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Abstract: This paper addresses a periodic vehicle routing problem encountered in home 

health care (HHC) logistics. It extends the classical Periodic Vehicle Routing Problem with 

Time Windows (PVRPTW) to three types of demands of patients at home. Demands include 

transportation of drugs/medical devices between the HHC depot and patients’ homes, delivery 

of special drugs from the hospital to patients, and delivery of blood samples from patients to 

the lab. Each patient requires a certain number of visits within a planning horizon and has a 

set of possible combinations of visit days. Daily routing should meet time window constraints 

associated with patients, the hospital and the lab. The problem consists in determining the 

visit days of each patient and vehicle routes for each day in order to minimize the maximal 

routing costs among all routes over the horizon. We propose a Tabu Search method combined 

with different local search schemes including both feasible and infeasible local searches. The 

proposed approaches are tested on a range of instances derived from existing Vehicle Routing 

Problem with Time Window (VRPTW) benchmarks and benchmarks on special cases of our 

problem. Numerical results show that local search scheme starting with an infeasible local 

search with a small probability followed by a feasible local search with high probability is an 

interesting hybridization. Experiments with field data from a HHC company show that the 

proposed approach reduces the total cost and better balances the workloads of vehicles.  

Keywords: Home health care, Periodic vehicle routing, Tabu search, Infeasible local search, 

Feasible Local search 
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1 Introduction 

In this paper, we consider a special periodic vehicle routing problem with time windows 

constraints arising in the home health care industry in France. Home Health Care (HHC) is a 

growing medical service in France. The objective of the HHC operation is to provide high 

quality services to the patients at home in order to help them recover from the illness or injury 

in a personal environment. This paper addresses the logistic issues in HHC operation. The 

typical logistic services in the HHC involve delivering the medicines and medical instruments 

to patients, picking up the biological samples from patients at home and bring them to a 

medical laboratory, collecting medical waste from patient’s home and bring them back to 

dispose, etc. Such distributing and collecting jobs are served by the HHC company for a large 

number of patients stayed at their own home. From the view of the HHC company, the core 

component in the home health care logistics is to find a feasible working schedule to their 

drivers and vehicles, so as to satisfy the requirements of patients, reduce operating cost, and 

improve service quality. Apart from these vehicle routing decisions, planning decisions also 

need to be made to determine the days each patient is served as patients of an HHC often 

require more than one delivery or pickup services. In practice, HHC usually builds a weekly 

logistics plan that of course needs to be adapted to face random events such as emergency 

demands.  

Roughly speaking, the HHC logistics problem considered in this paper consists in 

assigning visit days for each patient to meet demands of patients and designing vehicles routes 

for each day to visit each assigned patient during that day within a specified time window. 

Some patient visits are preceded by a hospital visit to pick up special drugs or followed by a lab 

visit to drop blood samples. Clearly, assigning suitable visiting days to each patient and 

optimizing these repetitive operations can generate significant cost savings for the HHC 

logistics operation. In this paper, we address this special optimization problem in HHC 

logistics and call it the Periodic Home Health Care Pickup and Delivery Problem (PHHPDP). 

The PHHPDP is similar to the Periodic Vehicle Routing Problem with Time Windows 

(PVRPTW) [1], a combination of the Vehicle Routing Problem with Time Windows (VRPTW) 

and the Periodic Vehicle Routing Problem (PVRP). The PVRPTW considers how to serve 

customers during a planning horizon under time window constraints. Although the VRPTW 

and PVRP have received considerable attention both in theoretical research and in real world 

applications, the literature on the PVRPTW is rather limited.  

Our PHHPDP has its own characteristics and cannot be solved as a PVRPTW directly due 

to the following reasons. First, in the PVRP and PVRPTW, vehicles only take goods from the 

depot to each client to satisfy its demand. In our problem the distribution and collection tasks 

are more complex. According to the origin and destination of the transportation requirements, 
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there are four types of logistic demands faced by the HHC company: (1) distribute 

drugs/medical devices from the HHC depot more precisely the HHC pharmacy to patients’ 

homes; (2) collect the load (unused drugs/medical devices) from the patients’ homes back to 

the depot; (3) deliver special drugs, from a hospital to patients, e.g., chemotherapy drugs for 

cancer treatment; (4) pick up the blood samples from patients’ home to the lab. A patient may 

have different types of demands, simultaneously. For example, a patient’s daily request may 

consist of both getting the medicines from the hospital, and sending the biological samples 

from his home to the lab. 

In practice, workload balancing among different vehicles/drivers is as important as 

minimizing the total travel distance usually optimized in the literature. We adopt a special 

objective in our problem, minimizing the length of the longest route in the planning horizon. 

Similar objective function is called min-max in the VRP and multiple traveling salesman 

problem (m-TSP). The reader is sent to [2] for a survey on m-TSP, and to [3] for an 

application in newspaper printing industry, where a parallel machines with sequence 

dependent setups problem is modeled as a m-TSP with workload balancing.  

In most HHC applications the vehicle capacity is hardly a limiting factor as goods under 

consideration (e.g., a box of medicine, a piece of blood sample) often have small size. For this 

reason, we assume unlimited vehicle capacity in our PHHPDP. Based on this condition, 

another important logistics problem TSP with Time Windows [4] can be seen as a special case 

of PHHPDP with one day planning horizon, one vehicle and no hospital and lab visits. Since 

the TSP with time windows has been proven to be NP-hard, and finding a feasible solution is 

NP-complete [5], the PHHPDP is also NP-hard.  

In this paper, we will build several Tabu Search (TS) algorithms to address this special 

periodic vehicle scheduling problem. The TS scheme is similar to that of Cordeau et al. [6] 

with some innovative elements: (1) an augmented criterion taking into account constraint 

violations with penalty factors dynamically adjusted according to the feasibility of the 

resulting solution, (2) neighborhood search with both inter-route and intra-route local searches, 

(3) combination of feasible and infeasible local searches. Especially, numerical results show 

that infeasible local search with small probability followed by feasible search with high 

probability is an interesting combination in TS. 

The rest of this paper is organized as follows. Section 2 is a survey of relevant literature. 

Section 3 gives the notation and problem definition. Section 4 proposes TS algorithms for 

solving the problem. Section 5 presents the computational experiments on the instances 

derived from existing VRPs benchmarks and on real-life data. Finally, Section 6 presents the 

conclusions and future research directions. 

https://www.researchgate.net/publication/222792707_Scheduling_pre-printed_newspaper_advertising_inserts_using_genetic_algorithms?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==
https://www.researchgate.net/publication/221704714_A_Generalized_Insertion_Heuristic_for_the_Traveling_Salesman_Problem_with_Time_Windows?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==
https://www.researchgate.net/publication/221704676_Local_search_in_routing_problems_with_time_windows?el=1_x_8&enrichId=rgreq-9cdd11a0-167a-4f2a-a019-4747e8487f58&enrichSource=Y292ZXJQYWdlOzI2MDk0ODg0MztBUzozMDE1NDY0MTI3NTY5OTZAMTQ0ODkwNTY3NTMxNg==
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2 Literature review 

Despite the importance of HHC services, only a few papers deal with the HHC problems. 

