

ti
o
n
s

Small scale instance

0

10

20

30

40

50

TSILS

TSC

TSF-I-P

TSFLS

TSI-F-S

RC R C

N
u
m

b
e
r

o
f

b
e
s
t

s
o
lu

ti
o
n
s

Middle scale instance

0

10

20

30

40

TSILS

TSC

TSF-I-P TSFLS

TSI-F-S

RC R C

 TSI-F-S

 TSFLS

 TSF-I-P

 TSC

 TSILSN
u
m

b
e
r

o
f

b
e
s
t

s
o
lu

ti
o
n
s

Large scale instance

 Figure 2. Number of best run for different scale-type instances

C R RC
195

200

205

210

215

220

225

230

235

TSF-I-P

TSILS

TSI-F-S

TSC

TSFLS
TSILS

TSF-I-P

TSI-F-S

m
e
a
n
 v

a
lu

e
 o

f
th

e

a
v
e
ra

g
e
-s

o
lu

ti
o
n
-c

o
s
t

o
v
e
r

1
0
 r

u
n
s

small scale instances
C R RC

205

210

215

220

225

230

235

240

245

250

255

260

265

TSILS

TSC

TSF-I-P

TSFLS

TSI-F-S

m
e
a
n
 v

a
lu

e
 o

f
th

e

a
v
e
ra

g
e
-s

o
lu

ti
o
n
-c

o
s
t

o
v
e
r

1
0
 r

u
n
s

middle scale instance
C R RC

520

530

540

550

560

570

580

590

600

610

620

630

640

650

TSI-F-S TSF-I-P

TSFLS

TSC

TSILS

m
e
a
n
 v

a
lu

e
 o

f
th

e

a
v
e
ra

g
e
-s

o
lu

ti
o
n
-c

o
s
t

o
v
e
r

1
0
 r

u
n
s

large scale instance

Figure 3. Mean average solution cost over different scale-type instances

In Figure 4, we show routes given by TSI-F-S for the VRPTW C104-based instance. This

instance contains 30 clients and a horizon of 7 days. We show the routes of days 1 and 5. In

Figure 4 each client is labeled with a client-number and its demand type. As stated in Section

5.1, all clients are P1 patients. If a client is also a P2 (or P3) patient, we mark P2 (or P3)

beside this client. Otherwise, this client is marked as P1.

hospital

15,P2

5,P2

4,P2

depot

lab

18,P1

17,P3 16,P3

24,P2

13,P3

14,P3

3,P1

2,P3 0,P1

27,P1

9,P1

20,P1

25,P2

26,P2

Day 1

Depot

9,P1

17,P3 16,P3

22,P1

lab

hospital

15,P2

25,P2

27,P1

8,P3

14,P3

10,P3

0,P1

28,P2

29,P2

6,P2

4,P2

24,P2

Day 5

Figure 4. Routes of TSI-F-S for C104-based test instance

5.4 Real-World Case Study

In this section, we test the performances of our proposed algorithms using field data of

OIKIA Company HHC operations, which is located in Saint-Etienne, a French city of about

450,000 inhabitants. OIKIA provides various levels of home health care depending on

customer’s need. We collected five sets of field data, corresponding to five different weeks

22

(5 working days a week). The customers are citizens of Saint Etienne. Two vehicles provide

HHC services to these customers. Most customers need services two or three days a week.

We use google map (http://maps.google.fr/) to get the travel distance between any two points,

and assume a vehicle speed of 35 KM/h. Detailed field data, e.g., customer number in each

data set, are shown in Table 7. We did not get access to the actual routes, but OIKIA’s

manager and planners gave their rules to assign and schedule the demands. In the current

OIKIA HHC operations, the company has some predetermined rules to construct vehicle

routes. The scheduler develops weekly vehicle scheduling according to these routes

manually. The scheduling includes the following steps: (1) Try to balance the number of

customers served each day, determine the visit day for each customer requiring multiple

visits. At the end of this step, the visit requirements of each day are known. (2) For each day,

the customers are divided into groups according to their geographic distribution, i.e., the zip

codes. Each group is assigned to one vehicle (driver). (3) Calculate the workload of each

vehicle and adjust the customers between vehicle routes with regards to the workload

balancing among different vehicle drivers. For example, exchange and relocate customer

between routes, especially the customers located on the border between different zip districts.

We refer to these solutions executed by the company as the ‘OIKIA solution’.

For each data instance, we have also run our TSI-F-S 10 times, each run with a

computation time of 2 minutes. The costs of OIKIA and TSI-F-S solutions are presented and

compared in Table 7. Columns ‘vehicle1’ and ‘vehicle2’ represent average daily travel

distance of each vehicle, and column ‘Max-route’ represents the travel distance of the longest

route during a week (the optimization objective of this paper). The last column ‘Dev’

indicates the percentage deviations of ‘Max-route’ between OIKIA and our TSI-F-S solutions.

Regarding the longest route during a week, clearly we get better result than that of the

OIKIA solution. For five real-life instances, the longest route’s distances of TSI-F-S is shorter

than that of OIKIA with deviations of 10.08%, 16.59%, 15.73%, 8.41% and 9.31%. The

TSI-F-S approach finds better solutions that balance the workloads of the two vehicles

(drivers). Meanwhile, the superiority of TSI-F-S solution is also notable with regard to the

total travel distances of each vehicle during a week, although it is not the original objective

in our work. TSI-F-S solutions reduce the total travel distances of vehicle 1 and 2 by 2.15%

and 6.88% respectively. For the real-world case study, we find that for some customers

(about 30-40%), the visit days (i.e. the selected pattern) are different between ‘OIKIA

solution’ and our result. Of course, almost for all the routes, their structures are different in

two solutions. But some good components (a visit sequence of some customers) exist in

routes of both solutions. The two main weaknesses of the OIKIA planner’s procedure are: (1)

they not take into account temporal time windows in the clustering step; (2) the clustering is

based on a static geographical decomposition (ZIP codes) which does not depend on actual

instance. Our integrated approach tends to avoid these defaults.

http://maps.google.fr/

23

Table 7. Comparison between the OIKIA solutions and the TSI-F-S solutions

 OIKIA solution (KM) TSI-F-S (KM)

Instance n K vehicle 1 vehicle 2 Max-route vehicle 1 vehicle 2 Max-route Dev.%

Real-1 58 2 96.1 92.9 102.7 92.0 91.7 93.3 -10.08

Real-2 54 2 90.7 99.0 106.8 86.5 87.4 91.6 -16.59

Real-3 50 2 83.5 90.2 98.6 83.8 84.2 85.2 -15.73

Real-4 46 2 88.0 94.2 98.0 87.4 87.8 90.4 -8.41

Real-5 49 2 91.2 97.3 103.3 90.5 92.0 94.5 -9.31

Average 89.9 94.7 101.9 88.0 88.6 91.0 -12.02

 5.5 Test on min-max multiple TSP benchmarks

This section considers a special case with only P1 patients without time window

constraints over a planning horizon of one day. The problem reduces to the classical

Min-Max Multiple Traveling Salesman Problem (min-max MTSP). We test TSI-F-S on the

min-max MTSP benchmark, and compare our results with existing solutions. Golden et al.