Begur et al. [7] designed a decision support system for home health care in United States. 

Classical savings algorithm and nearest neighbor heuristics were used for optimizing routes. 

Cheng and Rich [8] studied a HHC model of scheduling full time nurses and part time nurses. 

The problem, similar to the Multi-depot VRPTW, is to find an optimal schedule such that 

each nurse leaves from his/her home, visits a number of patients within their time windows, 

and return home. Two mixed integer programming models and a two-phase construction 

heuristic were proposed. Bertels and Fahle [9] solved their HHC problem with a hybridization 

of constraint programming and meta-heuristics including simulated annealing and tabu search. 

In the decision support system LAPS CARE by Eveborn et al. [10], the HHC problem is 

formulated as a set partitioning problem with the objective of matching visits to staff 

members and solved by repeated matching algorithm. Kergosien et al. [11] addressed an 

assignment and routing problem of HHC workers to care activities. The problem is equivalent 

to the m-TSP with time windows under some specific constraints. An integer linear program 

was proposed and solved with a commercial solver. Two more recent research are formed by 

Trautsamwieser et al. [12] and Nickel et al. [13]. Trautsamwieser et al. [12] considered the 

HHC services problem during natural disasters (especially flood disaster) in Austria. The 

problem is formulated as a rich VRP with state-dependent breaks in order to minimize the 

sum of driving times and waiting times, and the dissatisfaction levels of clients and nurses. A 

mathematical formulation and a variable neighborhood search based approach were proposed 

for the daily HHC problem. Nickel et al. [13] considered routing and scheduling problems 

arising in the context of HHC services in Germany. A two stage approach was proposed to 

determine an optimal weekly service plan. A constraint programming heuristic generates a 

weekly schedule by minimizing the number of nurse visiting tours. Different heuristic 

approaches then modify and improve the initial solution to incorporate changes into existing 

plan. With two real-world data sets they showed the benefit of using the proposed approaches 

in HHC context.  

Compared with existing researches, our study considers HHC operations from a new 

perspective. We focus on picking up and delivering materials and goods (e.g., medicines, 

medical instruments, and biological samples) among HHC depot, patient homes, medical 

laboratory, and hospital. To our best knowledge, our paper is the first to incorporate the 

schedule of visiting medical laboratory, and hospital in the HHC service problem.  

As mentioned above, our PHHPDP model is similar to the PVRPTW. As the PVRPTW 

has attracted little attention in the literature, we focus our review on the PVRP and its variants. 

The PVRP has been widely studied in the literature. The first problem motivating the PVRP 

was introduced by Beltrami and Bodin [14]. The PVRP was formally defined by Russell and 
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Igo [15] as the ‘assignment routing problem’, and first formulated by Christofides and 

Beasley [16]. Early heuristics for the PVRP focused on classical construction heuristics [15] 

[16]. From the mid of 1990s, some meta-heuristics have been proposed. Chao et al. [17] 

developed a two phase, record-to-record travel algorithm for the PVRP. Cordeau et al. [6] 

proposed a sophisticated tabu search for the PVRP, which allows infeasible solutions during 

the search process. Mourgaya and Vanderbeck [18] constructed an approximate solution for 

the PVRP using a truncated column generation procedure followed by a rounding heuristic. 

Hemmelmayr et al. [19] and Pirkwieser and Raidl [20, 21] adopted variable neighborhood 

search methods for the PVRP. Pirkwieser and Raidl [22] presented a column generation 

approach for obtaining strong lower bounds to the PVRP with time windows. Then, 

Pirkwieser and Raidl [23] investigated two new variants of heuristics and tested them on the 

PVRP with time windows, in which variable neighborhood search and evolutionary algorithm 

were combined with parts of a column generation approach. Gulczynski et al. [24] developed 

a heuristic for the period vehicle routing problem by using an integer program and the 

record-to-record travel algorithm. Vidal et al. [25, 26] proposed hybrid genetic algorithms for 

the PVRP and multi-depot PVRP. Very recently, Cacchiani et al [27] presented a new hybrid 

optimization algorithm and apply it to solving PVRP and PTSP. This algorithm is based on the 

linear programming relaxation of a set-covering-like integer linear programming formulation 

of the problem with additional constraints. A recent sophisticated exact method for the PVRP 

has been proposed by Baldacci et al. [28]. 

Besides the basic PVRP, some variants have also been presented and studied. Lacomme et 

al. [29] introduced and solved a problem called periodic capacitated arc routing problem, 

where the vehicles must serve a set of arcs in the graph. Cornillier et al. [30] developed a 

heuristic for the periodic petrol stations replenishment problem in order to maximize the total 

profit equal to the revenue, minus routing costs and regular and overtime costs. Angelelli et al. 

[31] and Wen et al. [32] studied the dynamic PVRP in which customer orders are dynamically 

revealed over time. Angelelli and Grazia Speranza [33] studied an extension of the PVRP 

where vehicles can renew their capacity at some intermediate facilities. Francis et al. [34] 

considered a special PVRP in which service frequency is a decision of the model. Gulczynski 

et al. [24] addressed the PVRP while considering reassigning customers to new routes, and 

balancing the workload among drivers across routes. When only one vehicle is available 

every day and vehicle capacity and traveling duration are not considered, the PVRP becomes 

the Periodic Traveling Salesman Problem (PTSP). Some heuristics for the PVRP can be 

adopted for the PTSP. Specialized heuristics for the PTSP can be found in [6, 16, 19, 24].  

Compared with the PVRP, the PVRPTW receive much less attentions. Cordeau et al. [1] 

introduced this problem and designed a tabu search to solve it. Recently, Yu and Yang [35] 

used an ant colony optimization to solve the PVRPTW.  
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In our research the objective is to minimize the length of the longest of all the routes, i.e., 

the min-max objective. In the field of the VRPs, PVRPs and m-TSPs, the research with the 

min-max objective is very limited. The m-TSP is a special case of the VRP with unlimited 

vehicle capacity. França et al. [36] proposed a tabu search algorithm for the min-max m-TSP, 

which minimizes the cost of the most expensive route among all salesmen. Somhom et al. [37] 

and Modares et al. [38] developed self-organizing artificial neural network approaches for the 

m-TSP with min-max objective function. Arkin et al. [39] proved the NP-hardness of the 

min-max VRP and provided constant ratio approximation algorithms. Golden et al. [40] 

proposed a tabu search based adaptive memory procedure for both the VRP and m-TSP with 

min-max objective. Valle et al. [41] investigated an interesting min-max selective VRP, where 

not all customers have to be served.  

Although a large number of methods have been proposed for periodic VRPs, e.g., PVRP, 

PTSP and PVRPTW, we find that all these research try to generate routes that minimize total 

vehicle traveling distance or time, or the number of the vehicles, etc. To the best of our 

knowledge, no literature considers the min-max VRPs with time windows in a planning 

horizon, i.e., min-max PVRPTW. Actually, even neglecting time windows constraints, the 

remaining min-max PVRP has never been considered in the existing literature.  