[40] proposed a very sophisticated tabu search based adaptive memory procedure to solve a

class of VRPs with min-max objective, including the min-max MTSP. They generated

min-max MTSP test instances and solved them. Somhom et al. [37] designed a

competition-based neural network, denoted NN, for the min-max MTSP. Their results were

still the best known results for these instances. They also generated new standard min-max

MTSP test instances and gave the solutions by their neural network. Meanwhile, Somhom et

al. [37] also solved the Golden’s instances and compared the results.

We test our best approach TSI-F-S on these two sets of test instances, for each of which

two stopping criteria are adopted for the TSI-F-S. The first criterion is defined on the maximal

iteration number of TSI-F-S, i.e., N1=15000, N2=9000 and T=∞. Meanwhile, since Somhom’s

approach is rather fast and Somhom’s running time is shorter than that of Golden’s heuristic,

we adopt maximal run time as the second stop criterion for TSI-F-S. Since Somhom used a

rather old computer (a Sun Sparc 10 with a CPU frequency of about 100 MHz), for each test

instance, we set 10% of Somhom’s computing time as the stop criterion of TSI-F-S, i.e., N1=∞,

N2=∞, and T is the one tenth of Somhom’s computing time. In the following TSI-F-S under

this set of parameters is denoted TSI-F-S′. TSI-F-S algorithm with each stopping criterion runs

10 times for each instance.

Results of our algorithm are detailed in Tables 8 and 9. In Table 8, columns ‘Instance’,

‘n’ and ‘K’ give the instance, the number of patients and vehicles. For each algorithm, the

best solution over 10 runs (see columns ‘Best’) and the average single run computing time in

seconds (see columns ‘CPU’) are given. Deviations between NN and our tabu search

approach with the two stop criteria are given in columns ‘Dev%’.

Similarly, Table 9 compares TSI-F-S with the ATS approach of Golden et al. [40] and NN

24

approach of Somhom et al. [37] on Golden’s test instances. For each Golden’s instance,

Golden et al. were able to generate the best known result. Note that in Table 9, columns

‘Dev’ indicate the deviation between ‘ATS’ and ‘TSI-F-S’ and the deviation between ‘NN’ and

‘TSI-F-S′’, respectively.

Although our heuristics are not designed for the min-max MTSP, results in Tables 8 and 9

indicate that the performance of the proposed TSI-F-S algorithm is still very good. TSI-F-S with

first stop criterion is able to improve the best known solution for 18 out of 24 Somhom’s test

instances. The average best solution cost found by TSI-F-S is 4.17% smaller than the previous

best known solution. Even with reduced running time our approach, TSI-F-S′, still can find

better solutions for 14 out of 24 test instances. Regarding Golden’s instances in Table 9, our

TSI-F-S algorithm with the first stop criterion is able to get 5 new best solutions and find 6

existing best solutions out of 17 instances. But using the first stop criterion, TSI-F-S requires

long computing times compared with ATS, which was running on a SUN SPARC 10.

However, TSI-F-S′ allows getting solutions close to best ones, as the average deviation from

the best solution of the literature is 1.6%. Furthermore, TSI-F-S′ obviously outperforms the

method of Somhom et al. [37]. TSI-F-S′ is able to improve Somhom’s best solutions for 14 out

of 17 instances and gives two new best solutions. The average best solution cost found by

TSI-F-S′ is 1.37% smaller than previous Somhom’s best solution. Despite the bias in the

comparison between algorithms running on different machines, we can state that our

approach gets slightly worse on average than the state of the art heuristic (ATS) on min-max

MTSP, and outperforms another very fast heuristic (NN).

Table 8. Results on Somhom min-max MTSP test instances

Instance N K

NN TSI-F-S′ TSI-F-S

Best CPU
a

Best CPU Dev% Best CPU Dev%

eil22 22 2 157 0.3 159 0.0 1.3 159 2 1.3

 3 117 0.3 115* 0.0 -1.7 115* 2 -1.7

 4 111 0.2 109* 0.0 -1.8 109* 2 -1.8

eil30 30 2 230 0.6 224* 0.1 -2.7 224* 6 -2.7

 3 174 0.4 165* 0.0 -5.5 165* 4 -5.5

 4 171 0.4 156* 0.0 -9.6 156* 4 -9.6

eil51 51 2 247 1.9 224 0.2 -10.3 222* 29 -11.3

 3 170 1.9 161 0.2 -5.6 157* 24 -8.3

 4 136 2.0 126* 0.2 -7.9 126* 23 -7.9

eil76 76 2 289 4.8 281 0.5 -2.9 275* 97 -5.1

 3 205 4.9 205 0.5 0.0 192* 62 -6.8

 4 159 5.1 174 0.5 8.6 155* 51 -2.6

kroA100 100 2 11484 17.3 12077 1.7 4.9 11525 188 0.4

 3 9062 15.9 8783 1.6 -3.2 8054* 147 -12.5

 4 7497 14.8 7079 1.5 -5.9 6729* 127 -11.4

25

kroA150 150 2 14885 24.5 14844 2.5 -0.3 13960* 920 -6.6

 3 10527 23.1 11658 2.3 9.7 10768 485 2.2

 4 8571 22.7 9080 2.3 5.6 8147* 412 -5.2

kroA200 200 2 17353 37.3 17507 3.7 0.9 16045* 2138 -8.2

 3 11502 37.9 12765 3.8 9.9 12359 1354 6.9

 4 10433 33.3 10413 3.3 -0.2 9943* 851 -4.9

eil101 101 2 340 15.1 339 1.2 -0.3 337* 298 -0.9

 3 232 13.6 241 1.4 3.7 237 179 2.1

 4 187 15.5 188 1.6 0.5 187 139 0.0

Average 12.2 1.2 -0.5 314.4 -4.2

a
 CPU times obtained on a SUN SPARC 10;

Asterisk indicates the new best solution and boldface shows best result between TSI-F-S′ and NN.

Table 9. Results on Golden min-max MTSP test instances

Instance n K

ATS TSI-F-S NN TSI-F-S′

Best CPU
a

Best CPU Dev% Best CPU Best CPU Dev%

CMT_50 50 5 110.20 210 110.17* 19.6 0.0 112.70 3.5 110.17* 0.4 -2.3

 6 99.26 190 99.18* 18.9 -0.1 102.23 5.9 99.18* 0.6 -3.1

 7 91.62 160 91.62 19.5 0.0 94.34 10.2 91.62 1.0 -3.0

CMT_75 75 10 91.21 210 91.22 54.4 0.0 94.14 5.3 92.52 0.5 -1.8

 11 88.72 210 89.09 57.4 0.4 93.84 10.7 92.18 1.1 -1.8

 12 88.08 210 88.08 52.0 0.0 90.80 13.3 88.64 1.3 -2.4

CMT100 100 8 111.12 610 110.81* 116.6 -0.3 115.18 11.5 115.66 1.2 0.4

 9 105.39 610 105.48 113.3 0.1 107.34 17.5 109.59 1.7 2.1

 10 100.37 550 101.94 115.6 1.5 105.68 25.7 103.33 2.6 -2.3

CMT150 150 12 100.12 1100 99.99* 318.3 -0.1 104.30 36.5 106.60 3.7 2.2

CMT199 199 15 99.86 51 99.86 825.7 0.0 103.87 40.4 103.22 4.0 -0.6

CMT120 120 7 199.39 1400 199.62 170.2 0.1 202.71 24.6 201.73 2.5 -0.5

CMT12_100 100 10 117.05 7 117.05 101.7 0.0 117.05 6.1 117.05 0.6 0.0

Fisher_71 4 4 65.10 960 65.08 59.3 0.0 65.46 4.5 65.11 0.5 -0.5

 5 5 59.32 790 59.32 36.6 0.0 61.79 6.1 59.74 0.6 -3.4

 6 6 55.19 700 55.10* 44.3 -0.2 58.25 9.0 55.10* 0.9 -5.7

Fisher_134 134 7 293.54 41 293.54 250.4 0.0 296.02 20.4 294.44 2.0 -0.5

Average 471.1 139.6 0.1 14.8 1.5 -1.4
a
 CPU times obtained on a SUN SPARC 10;

Asterisk indicates the new best solution and boldface shows best result between TSI-F-S′ and NN.

5.6 Test on the Periodic Traveling Salesman Problem benchmarks

Besides the min-max objective adopted in this paper, some other objectives, such as total

travel distance minimization, are widely used in VRPs. Our TS algorithm is flexible and can

be extended to other objectives. In this subsection, we simply explain how to extend our

26

heuristic to minimize the total travel distance.

To minimize the total travel distance, we keep the initial solution of Section 4.1 despite

its poor performance for this new objective. During the neighbor search, solutions are

evaluated as f′(s) =c′(s), where c′(s) is the total travel distance. Similar evaluation is needed

in the local search procedure for intra-route improvement. Finally, the aspiration value of

each attribute is the total travel distances of the best feasible solution found with this

attribute.

The modified TSI-F-S is tested on existing Periodic Traveling Salesman Problem (PTSP)

benchmarks. The PTSP can be seen as a special case of our problem with only P1 patients

and only one vehicle on each day. Compared with min-max MTSP solved in Section 5.3, the

PTSP has been extensively studied [19, 64-67]. Note that the classical PTSP has a constraint

that at least one customer must be visited each day, which was introduced by Chao et al. [65].

This constraint is not meaningful in our problem and most real-life applications, so it is

ignored in our heuristic and experiments. In order to test our approach, first, based on the

classical PTSP benchmarks of Cordeau et al. [6], we derive 22 new test instances. We set

new patterns to the customers in the Cordeau’s benchmark, which forbid empty routes on

each day in feasible solutions. Other data, e.g., the locations of the depot and customers are

used directly. TSI-F-S is compared with the tabu search designed by Cordeau et al. [6] for the

PTSP. For each test instance Cordeau’s tabu search is executed 10 times on a 2.66G CPU,

and each run stops with maximal 15000 iterations. Our TSI-F-S also solves each instance 10

times. It is stopped when running time reached the same as Cordeau’s tabu search. Results

are shown in Table 10. Table 10 gives best solution costs of both Cordeau’s algorithm and

TSI-F-S, their running time in second and deviations, where Column ‘t’ gives the number of

days in the planning horizon. TSI-F-S is competitive with respect to Cordeau’s algorithm.

TSI-F-S is able to find 6 better solutions out of 22 test instances and the same best solutions

for 8 instances. For the 8 remaining instances, Cordeau’s approach outperforms TSI-F-S

algorithm. The superiority and difference between TSI-F-S and Cordeau’s algorithm are not

clear. Both approaches use similar schemes and our approach wastes time in infeasible local

search designed to deal with constraints that do not exist in PTSP that does not have time

windows and precedence constraints.

Meanwhile, we find PTSP computational experiments of Cacchiani et al. [27] also relax

the constraint of at least one customer visited every day. We compare our TSI-F-S with the

set-covering based heuristic of Cacchiani et al. on series of classical PTSP instances.

Cacchiani et al. executed their heuristic on an Intel Xeon 2.67 GHz CPU for solving each

PTSP instance, with a time limit of 2 hours. We used TSI-F-S to solve each instance 10 times.

For small instances (less than 100 customers), we set the stop criterion as the total running

time of 5 minutes, and for larger instances the TSI-F-S was executed with time limit of 15

minutes. The comparison is presented in Table 11. To have a full comparison with all other

27

PTSP methods, we also present in Table 11 results of the following state-of-the-art

algorithms: the heuristics of Chao et al. [65] in column ‘CGW’ and of Paletta [66] in ‘P’, the

tabu search of Cordeau et al. [6] in ‘CGL’, the heuristic algorithms of Bertazzi et al. [67] in

‘BPS’ and of Hemmelmayr et al. [19] in ‘HDH’, and a set-covering based heuristic algorithm

of Cacchiani et al. [27] in ‘CHT’. Since both Cacchiani et al. [27] and our TSI-F-S neglect the

constraint introduced by Chao et al. [65], results of these two approaches may not be feasible

with respect to this constraint. Such results are marked with double asterisks ‘**’. We

consider all instances in the computation of the average percentage gap with approach of

Cacchiani et al. For other state-of-the-art algorithms, we do not consider these ‘infeasible’

instances when calculating percentage gaps. As shown in Table 11, CHT finds 3 new best

solutions which break Chao et al. constraint (p03, p06 and p09), while TSI-F-S finds 7 such

solutions (p01, p03, p04, p06, p09, p17 and p19). For three common instances p03, p06 and

p09, TSI-F-S finds better solutions than CHT. Besides these new solutions, TSI-F-S reaches the

same best solutions 5 times (instances p11-p15).

 Although our approach is able to find new best solutions, it is slightly dominated on

average by several specialized algorithms; the gaps among other algorithms are: -0.96%,

0.78%, 0.26%, 0.73%, 1.95% and 1.44%. Such results cannot completely prove the benefit

of TSI-F-S for solving the classical PTSP when compared with specialized state-of-the-art

algorithms. However, we think that the results on PTSP are acceptable for an approach

which includes many useless features for this problem. Moreover, algorithms considering

explicitly the Chao et al. constraint are favored on some instances. The Chao et al. constraint

requires all vehicles to be used. It reduces the solution space and can be easily handled in

many solution algorithms. TSI-F-S and CHT are therefore penalized, when the best (near

optimum) solutions of the PTSP without Chao et al. constraint satisfy this constraint. In such

cases, both approaches have to explore a larger solution space. The comparison between

CHT and TSI-F-S shows that TSI-F-S outperforms CHT when best solutions found do not satisfy

Chao et al. constraint, and CHT outperforms TSI-F-S in the opposite case. In other words, we

state that TSI-F-S performs better than CHT when best solutions do not use all vehicles, and it

performs worse otherwise. It means that TSI-F-S can be improved when it is likely that not all

vehicles will be used.