Note that the PHHPDP can be seen as a special kind of Pickup and Delivery problem 

(PDP) [42-44]. For example, we can split the hospital (lab) into several demand-based 

auxiliary nodes; each one represents the original of a patient needing medicines from hospital 

(who has bio samples to be send to the lab). Then, the PHHPDP can be transformed into a 

Periodic Pickup and Delivery Problem with Time Windows at the cost of an artificial increase 

of the problem size. Although some heuristics [45] and exact approaches [46, 47] have been 

designed for the PDP with Time Windows, there is no research about the Periodic PDPTW. 

Even for a relatively simple version, the Periodic PDP, we cannot find any literature about this 

problem. 

3 Notation and problem definition 

The PHHPDP in home health care logistics is defined formally on a graph as follows. Let 

G = (V, A) be a graph, with node set V= {0, 1, ..., n, n+1}∪{h, l} and arc set A={(i, j): i, jV, 

i≠j}. N = {1, ..., n} denotes the set of patient locations, h and l denote a hospital and a lab, 

nodes 0 and n+1 the origin and destination depots of the home health care company. Node 

n+1 is the same location as node 0, implying that each vehicle starts and ends at the depot. 

The location of each node (its x- and y-coordinates) is known. A homogeneous fleet of K 

vehicles, initially located at the depot, is available to serve the patients. Vehicle capacity is not 

considered, as it is hardly the limiting constraint in practice. 

There are three classes of patients. A patient of class 1 denoted as P1 requires delivery 
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from the depot to home or pick up from home to the depot. A patient of class 2 denoted as P2 

requires delivery from the hospital to home. A patient of class 3 denoted as P3 requires pick 

up from home to the lab. Each service requested by a patient is called a demand. A patient 

may require different classes of demands. For example, for a patient iP2∩P3, the HHC 

company has to pick up blood samples from patient i and bring it to the lab, and deliver drugs 

from the hospital to this patient.  

Each node iN is associated with a time window [ai, bi], where ai, bi represent the earliest 

and latest service time. The depot node also has a time window, representing the earliest 

departure time and the latest return time. Each arc (i, j)A has a routing cost cij and a traveling 

time tij. Without loss of generality, the service time for each node i is included in the traveling 

time tij and is not explicitly considered.  

A vehicle is allowed to arrive at a location i before ai and wait until the patient becomes 

available, but arrivals after bi are prohibited. Each vehicle starts at time 0 from node 0, travels 

to the location of the first node i1 on its route, waits till the availability of the node at ai1, then 

travels to the location of the second node and so on and so forth till visiting all nodes on its 

route and returning to the node n+1. We call the length of a route the total routing costs of 

arcs visited by the vehicle. A route is said infeasible if the vehicle arrives at a node i after bi, 

or a P2-patient visit is not preceded by a hospital h visit, or a P3-patient visit is not followed 

by a lab l visit. The set of days in the planning horizon is denoted by D= {1,…, d}, and d 

represents the number of days. Each patient iN has a visit frequency fi, and a set of 

allowable service patterns Ri. Each rRi is a subset (combination of days) of the planning 

horizon D. Patterns of each patient contain the same number of days in which the patient is 

visited.  

The visit frequency, the service patterns, and time windows are defined for patients 

instead of demands. This implies that all demands of a patient share the same visit frequency 

and visiting a patient on a given day implies serving all its demands. Extension to patients 

having demands of different visit frequency and different time windows is addressed at the 

end of this section. 

The PHHPDP consists in selecting a service pattern for each patient and designing daily 

vehicle routes, such that: (1) visits to patients match to selected patterns, (2) each patient is 

visited at most once a day, (3) at most K routes starting from and ending at the depot are used 

each day, (4) each route must satisfy time windows and precedence constraints on each patient 

node, (5) minimizing the length of the longest route in the planning horizon. As the vehicle 

capacity is infinite, each vehicle requires at most one daily visit to the lab and to the hospital. 

Table 1 summarizes the defining notations of the PHHPDP. 

Table 1. Defining elements of PHHPDP 

D Planning horizon 
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N Patient set 

h  Hospital 

l Lab 

P1 Set of patients requiring delivery between the depot and home   

P2 Set of patients requiring drugs from the hospital 

P3 Set of patients having blood samples to be delivered to the lab 

ai, bi Earliest and latest visit time of node i 

fi Visit frequency of patient i 

Ri Set of allowable service patterns of patient i 

K Set of available vehicles 

cij Routing cost from node i to node j 

tij Traveling time from node i to node j 

The definition of the PHHPDP can be extended to include other operating constraints. We 

consider patients with demands of different visit frequencies, visit patterns and demand 

specific time windows. Multiple visits to a patient are also allowed. This extended PHHPDP 

can be transformed into a basic PHHPDP by transforming a patient into several demand-based 

fictive patients. For example, for a patient i has two demands pi1 and pi2 and should be served 

two and four times weekly respectively, we delete patient i and generate two fictive patients i' 

and i'', each representing a demand and associated with the related visit frequency and time 

window. The locations of i' and i'' are the same as that of patient i, i.e., the distance between i' 

and i'' is zero and the distance between i' (i'') and another node j equals the distance of i and j. 

All time window and precedence constraints can be transformed accordingly..  

4 Solution procedure for the PHHPDP 

In this section, we propose a tabu search (TS)-based algorithm to solve the PHHPDP. The 

proposed TS algorithm in Figure 1 is based on the general TS framework developed by 

Cordeau et al. [6]. Similar attribute set and augmented criterion function for constraint 

violations have been successfully adapted in TS algorithms to solve some variants of the VRP  

[48-50]. The algorithm starts from an initial solution s that can be feasible or infeasible. The 

tabu list and aspiration value of each attribute are then initialized. Neighbor search is applied 

to solution s by executing some inter-route local moves. The best solution s′ is selected from 

neighbor solutions that are either not tabu or satisfy some aspiration criterion. Solution s′ is 

further modified and improved by intra-route local search methods (Section 4.4). We then 

update the tabu list, aspiration level of each attribute and some algorithm parameters. The TS 

restarts from s=s' till a stopping criterion is met. 

Although the basic structure of our approach is similar to that proposed in Cordeau et al. 

[6], there are some key differences with respect to: (1) the construction method of the initial 

solution, (2) the evaluation of the objective function, (3) the update rules of penalty 
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parameters, (4) the construction of the neighborhood of a solution taking into account the lab, 

hospital and precedence constraints. Most important, Cordeau et al. used GENI heuristic to 

perform insertion and removal of customers from routes to construct the neighborhood. At 

each iteration, GENI heuristic performs intra-route local search to some routes within the best 

neighbor solution. In our approach, we adopt standard insertion and removal of nodes to 

identify inter-route neighborhood search. Furthermore, we apply two intra-route local search 

strategies to improve and diversify each route in the current solution. In the following, we 

give the detailed functions of our approach. 