Table 10. Results on New Periodic Traveling Salesman Problem test instances

Instance n t Cordeau TSI-F-S CPU Dev%

t-p1-new 50 2 552.28 551.46 4.8 -0.15

t-p2-new 50 5 1129.80 1127.41 5.4 -0.21

t-p3-new 50 5 590.58 590.58 3.6 0.00

t-p4-new 75 2 591.03 593.92 9.0 0.49

t-p5-new 75 5 1387.62 1394.73 9.6 0.51

t-p6-new 75 10 817.87 849.31 7.2 3.70

28

t-p7-new 100 2 690.90 688.26 14.4 -0.38

t-p8-new 100 5 1621.08 1676.45 15.0 3.30

t-p9-new 100 8 977.58 964.31 9.6 -1.38

t-p10-new 100 5 1373.60 1398.28 13.8 1.77

t-p11-new 65 4 490.97 490.97 6.0 0.00

t-p12-new 87 4 664.10 664.10 9.0 0.00

t-p13-new 109 4 830.80 830.80 13.2 0.00

t-p14-new 131 4 994.60 994.60 18.0 0.00

t-p15-new 153 4 1157.07 1157.07 23.4 0.00

t-p16-new 48 4 742.90 722.82 4.2 -2.78

t-p17-new 66 4 918.44 918.44 6.6 0.00

t-p18-new 84 4 935.13 935.13 10.2 0.00

t-p19-new 102 4 1079.30 1097.58 13.8 1.67

t-p20-new 120 4 1206.45 1198.96 15.6 -0.62

t-p21-new 77 4 1396.18 1396.77 7.8 0.04

t-p22-new 154 4 4326.08 4375.27 24.0 1.12

Average 0.32

Boldface shows better result between two approaches.

Table 11. Results on classical Periodic Traveling Salesman Problem test instances

Instance CGW P CGL BPS HDH CHT TSI-F-S

p01 442.1 436.50 439.02 436.50 432.10 432.10 428.98**

p02 1106.7 1122.44 1111.93 1122.44 1106.84 1105.81 1111.93

p03 474.0 469.16 469.69 469.64 467.42 446.17** 428.98**

p04 554.2 559.68 556.21 559.49 552.39 550.07 547.24**

p05 1394.0 1387.90 1389.54 1384.75 1384.58 1384.15 1384.58

p06 657.3 643.59 651.28 655.06 652.65 581.94** 556.82**

p07 662.4 ─ 660.41 646.65 649.17 658.09 657.89

p08 1635.2 ─ 1634.68 1633.92 1615.51 1612.60 1624.58

p09 735.3 ─ 734.16 733.13 729.33 698.04** 660.54**

p10 1248.8 ─ 1240.01 1249.15 1237.72 1239.96 1245.71

p11 491.0 490.97 490.97 490.97 490.97 490.97 490.97

p12 664.1 664.10 664.10 664.10 664.10 664.10 664.10

p13 830.8 830.80 830.80 830.80 830.80 830.80 830.80

p14 994.6 994.60 994.60 994.60 994.60 994.60 994.60

p15 1157.1 1157.07 1157.07 1157.07 1157.07 1157.12 1157.07

p16 726.8 660.12 660.12 660.12 660.12 649.96 662.28

p17 776.5 776.43 776.43 776.43 776.71 774.54 764.49**

p18 873.7 876.44 873.73 876.44 875.82 887.05 887.05

p19 974.6 958.51 958.88 958.51 965.54 974.60 939.35**

p20 1053.6 1033.58 1034.51 1033.58 1035.51 1053.59 1077.85

p21 1379.1 ─ 1375.08 1375.07 1375.07 1375.08 1375.08

29

p22 4323.6 ─ 4319.72 4323.49 4312.31 4312.32 4318.07

p23 8753.3 8390.53 8553.10 8498.00 8349.26 8405.10 8554.91

pr01 ─ 2064.84 2068.46 2064.84 2064.84 2064.84 2076.89

pr02 ─ 3232.72 3293.50 3231.50 3208.49 3208.22 3317.17

pr03 ─ 4084.75 4106.72 4118.63 4045.73 4065.15 4120.76

pr04 ─ 4636.67 4661.97 4621.36 4547.77 4557.92 4689.63

pr05 ─ 4757.90 4698.83 4682.54 4628.24 4623.86 4707.66

pr06 ─ 5688.42 5699.96 5595.45 5529.68 5559.11 5699.84

pr07 ─ 4479.65 4453.15 4474.17 4436.31 4446.60 4458.21

pr08 ─ ─ 5405.40 5475.70 5370.59 5383.44 5475.72

pr09 ─ 7405.52 7469.73 7346.32 7244.02 7256.65 7464.23

pr10 ─ 8394.52 8493.74 8415.31 8216.48 8243.32 8492.69

Dev% -0.96 0.78 0.26 0.73 1.95 1.44

Boldface shows the best result among approaches.

6 Conclusions and future research

This paper investigates a special periodic vehicle routing problem with time windows in

home health care industry, an extension of the classical PVRP and PTSP. The problem is of

interest because of its theoretical complexity and of the important practical applications in

the home health care logistics. We propose hybridization of tabu search and different local

search schemes, for solving this complex problem. One salient feature of our approach is the

hybridization of feasible and infeasible local search methods in the tabu search algorithm for

solving the vehicle routing problem. Different integration strategies of feasible and infeasible

local searches are tested on different scales and types test instances. We find experimentally

that infeasible local search with small probability followed by a feasible local search with

high probability outperforms other strategies. Our proposed methods are also extensively

tested on different test instances, including VRPTW-based benchmarks, min-max Multiple

TSP, Periodic Traveling Salesman Problem, and real-life data from a HHC company.

Future research can be pursued in several directions. First, it is interesting to consider

explicitly the planning decision and daily routing decisions instead of the implicit patient

demand pattern model of this paper. This requires the modeling of patient demand and the

therapeutic protocols of patients. Another important research direction is to take into account

the uncertainties of demand and availabilities times in the planning and routing decisions.

Another relevant research direction is the real time routing decisions to face arrival of

emergency demands and random perturbations.

Acknowledgement

This project is partly supported by Saint Etienne Metropole, the labex IMOBS3, and

National Natural Science Foundation of China (NSFC) under Grant 71131005.

30

References

[1] Cordeau JF, Laporte G, Mercier A. A unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the Operational Research Society. 2001;52:928-36.

[2] Bektas T. The multiple traveling salesman problem: an overview of formulations and

solution procedures. Omega. 2006;34:209-19.

[3] Carter AE, Ragsdale CT. Scheduling pre-printed newspaper advertising inserts using

genetic algorithms. Omega. 2002;30:415-21.

[4] Gendreau M, Hertz A, Laporte G, Stan M. A Generalized Insertion Heuristic for the

Traveling Salesman Problem with Time Windows. Operations Research. 1998;46:330-5.

[5] Savelsbergh MWP. Local search in routing problems with time windows. Annals of

Operations Research. 1985;4:285-305.

[6] Cordeau JF, Gendreau M, Laporte G. A tabu search heuristic for periodic and multi-depot

vehicle routing problems. Networks. 1997;30:105-19.

[7] Begur SV, Miller DM, Weaver JR. An integrated spatial DSS for scheduling and routing

home-health-care nurses. Interfaces. 1997;27:35-48.

[8] Cheng E, Rich JL. A Home Health Care Routing and Scheduling Problem. Technical

Report, Rice University, Houston, Texas, USA. 1998.

[9] Bertels S, Fahle T. A hybrid setup for a hybrid scenario: combining heuristics for the

home health care problem. Computers & Operations Research. 2006;33:2866-90.

[10] Eveborn P, Flisberg P, Rönnqvist M. Laps Care—an operational system for staff

planning of home care. European Journal of Operational Research. 2006;171:962-76.

[11] Kergosien Y, Lenté C, Billaut JC. Home health care problem: An extended multiple

traveling salesman problem. Multidisciplinary International Conference on Scheduling :

Theory and Applications. Dublin, Ireland2009. p. 10-2.

[12] Trautsamwieser A, Gronalt M, Hirsch P. Securing home health care in times of natural

disasters. OR Spectrum. 2011;33:787-813.

[13] Nickel S, Schröder M, Steeg J. Mid-term and short-term planning support for home

health care services. European Journal of Operational Research. 2012;219:574-87.

[14] Beltrami EJ, Bodin LD. Networks and vehicle routing for municipal waste collection.

Networks. 1974;4:65-94.

[15] Russell R, Igo W. An assignment routing problem. Networks. 1979;9:1-17.

[16] Christofides N, Beasley JE. The period routing problem. Networks. 1984;14:237-56.

[17] Chao I, Golden BL, Wasil E. An improved heuristic for the period vehicle routing

problem. Networks. 1995;26:25-44.

[18] Mourgaya M, Vanderbeck F. Column generation based heuristic for tactical planning in

multi-period vehicle routing. European Journal of Operational Research. 2007;183:1028-41.

[19] Hemmelmayr VC, Doerner KF, Hartl RF. A variable neighborhood search heuristic for

periodic routing problems. European Journal of Operational Research. 2009;195:791-802.

[20] Pirkwieser S, Raidl GR. Boosting a Variable Neighborhood Search for the Periodic

Vehicle Routing Problem with Time Windows by ILP Techniques. Proceedings of the 8th

Metaheuristic International Conference (MIC 2009), Hamburg, Germany, July 2009.

31

[21] Pirkwieser S, Raidl GR. Multilevel Variable Neighborhood Search for Periodic Routing

Problems. In: Cowling P, Merz P, editors. Evolutionary Computation in Combinatorial

Optimization: Springer Berlin / Heidelberg; 2010:226-38.

[22] Pirkwieser S, Raidl GR. A Column Generation Approach for the Periodic Vehicle

Routing Problem with Time Windows. Proceedings of the International Network

Optimization Conference 2009, Pisa, Italy, April 2009, 26-29.

[23] Pirkwieser S, Raidl GR. Matheuristics for the periodic vehicle routing problem with

time windows. Proceedings of Matheuristics. 2010: third international workshop on

model-based metaheuristics, Vienna, Austria, June 2010, 28-30.

[24] Gulczynski D, Golden B, Wasil E. The period vehicle routing problem: New heuristics

and real-world variants. Transportation Research Part E: Logistics and Transportation

Review. 2011;47:648-68.

[25] Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W. A Hybrid Genetic Algorithm for

Multidepot and Periodic Vehicle Routing Problems. Operations Research. 2012;60:611-24.

[26] Vidal T, Crainic TG, Gendreau M, Prins C. A hybrid genetic algorithm with adaptive

diversity management for a large class of vehicle routing problems with time-windows.

Computers & Operations Research. 2013;40:475-89.

[27] Cacchiani V, Hemmelmayr VC, Tricoire F. A set-covering based heuristic algorithm for

the periodic vehicle routing problem. Discrete Applied Mathematics. 2014;163, Part 1:53-64.

[28] Baldacci R, Bartolini E, Mingozzi A, Valletta A. An exact algorithm for the period

routing problem. Operations Research. 2011;59:228-41.

[29] Lacomme P, Prins C, Ramdane-Chérif W. Evolutionary algorithms for periodic arc

routing problems. European Journal of Operational Research. 2005;165:535-53.

[30] Cornillier F, Boctor FF, Laporte G, Renaud J. A heuristic for the multi-period petrol

station replenishment problem. European Journal of Operational Research.

2008;191:295-305.

[31] Angelelli E, Bianchessi N, Mansini R, Speranza MG. Short Term Strategies for a

Dynamic Multi-Period Routing Problem. Transportation Research Part C: Emerging

Technologies. 2009;17:106-19.

[32] Wen M, Cordeau JF, Laporte G, Larsen J. The dynamic multi-period vehicle routing

problem. Computers & Operations Research. 2010;37:1615-23.

[33] Angelelli E, Grazia Speranza M. The periodic vehicle routing problem with

intermediate facilities. European Journal of Operational Research. 2002;137:233-47.

[34] Francis P, Smilowitz K, Tzur M. The period vehicle routing problem with service choice.

Transportation Science. 2006;40:439-54.

[35] Yu B, Yang ZZ. An ant colony optimization model: The period vehicle routing problem

with time windows. Transportation Research Part E: Logistics and Transportation Review.

2011;47:166-81.

[36] França PM, Gendreau M, Laporte G, Müller FM. The m-traveling salesman problem

with minmax objective. Transportation Science. 1995;29:267-75.

[37] Somhom S, Modares A, Enkawa T. Competition-based neural network for the multiple

travelling salesmen problem with minmax objective. Computers & Operations Research.

1999;26:395-407.

32

[38] Modares A, Somhom S, Enkawa T. A self‐organizing neural network approach for

multiple traveling salesman and vehicle routing problems. International Transactions in

Operational Research. 1999;6:591-606.

[39] Arkin EM, Hassin R, Levin A. Approximations for minimum and min-max vehicle

routing problems. Journal of Algorithms. 2006;59:1-18.

[40] Golden BL, Laporte G, Taillard ÉD. An adaptive memory heuristic for a class of vehicle

routing problems with minmax objective. Computers & Operations Research.

1997;24:445-52.

[41] Valle CA, Martinez LC, da Cunha AS, Mateus GR. Heuristic and exact algorithms for a

min–max selective vehicle routing problem. Computers & Operations Research.

2011;38:1054-65.

[42] Dumas Y, Desrosiers J, Soumis F. The pickup and delivery problem with time windows.

European Journal of Operational Research. 1991;54:7-22.

[43] Savelsbergh M, Sol M. DRIVE: Dynamic routing of independent vehicles. Operations

Research. 1998;46:474-90.

[44] Bard JF, Jarrah AI. Integrating commercial and residential pickup and delivery networks:

A case study. Omega. 2013;41:706-20.

[45] Bent R, Hentenryck PV. A two-stage hybrid algorithm for pickup and delivery vehicle

routing problems with time windows. Computers & Operations Research. 2006;33:875-93.