1. Generate an initial solution s

2. Initialize the tabu list, set aspiration levels

3. Generate neighbor solution set N(s) of s 

using inter-routes moves (Section 4.3)

4. Identify a solution s' in N(s), which has the 

least cost function f and which either is  not 

tabu or satisfies aspiration criterion

5. Use intra-route moves to improve solution s' 

( Section 4.4)

6. Update tabu list, aspiration levels, penalty 

parameters; set s=s'

 7. Stop criterion?

8. Output result

No

Yes

 

Figure 1. General structure of TS algorithm 

4.1 Augmented criterion function 

In our approach, each solution corresponds to a set of routes for each day. For each route, 

the visit times at different nodes are determined by taking into account the visiting sequence 

and the earliest available time of each node. As both feasible and infeasible solutions are 

allowed, a solution s is evaluated by an augmented cost function  

f(s)=c(s)+α q(s)+β g(s) 

where c(s) is the original objective function, i.e. the length of the longest route, q(s) and g(s) 

denote the total violation of time window and precedence constraints of all the routes, 



 

 
10 

respectively,  and  are penalization parameters. q(s) and g(s) are defined as follows: 

( ) [ ]
k

i i

k
k K i U

q s t b


 

    

( )
h k lk

g s N N   

where [x] 
+
 =max{0, x}, Uk is the set of nodes visited by vehicle k, k

i
t is the visit time of node 

i in route k, bi is the latest allowed visit time of i, Nhk (Nlk) is the number of P2 (P3) patients 

visited before the hospital visit (after the lab visit) in route k. Clearly, if s is a feasible solution, 

q(s)=0, g(s)=0, and f(s) = c(s).  

In TS, parameters   and   are dynamically adjusted to facilitate the exploration of the 

search space. TS algorithm starts from 
0

 and
0

 , which are set to be 1 and 100, respectively. 

Meanwhile, we set two intervals [αmin, αmax] and [βmin, βmax] for these two parameters, which 

limit their maximum and minimum values during the search process. The values of   and 

  are increased or decreased throughout the iterations. At the end of iteration, if the resulting 

solution is feasible,   is divided by a factor 1+
1

 . If the resulting solution is infeasible and 

the time window constraints are violated,   is multiplied by a factor 1+
1

 . If the resulting 

solution is infeasible but the time window constraints are satisfied,   is divided by a factor 

1+
2

  (
2 1

0    ). Parameter   is adjusted by the same rules. The following values, 

m in
 =

m in
 =0.01, 

m a x
 =

m a x
 =1000, 

1
 = 0.2 and 

2
 = 0.05 are used in our approaches. 

4.2 Initial solution 

We first apply the following heuristic procedure to generate an initial solution of PHHPDP 

for the TS algorithm. Time windows are not considered here and hence the initial solution can 

be infeasible. 

Step 1: Select randomly a service pattern for each patient. 

Step 2: Repeat 3-6 to build the vehicle routes for each day d' = 1, …, d. 

Step 3: Sort patients of day d′ in ascending order of their angular coordinate in the polar 

coordinate representation with the depot at the origin.  

Step 4: Determine the patient i which is closest to the depot. Generate the first route on 

day d′ to serve patient i. Initialize the counter k=1 of the route number. 

Step 5: Repeat 6 for each patient j in cyclic order of Step 2 starting from patient i.  

Step 6: Insert j into a route k'{1,…, min(K, k+1)} with the minimal route length after 

insertion of j. 

At Step 1 each patient is assigned a random pattern. We then solve the VRPs with 

min-max objective on each day by neglecting time windows. We first generate in Step 4 a 

route from the depot to the closest patient i. If this patient i belongs to P2 or P3 set, the first 
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route is (depot-h-i-depot) or (depot-i-l-depot) in order to include the corresponding hospital or 

lab visit. The other patients are then inserted in step 6 in ascending order of their angular 

coordinate by starting from patient i. Each patient j is inserted in an existing route or a new 

one such that the length after its insertion of the selected route is minimized. The position in a 

route of the patient j to insert is determined by exhaustive search. For the insertion of a P2 or 

P3 patient in a route k, the position of the hospital or lab must be considered simultaneously 

by exhaustive search. If j is the first P2 patient in route k, we should also insert the hospital 

visit at the least cost position. If a hospital already exists in the route k, we also try to relocate 

it at each possible position (before all P2 patient) when inserting patient j. 

4.3 Attribute set, tabu list, aspiration and stopping criterion 

Generally, TS utilizes some form of adaptive memory, called tabu list and tabu duration, 

to implement a diversification strategy. In our approach, each solution is characterized by an 

attribute set B(s)={(i, k, d)| i N , k K , d D : patient i served by vehicle k on day d}. A 

neighbor of a solution s is obtained by applying an operator that deletes a set of attributes 

from B(s), and replaces it by a new set of attributes. Then, when a patient i is removed from a 

route k on day d, we assign a tabu status to this attribute (i, k, d), and set a tabu duration   to 

this attribute. In the next θ iterations, re-inserting patient i back into route k on day d is 

forbidden. The tabu duration θ takes the values in [θmin, θmax] and starts from θ0. It 

dynamically modifies during the search process: (1) after each improvement of the current 

best solution,   is set equal to θmin; (2) after θ∅ consecutive unimproved iterations, θ is 

updated to be min(θ +1, θmax). 

One simple aspiration criterion is adopted in TS. Each attribute is associated with an 

aspiration value, which is defined as the cost of the best feasible solution found with that 

attribute. Thus, a neighbor solution s  of the current solution s can be considered only when: 

(1) all new attributes which are not in s but in s , are non-tabu, or (2) s  is feasible 

and ( )f s is less than the aspiration values of these attributes. 

Three stopping criterion in TS is: (1) after a fixed number N1 of iterations, or (2) after a 

fixed number N2 of iterations without improving the current best solution, (3) after a fixed 

total running time T. 

4.4 Neighborhood 

Essentially, TS algorithm keeps on finding the best neighbor of the current solution. A 

solution that can be obtained from a given solution using an allowable move is called a 

neighbor. Three inter-route local moves are considered in our TS algorithm: 

(1) Remove a customer i from vehicle route k, and insert it at least cost into another route 

k′ on the same day, k′ ≠ k. Note here route k′ may be nonempty or empty route. All customers i 

and destination route k’ are considered each day. The size of this move is O(n·d). 
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(2) Exchange a patient i in vehicle route k and another patient j in vehicle route k′ on the 

same day with k′ ≠ k. All pairs of customers (i, j) are considered each day, i.e. O(n
2
·d) moves. 