[46] Ropke S, Cordeau JF, Laporte G. Models and branch‐and‐cut algorithms for pickup

and delivery problems with time windows. Networks. 2007;49:258-72.

[47] Ropke S, Cordeau JF. Branch and cut and price for the pickup and delivery problem

with time windows. Transportation Science. 2009;43:267-86.

[48] Gribkovskaia I, Laporte G, Shlopak A. A Tabu Search Heuristic for a Routing Problem

Arising in Servicing of Offshore Oil and Gas Platforms. The Journal of the Operational

Research Society. 2008;59:1449-59.

[49] Qian F, Gribkovskaia I, Laporte G, Halskau sr Ø. Passenger and pilot risk minimization

in offshore helicopter transportation. Omega. 2012;40:584-93.

[50] Ma H, Cheang B, Lim A, Zhang L, Zhu Y. An investigation into the vehicle routing

problem with time windows and link capacity constraints. Omega. 2012;40:336-47.

[51] Yu B, Yang ZZ, Yao B. An improved ant colony optimization for vehicle routing

problem. European Journal of Operational Research. 2009;196:171-6.

[52] Jozefowiez N, Semet F, Talbi E-G. An evolutionary algorithm for the vehicle routing

problem with route balancing. European Journal of Operational Research. 2009;195:761-9.

[53] Reimann M, Doerner K, Hartl RF. D-ants: Savings based ants divide and conquer the

vehicle routing problem. Computers & Operations Research. 2004;31:563-91.

[54] Prins C. A simple and effective evolutionary algorithm for the vehicle routing problem.

Computers & Operations Research. 2004;31:1985-2002.

[55] Gajpal Y, Abad P. An ant colony system (ACS) for vehicle routing problem with

simultaneous delivery and pickup. Computers & Operations Research. 2009;36:3215-23.

[56] Della Croce F, Garaix T, Grosso A. Iterated local search and very large neighborhoods

for the parallel-machines total tardiness problem. Computers & Operations Research.

2012;39:1213-7.

33

[57] Brandão J. A tabu search algorithm for the open vehicle routing problem. European

Journal of Operational Research. 2004;157:552-64.

[58] Gendreau M, Hertz A, Laporte G. New insertion and postoptimization procedures for

the traveling salesman problem. Operations Research. 1992;40:1086-94.

[59] Braysy O, Gendreau M. Vehicle routing problem with time windows, Part I: Route

construction and local search algorithms. Transportation Science. 2005;39:104-18.

[60] Pedamallu CS, Ozdamar L. Investigating a hybrid simulated annealing and local search

algorithm for constrained optimization. European Journal of Operational Research.

2008;185:1230-45.

[61] Tseng LY, Lin YT. A hybrid genetic local search algorithm for the permutation flowshop

scheduling problem. European Journal of Operational Research. 2009;198:84-92.

[62] Solomon MM. Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research. 1987;35:254-65.

[63] Gehring H, Homberger J. A parallel hybrid evolutionary metaheuristic for the vehicle

routing problem with time windows. 1999.

[64] Paletta G. A multiperiod traveling salesman problem: Heuristic algorithms. Computers

& Operations Research. 1992;19:789-95.

[65] Chao IM, Golden BL, Wasil EA. A new heuristic for the period traveling salesman

problem. Computers & Operations Research. 1995;22:553-65.

[66] Giuseppe P. The period traveling salesman problem: a new heuristic algorithm.

Computers & Operations Research. 2002;29:1343-52.

[67] Bertazzi L, Paletta G, Speranza MG. An improved heuristic for the period traveling

salesman problem. Computers & Operations Research. 2004;31:1215-22.

34

Appendix

This appendix gives detailed computational results for VRPTW-based test instances. In these

tables, ‘Instance’ refers to the instance label, ‘Best’, ‘AVG’ and ‘Worst’ are the best, the

average and the worst solution cost of the 10 independent runs for each instance, ‘BR’ is the

number of best runs, ‘CPU’ is the computational time in seconds.

35

Table 12. Detailed results on comparison of different pILS settings in TSI-F-S

pFLS=80% and pILS=0% pFLS=80% and pILS=2% pFLS=80% and pILS=5% pFLS=80% and pILS=10%

Instance Best Average Worst BR Best Average Worst BR Best Average Worst BR Best Average Worst BR

C101_30 214.65 284.56 526.75 0 207.06 210.13 233.24 0 205.75 208.18 214.33 2 207.06 208.00 214.65 0

C104_30 190.36 200.88 232.68 0 175.62 194.68 221.71 2 175.62 188.01 201.44 1 175.62 191.08 205.58 1

C109_60 223.39 234.81 252.52 3 223.39 223.39 223.39 10 223.39 223.39 223.39 10 223.39 225.68 246.26 9

C201_60 220.26 248.40 284.76 0 215.20 219.08 223.70 0 215.32 223.19 228.24 0 218.38 223.60 228.93 0

R108_30 188.49 206.04 221.72 1 188.49 190.26 206.14 9 188.49 188.50 188.50 5 188.49 189.90 202.58 5

R207_30 231.01 239.58 245.66 0 234.83 236.09 245.23 0 232.06 235.68 241.28 0 230.94 235.45 243.07 1

R210_60 208.84 230.13 246.23 1 208.84 211.56 215.63 6 208.84 211.56 215.63 6 208.84 210.52 218.80 8

RC105_60 197.59 220.01 256.87 0 193.09 194.50 197.85 4 193.09 194.48 197.03 1 193.44 194.99 199.04 0

RC201_60 214.22 243.01 276.22 1 229.62 233.26 239.21 0 236.62 240.37 244.53 0 237.68 241.12 244.86 0

RC204_60 228.22 231.14 250.01 8 228.22 229.66 242.62 9 228.22 228.22 228.22 10 228.22 230.23 248.30 9

pFLS=80% and pILS=20% pFLS=80% and pILS=30% pFLS=80% and pILS=40% pFLS=80% and pILS=50%

Instance Best Average Worst BR Best Average Worst BR Best Average Worst BR Best Average Worst BR

C101_30 207.14 209.12 219.24 0 207.06 209.60 229.24 0 207.14 209.48 229.24 0 207.14 212.88 233.24 0

C104_30 175.62 195.38 205.92 1 175.62 194.23 208.92 1 175.62 192.82 214.23 1 183.67 193.95 202.15 0

C109_60 223.39 225.15 241.02 9 223.39 223.63 225.15 8 223.39 227.44 246.26 8 223.39 225.99 241.02 6

C201_60 215.32 222.75 241.37 0 215.25 224.10 241.43 0 216.39 231.19 247.89 0 213.32 234.87 256.97 1

R108_30 188.49 193.57 239.18 6 188.49 193.89 241.95 3 188.49 196.86 239.77 2 188.49 188.49 188.50 7

R207_30 232.03 235.68 243.41 0 230.94 234.57 235.66 1 234.83 235.39 238.37 0 230.94 235.07 238.37 1

R210_60 208.84 212.91 215.63 4 208.84 214.95 215.63 3 208.84 214.90 220.45 2 208.84 214.53 215.63 1

RC105_60 196.49 197.75 202.45 0 196.49 199.95 205.56 0 199.36 209.28 221.20 0 197.81 217.13 285.52 0

RC201_60 229.03 238.42 245.70 0 229.62 235.74 239.80 0 228.97 240.74 250.69 0 229.59 242.79 251.97 0

RC204_60 228.22 230.89 248.30 8 228.22 234.38 268.03 8 228.22 228.22 228.22 10 228.22 231.06 241.44 7

36

Table 13. Detailed results on small scale VRPTW-based instances

TSC TSI-F-S TSFLS TSILS TSF-I-P

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU

C101 50 214.33 290.60 461.07 0 55.6 205.75 212.08 233.24 1 62.2 214.65 284.56 526.75 0 71.1 207.14 212.42 231.85 0 53.5 207.14 217.73 240.16 0 57.4

C104 50 175.62 194.85 212.49 1 48.9 175.62 190.55 202.04 1 56.7 190.36 200.88 232.68 0 51.9 175.62 189.32 202.04 1 58.0 175.62 192.44 202.04 1 48.2

C109 50 220.53 223.78 253.04 9 51.6 220.53 220.53 220.53 10 53.3 220.53 220.98 225.02 9 53.5 220.53 220.58 221.00 9 57.4 220.53 223.74 252.61 9 54.3

C201 50 218.35 255.00 384.00 1 55.7 218.35 218.35 218.35 10 58.4 218.35 246.01 352.23 3 65.9 220.85 247.17 331.17 0 58.4 218.35 221.61 242.76 4 48.3

C203 50 229.74 235.07 244.73 1 52.9 229.74 230.63 238.63 9 45.0 229.74 239.61 296.80 2 47.7 229.74 233.41 242.67 5 51.3 229.74 230.37 233.63 5 59.3

C208 50 194.77 199.21 227.38 2 49.6 194.77 196.00 200.82 5 58.7 194.77 200.21 245.31 7 57.7 194.77 197.10 203.28 2 47.1 194.77 198.37 209.71 3 51.4

R101 50 181.10 190.48 203.54 4 44.9 181.10 187.79 207.49 2 40.4 181.10 194.35 207.49 1 46.0 181.10 182.66 194.10 2 59.5 181.10 187.75 194.10 1 48.7

R104 50 186.85 194.94 221.75 2 43.8 186.85 187.34 188.02 2 48.4 186.85 187.19 188.01 4 46.0 186.85 187.49 188.02 3 48.6 186.85 187.28 188.02 4 48.1

R108 50 188.49 213.28 252.48 1 38.2 188.49 190.32 197.61 5 47.6 188.49 206.04 221.72 1 49.8 188.49 189.30 195.60 2 53.9 188.49 195.99 220.46 2 58.9

R110 50 182.46 182.46 182.46 10 34.4 182.46 182.46 182.46 10 34.7 182.46 182.46 182.46 10 35.4 182.46 182.46 182.46 10 36.2 182.46 182.46 182.46 10 36.7

R207 50 231.55 240.12 248.50 0 43.8 231.01 234.78 235.92 0 61.6 231.01 239.58 245.66 0 62.4 231.01 235.42 241.28 0 52.9 230.94 234.61 235.92 1 60.8

R210 50 186.98 228.61 282.77 1 56.2 186.98 206.19 241.15 4 68.6 186.98 208.32 237.12 2 49.5 186.98 210.57 240.89 3 64.5 186.98 203.08 231.59 3 51.2

RC103 50 185.17 191.24 226.37 4 49.9 185.17 185.37 187.19 9 50.5 185.17 185.71 188.22 8 51.5 185.17 185.52 188.22 8 46.7 185.17 185.30 186.44 9 54.5

RC105 50 189.11 189.54 193.38 0 50.1 186.45 187.78 189.11 5 55.9 186.45 189.27 193.38 1 44.4 186.45 189.27 193.38 1 57.7 189.11 191.91 199.55 0 47.1

RC108 50 226.27 247.79 265.00 0 55.9 207.80 223.27 247.44 6 62.1 242.16 257.99 286.09 0 59.7 209.10 238.69 256.87 0 67.2 244.87 246.90 256.25 0 60.1

RC201 50 217.86 241.81 291.01 5 60.6 217.86 217.89 218.03 8 53.7 217.86 229.13 276.46 7 45.4 217.86 217.95 218.03 5 56.0 217.86 218.02 218.48 6 47.7

RC204 50 182.17 212.12 278.85 1 51.3 182.17 183.30 192.45 8 69.9 182.17 184.95 193.18 4 46.9 182.17 183.94 197.39 7 66.7 182.17 186.13 208.78 6 49.9

RC208 50 240.81 255.76 316.10 2 64.6 241.47 246.54 253.88 0 76.5 240.81 248.12 253.88 1 53.2 241.47 250.73 255.57 0 78.6 240.81 246.24 253.88 1 74.9

37

Table 14. Detailed results on medium scale VRPTW-based instances

TSC TSI-F-S TSFLS TSILS TSF-I-P

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU

C101 100 230.39 247.35 300.83 0 222.0 228.22 229.81 230.82 1 318.7 228.22 238.99 250.32 1 221.5 255.52 286.89 315.33 0 268.8 230.39 233.98 244.56 0 243.2

C104 100 228.13 231.42 251.88 6 208.1 228.13 228.13 228.13 10 212.8 228.13 232.64 251.87 7 247.9 228.13 234.19 257.76 1 198.8 228.13 228.79 231.42 8 184.0

C109 100 224.67 249.40 337.61 0 264.8 223.39 223.39 223.39 10 227.8 223.39 234.81 252.52 3 289.4 242.28 258.58 274.10 0 290.0 223.39 238.14 276.49 2 217.5

C201 100 218.16 252.04 276.90 0 242.2 215.25 218.45 223.11 1 345.7 220.26 248.40 284.76 0 217.2 251.60 279.55 313.82 0 287.5 218.45 230.24 247.11 0 269.6

C203 100 226.01 250.82 359.67 4 173.3 226.01 226.01 226.01 10 242.8 226.01 226.01 226.01 10 190.4 227.36 259.07 285.81 0 224.0 226.01 227.58 241.73 9 185.8

C208 100 214.55 239.92 271.49 0 254.8 199.33 203.20 205.02 0 429.6 196.00 220.83 234.17 1 270.9 205.02 242.36 295.94 0 370.3 204.67 211.58 231.43 0 247.9

R101 100 197.22 204.61 220.54 3 316.7 197.22 197.22 197.22 10 472.6 197.22 216.58 305.88 3 321.2 197.22 201.19 219.85 7 565.1 197.22 197.22 197.22 10 336.0

R104 100 200.73 201.91 210.00 5 302.4 200.73 200.81 201.52 9 360.0 200.73 206.94 232.62 4 303.3 203.43 214.43 222.91 0 268.5 200.73 201.37 206.91 7 346.2

R108 100 196.38 203.77 218.44 2 226.8 196.38 196.89 201.10 7 288.3 196.74 204.91 211.18 0 243.0 196.38 207.34 250.13 1 276.7 196.38 200.57 213.76 3 299.9