(3) Replace the visit pattern rRi currently assigned to customer i with another pattern 

r′∈Ri. For each day d′ in D, if day d′ belongs to pattern r but not r′, customer i is removed 

from its route in day d′. If all the customers in this route are removed due to this operator, the 

route is deleted from the solution. Meanwhile, if d′ belongs to pattern r′ but not r, customer i 

is inserted into route k′ in day d′ while the increase in f(s) is minimized. Here, we allow route 

k′ to be a nonempty or empty route. The size of this move is 
1

( | | | | )

n

i r R i

i

O R r n




   

The neighborhood N(s) of a solution s consists of all the solutions that can be obtained by 

performing one of the foregoing transformations. We should point out that, during each local 

move when a patient is deleted from or inserted into a route, we do not modify hospital and 

lab visits in this route. For example, when inserting a patient in route k′, we do not remove, 

relocate or insert the hospital visiting or the lab visiting in the route even if it is necessary to 

satisfy the new patient. When the best neighbor is obtained, we deal with each modified route 

in this neighbor as follows: (1) we remove the un-necessary hospital or lab visit from a 

modified route. That is to say, if there is no more P2 (P3) patient in route k after the move, we 

remove the hospital (lab) in route k, (2) we insert the missing and necessary hospital or lab 

visit into the modified route. For example, when a patient i is inserted into route k′ and i is the 

only P2 (P3) patient in this route, we should add the hospital (lab) into route k′. We insert the 

lab and hospital into the route at feasible positions with the smallest increment augmented 

cost. At this step, the precedence constraints are satisfied and g(s)=0, i.e. the hospital is visited 

before all P2 patients and the lab is visited after all P3 patients. 

4.5 Hybrid Tabu Search with Local Search 

Our approach hybridizes a Tabu Search algorithm and local search procedures. The Tabu 

Search procedure applies inter-routes movements between pair of routes, as shown in Section 

4.4. Then, the solution obtained by Tabu Search inter-routes movements is further improved 

by means of intra-route Local Search procedures. Such combination of local search 

procedures has been proved to be an effective strategy to improve the performances of 

meta-heuristics. For example, Yu et al. [51] designed an improved ant colony system 

algorithm to solve the VRP, in which intra-route search is adopted to improve individual 

routes of current solution during the iteration. Jozefowiez et al. [52] proposed an evolutionary 

algorithm for the VRP with route balancing, and an intra-route local search (2-opt) was 

chosen to improve each route of each offspring solution. Some researchers adopted both 

intra-route and inter-route search in their algorithms for the VRP [53-55]. Similarly, in a 

weighted tardiness minimization problem of parallel machines, Della Croce et al. [56] applied 

local search on each machine independently at each algorithm iteration. Concerning the Tabu 
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Search, the GENI heuristic in [6] plays a role as intra-route local search. Similar way was 

used in the tabu search [57] for solving an open VRP. In Brandão’s tabu search, each iteration 

of the TS modifies only two routes of the current solution. Two simple heuristics, the Nearest 

Neighbor method and the Unstringing and Stringing procedure, were applied in Gendreau et 

al. [58] to improve two modified routes. Both our approach and the TS of [6] use inter-route 

local search to get the best solution s' from N(s). However, we adopt two special and new 

local search strategies to improve each route independently, not only for the modified routes. 

The first type of local search is called Infeasible Local Search (ILS) and the second Feasible 

Local Search (FLS). 

FLS is the widely used classical local search method. It can be used to improve route 

construction methods [59], or be hybridized with meta-heuristics [60, 61]. FLS starts from a 

feasible solution and improves it by local moves. Once a neighbor solution is identified, it is 

compared against the current solution. If the neighboring solution is better, it replaces the 

current solution, and the search procedure continues. In the FLS, each neighbor solution must 

be feasible. Compared with FLS, ILS can be applied to both feasible and infeasible solutions. 

Meanwhile, during the ILS search, both feasible and infeasible neighbor solutions may be 

generated.  

In the paper, the FLS starts from a feasible seed solution and improves each route by using 

1-1exchange, 1-0 relocation, 2-Opt exchange. The 1-1 exchange tries to exchange the 

positions of two nodes (patient, lab and hospital) in a route. The 1-0 exchange is the 

relocation of one node, i.e., transferring a node from its position to another position in the 

same route. The 2-opt exchange tries to improve the route by replacing two of its edges (i, 

i+1), (j, j+1) by two new edges (i, j) and (i+1, j+1). The first-accept strategy is used, i.e. once 

a feasible and better route is found, it is adopted as the new seed for repeating the local search. 

The whole local search stops when no additional improvement can be obtained. Note that 

during the search procedure, time window and precedence constraints must be satisfied. For 

each route o, FLS uses its real distance c(o) to evaluate the cost of a local move. Compared 

with FLS, infeasible moves are allowed in the ILS, i.e., the time window and precedence 

constraints can be violated at each move. For each route r, ILS uses the augmented criterion 

function c(o)+ ( ) ( )q o g o  to evaluate the cost of a local move, where q(o) and g(o) denote 

the violation of time window and precedence constraints of this route, respectively. Note that 

even ILS starts from a feasible seed solution it may generate an infeasible result when the ILS 

procedure completes.  

FLS and ILS play different roles in our method. FLS is used to intensify TS algorithm, 

just like the classical local search procedure integrated in other meta-heuristics. ILS can be 

seen as a way for diversifying the search of TS method. For example, when the algorithm 

sinks into a local optimal solution, ILS may generate a new infeasible neighbor solution and 



 

 
14 

leads to a new search direction. For these reasons, we give two probabilities, pFLS and pILS, for 

applying FLS and ILS, respectively. Meanwhile, to test different strategies of applying the 

FLS and ILS, we design and test following five TS strategies: 

 

TSC TS without any additional local search, i.e., pFLS = pILS=0. 

TSFLS Improve feasible current solution s′ with FLS, i.e., pFLS =1 and pILS=0. 

TSILS Improve current solution s′ with ILS, i.e., pFLS =0 and pILS=1. 

TSF-I-P Use either FLS or ILS to the current solution s′ according to its feasibility. If s′ is 

feasible, FLS is used; otherwise, ILS is applied. 

TSI-F-S Use FLS and ILS sequentially with probabilities pILS and pFLS. It first uses ILS with 

probability pILS. If the resulting s′ is feasible, FLS is used with probability pFLS. 

To our best knowledge, such hybridization scheme has never been proposed for solving 

the VRP and relative problems. Thus, in our experiments, we will intensively test and 

compare these five tabu search algorithms.   

5 Computational experiments 

This section presents computational experiments designed to assess the performance of 

the proposed method. Since there is no benchmark data available for the problem of this paper, 

we construct some test instances based on existing VRPTW benchmarks. We also test our 

algorithm on the classical min-max Multiple Traveling Salesman Problem (min-max MTSP), 

which can be seen as a special case of our problem with a planning horizon of one day and 

without hospital, lab and time windows. We extend TS algorithm and test it on another rather 

classical problem, Periodic Traveling Salesman Problem (PTSP), which is similar to our 

problem but with only one vehicle, with a different objective function and without hospital 

and lab visit. Concerning the latter two problems, our approaches are compared with the state 

of the art algorithms. Finally, we also compare solutions obtained by our algorithm against 

real-life routing plan built by a French home health care company. 

All algorithms of this paper are implemented in C on a 3.2 GHz Dual Core computer with 

a 2 GB memory under Linux. All tabu search algorithms run 10 times for each test instance. 

The best, the average, the worst results and the average running time are obtained from 10 

runs for each TS algorithm, and used to assess the performances of these algorithms. Table 2 

summarizes the parameter setting of the algorithms used in the computational experiments. 