R110 100 228.08 229.10 238.19 8 206.6 228.08 228.08 228.08 10 230.9 228.08 229.57 235.46 1 215.2 228.20 237.90 263.19 3 260.3 228.08 230.76 237.85 4 248.6

R207 100 203.17 209.06 239.95 6 240.9 203.17 203.17 203.17 10 205.4 203.17 203.17 203.17 10 183.6 203.17 203.20 203.42 9 224.8 203.17 203.17 203.17 10 218.3

R210 100 208.84 223.65 242.50 2 216.0 208.84 211.56 215.63 6 205.3 208.84 230.13 246.23 1 235.2 215.63 231.21 245.42 0 210.4 208.84 219.45 245.42 2 212.6

RC103 100 245.46 265.78 294.05 0 300.5 245.07 246.82 252.69 1 370.2 245.46 249.36 258.82 1 221.4 254.71 283.53 307.69 1 349.1 249.63 261.38 298.34 1 377.8

RC105 100 195.64 226.76 273.15 0 344.8 193.09 194.28 196.57 1 506.6 197.59 220.01 256.87 0 357.5 205.11 225.82 282.00 0 341.5 198.86 214.77 225.80 0 357.9

RC108 100 241.51 246.59 266.30 5 210.2 241.51 241.51 241.51 10 233.3 241.51 244.88 252.78 5 225.8 247.05 252.66 268.21 0 260.4 241.51 245.09 257.06 4 235.7

RC201 100 220.59 243.81 263.16 0 287.5 227.10 231.95 236.46 0 417.1 214.22 243.01 276.22 1 301.2 249.88 317.02 367.18 0 240.6 243.61 289.27 347.56 0 263.2

RC204 100 228.22 242.73 258.90 3 248.5 228.22 228.22 228.22 10 257.6 228.22 231.14 250.01 8 328.5 228.22 238.86 258.20 3 282.2 228.22 228.22 228.22 10 277.8

RC208 100 228.25 229.19 236.45 8 187.3 228.25 228.25 228.25 10 189.8 228.25 228.25 228.25 10 231.4 228.25 243.52 304.80 3 256.0 228.25 228.25 228.25 10 196.1

38

Table 15. Detailed results on large scale VRPTW-based instances

TSC TSI-F-S TSFLS TSILS TSF-I-P

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU

C1_4_1 350 525.85 531.41 551.20 4 5137.9 525.85 530.11 549.86 4 6241.5 525.85 546.79 612.73 4 4107.8 553.93 608.91 674.62 0 4729.6 525.85 533.71 559.91 7 4785.8

C1_4_5 350 557.61 606.43 769.88 4 5088.3 557.61 558.75 565.94 7 5857.3 557.61 563.25 578.90 7 5427.0 599.11 636.21 672.47 0 4966.0 557.61 566.30 578.90 5 4362.2

C1_4_8 350 542.56 542.56 542.56 10 5208.8 542.56 542.56 542.56 10 5978.4 542.56 545.57 572.64 9 4401.4 555.11 651.26 805.94 0 5342.3 542.56 542.78 544.76 5 5442.0

C2_4_3 350 469.17 588.25 878.67 0 5258.5 469.11 469.95 474.20 7 5923.9 469.11 471.51 475.43 5 5553.4 538.10 604.56 654.02 0 5779.7 469.11 472.76 492.50 5 5663.2

C2_4_7 350 505.09 556.92 764.40 0 5891.3 507.76 523.36 542.87 0 6901.1 507.76 527.60 549.91 0 6381.2 533.38 601.88 659.84 0 5644.2 502.07 519.05 535.22 1 4602.0

C2_4_9 350 487.57 517.20 600.18 3 5211.4 487.57 497.46 514.91 1 5184.7 487.57 492.14 527.86 4 6258.6 500.31 547.53 610.77 0 5290.7 487.57 502.08 525.86 4 5644.1

R1_4_2 350 501.08 519.08 569.88 3 4860.2 505.27 510.63 518.88 0 6674.6 501.13 535.46 641.32 0 5075.8 557.63 596.26 665.74 0 4683.8 518.88 538.95 570.77 0 5001.5

R1_4_3 350 572.00 591.45 654.91 6 5431.9 572.00 572.00 572.00 10 5008.0 572.00 608.79 717.36 5 4209.3 584.42 607.63 615.46 0 5886.3 572.00 582.70 646.56 7 4576.2

R1_4_7 350 536.12 544.21 571.18 1 4744.6 536.12 536.60 539.21 2 5874.6 536.13 547.36 578.45 0 4706.5 596.59 626.75 692.43 0 4892.2 536.13 544.78 576.54 0 4817.5

R2_4_1 350 601.41 611.80 657.72 8 3831.1 601.41 601.41 601.41 10 5517.5 601.41 601.41 601.41 10 3763.4 614.31 692.81 763.59 0 5395.0 601.41 602.94 616.69 9 4091.8

R2_4_5 350 552.85 643.50 775.12 1 4860.2 552.85 592.26 661.72 1 6969.6 552.85 554.97 572.70 5 5725.5 598.55 641.73 716.12 0 5644.9 552.85 569.38 663.46 2 5106.8

R2_4_8 350 575.02 692.58 834.06 0 4063.5 558.88 562.11 574.81 7 4945.0 558.88 569.31 577.76 2 4153.0 677.84 717.39 840.33 0 6643.4 558.88 569.25 577.37 1 5195.4

RC1_4_3 350 570.71 581.48 609.91 4 5271.3 570.71 570.71 570.71 10 4973.0 570.71 588.14 635.32 3 4248.1 587.69 612.20 667.81 0 5621.6 570.71 571.28 576.05 7 5478.2

RC1_4_5 350 526.33 528.58 539.78 8 4468.2 526.33 526.33 526.33 10 6366.9 526.33 534.01 582.72 6 4772.2 584.14 609.52 636.41 0 5236.0 526.33 553.78 640.21 3 5928.5

RC1_4_8 350 558.88 560.64 574.13 8 3920.0 558.88 558.88 558.88 10 6230.7 558.88 561.59 574.13 5 4992.7 578.84 588.99 614.73 0 4503.7 558.88 573.08 623.80 2 4662.7

RC2_4_2 350 572.00 711.82 945.00 1 4879.2 572.00 572.00 572.00 10 6239.8 572.00 577.28 624.38 8 7163.2 604.23 650.93 679.80 0 5446.9 572.00 572.00 572.00 10 6120.7

RC2_4_5 350 522.34 575.12 783.77 4 4828.9 522.34 535.12 562.84 1 6204.6 522.34 526.04 540.46 7 5471.5 576.68 661.88 744.89 0 5863.6 522.34 522.94 528.36 9 5738.2

RC2_4_8 350 534.36 594.39 943.18 5 6189.5 534.36 537.98 543.06 2 6275.8 534.36 544.86 595.40 4 6104.7 636.13 706.85 752.86 0 6100.3 534.36 542.51 568.59 3 5603.9