 

 
15 

Table 2. Parameter setting in the experiment 

Symbol Explanation Value in experiment 

α0, αmin, αmax Initial, minimum and maximum values of   1, 0.01, 1000 

𝛽0, 𝛽min, 𝛽max Initial, minimum and maximum values of   100, 0.01, 1000 

φ1, φ2 Parameters for updating ,   0.2, 0.05 


  

Number of consecutive unimproved iterations to update 

tabu duration 

30 

0
  

Initial tabu duration  1 0
m a x 4 lo g , 7n     

,
m in m a x

   Maximum and minimum values of tabu duration 
0

4  , 
0

8  . 

5.1 PHHPDP instances derived from VRPTW benchmarks 

We first derive test instances from existing VRPTW benchmarks of Solomon [62], and 

Gehring and Homberger [63]. Solomon’s VRPTW instances are divided into three classes that 

differ by the geographical distribution of the customers: C, R and RC type instances. Each 

class is divided into two series: the 100-series instances with tighter time windows and the 

200-series instances with wider time windows. We select 6 C type instances, 6 R type 

instances and 6 RC type instances. Among 6 instances of each type, both the 100-series 

instances and 200-series ones exist. Based on each selected Solomon instance, we derive 3 

new instances for our problem with 3Z patients as follows. We randomly choose 3Z 

customers from the Solomon instance as the P1 patients, then, Z P2 and Z P3 patients are 

randomly selected from P1 patients. Therefore, the generated instances contain 5Z demands 

required by 3Z patients. The depot is located as in Solomon instances at (40, 50) for C-type 

and RC-type instances and at (35, 35) R-type instance, and the locations of lab and hospital 

are (90, 50) and (10, 15). For each Solomon-based instance, the planning horizon is 7 days, 

and service frequency is generated uniformly in [1, 5]. The service days are randomly selected 

in the 7 days. For each patient, the time window in Solomon instance is used directly. 

Concerning the depot, lab and hospital, the earliest times of their time windows are inherited 

from Solomon’s depot time window. The latest time of depot time window in the Solomon 

instance is multiplied by 120%, and assigned to the depot, lab and hospital in our test instance 

as the end of new time window. Even so, there may exist some ‘violative’ P3 (or P2) patients, 

e.g., even if a vehicle starts from depot and goes to a P3 patient directly, then goes to lab and 

returns back to the depot, this vehicle still breaks the time window of the depot (later than the 

end of the depot time window). If such violative patients exist in our instance, the latest time 

of time windows of lab, hospital and depot are multiplied by 120% again until all violative 

patients are eliminated. In the preliminary experiment, we find that violative patients are 

eliminated after two tries. 

For each Solomon instance, the above constructing procedure is repeated twice, 

generating one small size (Z=10 and total 50 demands), one medium size (Z=20 and total 100 

demands) instance. For each small/medium size instance, 10 and 15 vehicles are available, 
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respectively. For these small and moderate test instances, the stopping criteria of tabu search 

algorithms are: N1=15000, N2=9000 and T=∞, i.e., the whole search stops after 15000 

iterations, or 9000 unimproved iterations. 

Besides Solomon’s instances, we also create 18 large instances from VRPTW instances of 

Gehring and Homberger [63]. These VRPTW instances are similar to but larger than Solomon 

instances, containing hundreds of customers. We choose 6 instances from Gehring and 

Homberger VRPTW benchmarks, each of which contains 400 customers. Each instance 

undergoes the same procedure described above three times with Z=70. The coordinates of the 

depot are kept at (100, 100), and the locations of lab and hospital are still (90, 50) and (10, 15). 

Thus, we generate 18 new instances for our study. Each of these large instances contains 210 

patients and 350 demands. For each instance, 15 vehicles are available, the planning horizon 

is 7 days, and the maximal service frequency for each patient is 3 times. For these large size 

instances, in order to save the computational time, we reduce the maximum number of 

iterations in the TS, i.e., N1=5000, N2=3000 and T=∞. 

5.2 Probabilities of feasible and infeasible local searches, and penalty 

parameters update scheme 

We first conduct some experiments to find appropriate probability parameters, pFLS and 

pILS, in TSI-F-S approach. In a preliminary experiment, we find that the performance of TS can 

be improved by using a relative high probability of FLS improvement methods. Thus, we set 

pFLS equal to 80%. To the best of our knowledge, there is no research about the probability of 

applying infeasible local search procedure. Among the instances generated from Solomon 

VRPTW benchmarks, we select 10 instances randomly and apply TSI-F-S to these instances 

with different values of pILS: 0%, 2%, 5%, 10%, 20%, 30%, 40%, and 50%. In order to 

determine the appropriate pILS in TSI-F-S, we adopt four criteria. The first is the number of ‘best 

run’, which represents the number of times a setting (TSI-F-S with a special value of pILS) is 

able to find the best solution among all the settings (TSI-F-S with various values of pILS). For 

example, as shown in Table 12, applying TSI-F-S with pILS=2% to instance R210_60 ten times 

gets the best solution with the cost of 208.84 six times. The other three criteria are the best, 

the average, and the worst solution costs obtained from 10 runs for each instance. In general, 

the first criterion is rather stricter than others, particularly when the solution costs obtained by 

different pILS settings are similar. Detailed computational results obtained on these 10 

instances are presented in Table 12 in the Appendix. 

In Table 3, we summarized computational results obtained with eight settings of pILS. 

Column pILS is the value of pILS, column BR the total number of best runs over 100 runs with 

10 for each instances, the other columns give the mean values over 10 instances of Best, 

Average and Worst solutions. We observe the superiority of TSI-F-S with small pILS, e.g., pILS 
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equals 2% or 5%, over TSI-F-S with high values of pILS, especially concerning the number of 

the best run. Therefore, we use pILS=0.02 and pFLS=0.8 as the stand setting of TSI-F-S, which are 

used in every run of TSI-F-S on every test instance reported in following sections. 

Based on this setting, we also test the way of updating the penalty parameters in the tabu 

search. In Cordeau et al. [6], different penalty parameters, e.g., parameters for violation of 

vehicle load and time window constraints, are adjusted with respect to solution’s feasibility, 

simultaneously. That is to say, once a constraint is not satisfied in current solution, all penalty 

parameters are modified by a factor larger than 1. Otherwise, parameters are divided by this 

factor. In our approach, each penalty parameter is adjusted according to whether its 

corresponding constraint is violated or not (See section 4.1). To compare these two updating 

mechanism, we run TSI-F-S with both mechanisms to solve the 10 instances selected above. We 

compare the results of two updating schemes in Table 4, with two major columns of 

‘Synchronous update’ and ‘Asynchronous update’. We report the best, average and the worst 

solution costs of 10 runs for each test instance. Meanwhile, we provide some detailed 

information about the best solution, i.e., the number of routes, the number of visits to the 

hospital, the number of visits to the lab, and the number of routes which visit neither lab nor 

hospital. These numbers are listed in the bracket, beside the best solution cost and separated 

by oblique line. Our ‘asynchronous update’ can find 9 better solutions, while ‘synchronous 

update’ finds 8 better solutions. Concerning the sum of the best solution costs, the gap is only 

−0.18%. Such gaps are rather small. But if we focus on ‘BR’ column, i.e., the number of best 

solutions, ‘asynchronous update’ can find best solution 40 times, while ‘synchronous’ can 

only find 29 times. Note that similar ‘asynchronous update’ is also used in Vidal et al. [25] to 

dynamically adjust the penalty parameters during the iterations of their (GA) algorithm to favor 

the generation of naturally feasible individuals. 

Table 3. Comparison between different pILS settings in TSI-F-S 

pILS BR Best Average Worst 

0% 14 211.70 233.86 279.34 

2% 40 210.44 214.26 224.87 

5% 35 210.74 214.16 218.26 

10% 33 211.21 215.06 225.21 

20% 28 210.46 216.16 230.22 

30% 24 210.39 216.50 231.14 

40% 23 211.13 218.63 233.63 

50% 23 211.14 219.68 235.48 

Table 4. Comparison between different penalty parameter updating mechanisms 

 

Asynchronous update  Synchronous update 

Instance Best Average Worst BR Best Average Worst BR 

C101_30 207.06 (56/26/28 /11) 210.13 233.24 0 207.14 (48/23/23/11) 213.14 233.24 0 

C104_30 175.62 (45/24/16/5) 194.68 221.71 2 175.62 (56/24/17/15) 195.23 221.62 2 
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C109_60 223.39 (48/25/25/9) 223.39 223.39 10 223.39 (54/34/27/8) 223.39 223.39 10 

C201_60 215.20 (56/31/37/6) 219.08 223.70 0 214.00 (56/36/37/1) 217.25 220.33 0 

R108_30 188.49 (49/27/24/9) 190.26 206.14 9 188.49 (53/24/24/11) 193.92 229.31 3 

R207_30 234.83 (56/20/22/25) 236.09 245.23 0 234.83 (54/22/21/22) 236.62 244.02 0 

R210_60 208.84 (56/32/29/11) 211.56 215.63 6 208.84 (53/34/25/10) 210.97 215.63 5 

RC105_60 193.09 (70/39/39/11) 194.50 197.85 4 193.09 (70/42/43/11) 216.67 274.42 1 

RC201_60 229.62 (56/38/32/3) 233.26 239.21 0 235.01 (56/35/36/4) 240.37 244.53 0 

RC204_60 228.22 (56/40/25/6) 229.66 242.62 9 228.22 (55/35/26/10) 230.21 248.07 8 

Total 2104.36 

  

40 2108.63 

  
29 

5.3 Computational results on PHHPDP instances 

The computational results obtained on the VRPTW-based PHHPDP instances are 

summarized in Tables 5 and 6. Detailed computational results are presented in Tables 13-15 in 

the Appendix. Table 5 shows the average min-max objective costs by grouping instances 

according to the number of demands (column De) and the type of the instance (column Type). 

The results are obtained from 10 independent runs for each instance of five approaches, TSC, 

TSI-F-S, TSFLS, TSILS, and TSF-I-P. Columns ‘Best’, ‘Average’ and ‘Worst’ present the best, the 

average and the worst solution costs over 10 runs. Column ‘CPU’ gives the average 

computational time for one run in seconds. Table 6 shows the number of best run of each 

algorithm on each type and scale instances. 

We can assert some conclusions from the data in Tables 5 and 6. Firstly, concerning the 

solution quality, the performance of TSI-F-S is better than the other tabu search approaches for 

different scales and types of test instances. For 48 out of 54 test instances, TSI-F-S can find the 

best solutions among five approaches. Concerning the best solution cost, TSI-F-S is better than 

TSC, TSFLS, TSILS, TSF-I-P with deviations of 0.33%, 0.27%, 5.12% and 0.50%. The superiority 

of TSI-F-S is even higher with respect to average and worst solution costs. For example, for all 

test instances the average solution costs of TSFLS and other four approaches deviate by 6.66%, 

2.65%, 10.74%, and 1.60%. Thus, we can draw a preliminary conclusion that the solution 

quality of TSI-F-S is the best, followed by TSFLS and TSF-I-P. The solution quality of TSILS is not 

as good as other approaches. The superiority of TSI-F-S can also be verified in Table 6. Among 

540 runs on all test instances, TSI-F-S is able to find the best solution 313 times with respect to 

166, 210, 82 and 224 times for TSC, TSFLS, TSILS, TSF-I-P.  

 Figures 2 and 3 further compare different TS approaches. Figure 2 illustrates the number 

of ‘best run’ of each TS approach over different scale-type instances. As shown in Figure 2, 

the line of TSI-F-S is always the highest one, i.e. TSI-F-S has the highest number of ‘best run’ for 

different scale-type of instances. Figure 3 illustrate the mean value of the average solution 

costs among 10 independent runs for different instances of the same scale and the same type, 

for different scale-type instances. The line of TSI-F-S is always the lowest one, i.e. TSI-F-S has 

the ability of finding the smallest cost of solutions. 
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Apart from the TSI-F-S approach, TSFLS and TSF-I-P also generate good results. We do not 

recommend TSC since its worst solution cost over 10 runs for each instance is significantly 

worse than best approaches. As shown in Table 5, for all 54 test instance, concerning the 

worst solutions costs, TSC is worse than TSFLS and TSF-I-P with deviations of 11.33% and 

15.20%. Comparing TSFLS with TSF-I-P, there is no clear enough computational evidence for 

choosing one strategy instead of the other. Over 54 test instances, the best solution cost of 

TSFLS is slightly better than that of TSF-I-P with a deviation of 0.22% on the average best 

solution cost. However the average and worst solution costs of TSF-I-P are better than those of 

TSFLS with mean deviations of 1.07% and 4.35%. 

Note that the improved solution quality of TSI-F-S is obtained at the cost of longer 

computation time. Over total 54 test instances, the CPU time of TSI-F-S is on average 17.02%, 

13.90%, 13.51% longer than that of TSC, TSFLS and TSF-I-P, respectively. The differences of 

computation time between TSI-F-S and other approaches are especially true for problem 

instances of the largest size. We also try to extend the running time of TSC, TSFLS and TSF-I-P to 

that with TSI-F-S for some randomly selected sample instances. The superiority of TSI-F-S 

remains true and TSFLS and TSF-I-P are still the next two best approaches. 

These experimental results also indicate that the local search procedures play a useful role 

in the TS algorithm. The performance of basic TS (TSC) can be improved by integrating the 

classical local search FLS (TSFLS). Further improvement can be obtained by combining FLS 

and ILS whether sequentially (TSI-F-S) or in parallel (TSI-F-P). Of course, we must point out 

that only using IFS in basic TS (TSILS) leads to the deterioration of TS performance. 
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Table 5. Average routing costs of 10 independent TS runs on PHHPDP instances 

De Type 

TSC TSI-F-S TSFLS TSILS TSF-I-P 

Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU Best AVG Worst CPU 

50 

C 208.89  233.09  297.12  52.4 207.46  211.36  218.93  55.8 211.40  232.04  313.13  58.0 208.11  216.66  238.67  54.2 207.69  214.04  230.15  53.2 

R 192.91  208.31  231.92  43.6 192.82  198.15  208.78  50.2 192.82  202.99  213.74  48.2 192.82  197.98  207.06  52.6 192.80  198.53  208.76  50.7 

RC 206.90  223.04  261.79  55.4 203.49  207.36  214.68  61.4 209.10  215.86  231.87  50.2 203.70  211.02  218.24  62.1 210.00  212.42  220.56  55.7 

100 

C 223.65  245.16  299.73  227.5 220.05  221.50  222.75  296.2 220.34  233.61  249.94  239.5 234.98  260.10  290.46  273.2 221.84  228.39  245.46  224.7 

R 205.74  212.02  228.27  251.6 205.74  206.29  207.79  293.7 205.80  215.22  239.09  250.3 207.34  215.88  234.15  301.0 205.74  208.76  217.39  276.9 

RC 226.61  242.48  265.34  263.2 227.21  228.51  230.62  329.1 225.88  236.11  253.83  277.6 235.54  260.24  298.01  288.3 231.68  244.50  264.21  284.8 

350 

C 514.64  557.13  684.48  5299.4 515.08  520.36  531.72  6014.5 515.08  524.48  552.91  5354.9 546.66  608.39  679.61  5292.1 514.13  522.78  539.53  5083.2 

R 556.41  600.44  677.15  4631.9 554.42  562.50  578.01  5831.5 553.73  569.55  614.83  4605.6 604.89  647.10  715.61  5524.3 556.69  568.00  608.57  4798.2 

RC 547.44  592.01  732.63  4926.2 547.44  550.17  555.64  6048.5 547.44  555.32  592.07  5458.7 594.62  638.40  682.75  5462.0 547.44  555.93  584.84  5588.7 

Average 320.35  345.96  408.71  1750.1 319.30  322.91  329.88  2109.0  320.18  331.69  362.38  1815.9  336.52  361.75  396.06  1923.3  320.89  328.15  346.61  1824.0  

Table 6. Number of best run on PHHPDP instances 

De Type TSC TSI-F-S TSFLS TSILS TSF-I-P 

50 

C 14  36  21  17  22  

R 18  23  18  20  21  

RC 12  36  21  21  22  

100 

C 10  32  22  1  19  

R 26  52  19  17  36  

RC 16  32  25  6  24  

350 

C 21  29  29  0  27  

R 19  30  22  0  19  

RC 30  43  33  0  34  

Total  166 313 210 82 224 
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 Figure 2. Number of best run for different scale-type instances 
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Figure 3. Mean average solution cost over different scale-type instances 

In Figure 4, we show routes given by TSI-F-S for the VRPTW C104-based instance. This 

instance contains 30 clients and a horizon of 7 days. We show the routes of days 1 and 5. In 

Figure 4 each client is labeled with a client-number and its demand type. As stated in Section 

5.1, all clients are P1 patients. If a client is also a P2 (or P3) patient, we mark P2 (or P3) 

beside this client. Otherwise, this client is marked as P1. 
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Figure 4. Routes of TSI-F-S for C104-based test instance 

5.4 Real-World Case Study 

In this section, we test the performances of our proposed algorithms using field data of 

OIKIA Company HHC operations, which is located in Saint-Etienne, a French city of about 

450,000 inhabitants. OIKIA provides various levels of home health care depending on 

customer’s need. We collected five sets of field data, corresponding to five different weeks 
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(5 working days a week). The customers are citizens of Saint Etienne. Two vehicles provide 

HHC services to these customers. Most customers need services two or three days a week. 

We use google map (http://maps.google.fr/) to get the travel distance between any two points, 

and assume a vehicle speed of 35 KM/h. Detailed field data, e.g., customer number in each 

data set, are shown in Table 7. We did not get access to the actual routes, but OIKIA’s 

manager and planners gave their rules to assign and schedule the demands. In the current 

OIKIA HHC operations, the company has some predetermined rules to construct vehicle 

routes. The scheduler develops weekly vehicle scheduling according to these routes 

manually. The scheduling includes the following steps: (1) Try to balance the number of 

customers served each day, determine the visit day for each customer requiring multiple 

visits. At the end of this step, the visit requirements of each day are known. (2) For each day, 

the customers are divided into groups according to their geographic distribution, i.e., the zip 

codes. Each group is assigned to one vehicle (driver). (3) Calculate the workload of each 

vehicle and adjust the customers between vehicle routes with regards to the workload 

balancing among different vehicle drivers. For example, exchange and relocate customer 

between routes, especially the customers located on the border between different zip districts. 

We refer to these solutions executed by the company as the ‘OIKIA solution’.  

For each data instance, we have also run our TSI-F-S 10 times, each run with a 

computation time of 2 minutes. The costs of OIKIA and TSI-F-S solutions are presented and 

compared in Table 7. Columns ‘vehicle1’ and ‘vehicle2’ represent average daily travel 

distance of each vehicle, and column ‘Max-route’ represents the travel distance of the longest 

route during a week (the optimization objective of this paper). The last column ‘Dev’ 

indicates the percentage deviations of ‘Max-route’ between OIKIA and our TSI-F-S solutions. 

Regarding the longest route during a week, clearly we get better result than that of the 

OIKIA solution. For five real-life instances, the longest route’s distances of TSI-F-S is shorter 

than that of OIKIA with deviations of 10.08%, 16.59%, 15.73%, 8.41% and 9.31%. The 

TSI-F-S approach finds better solutions that balance the workloads of the two vehicles 

(drivers). Meanwhile, the superiority of TSI-F-S solution is also notable with regard to the 

total travel distances of each vehicle during a week, although it is not the original objective 

in our work. TSI-F-S solutions reduce the total travel distances of vehicle 1 and 2 by 2.15% 

and 6.88% respectively. For the real-world case study, we find that for some customers 

(about 30-40%), the visit days (i.e. the selected pattern) are different between ‘OIKIA 

solution’ and our result. Of course, almost for all the routes, their structures are different in 

two solutions. But some good components (a visit sequence of some customers) exist in 

routes of both solutions. The two main weaknesses of the OIKIA planner’s procedure are: (1) 

they not take into account temporal time windows in the clustering step; (2) the clustering is 

based on a static geographical decomposition (ZIP codes) which does not depend on actual 

instance. Our integrated approach tends to avoid these defaults.  

 

http://maps.google.fr/
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Table 7. Comparison between the OIKIA solutions and the TSI-F-S solutions 

   OIKIA solution (KM) TSI-F-S (KM)  

Instance n K vehicle 1 vehicle 2 Max-route vehicle 1 vehicle 2 Max-route Dev.% 

Real-1 58 2 96.1 92.9 102.7 92.0 91.7 93.3 -10.08 

Real-2 54 2 90.7 99.0 106.8 86.5 87.4 91.6 -16.59 

Real-3 50 2 83.5 90.2 98.6 83.8 84.2 85.2 -15.73 

Real-4 46 2 88.0 94.2 98.0 87.4 87.8 90.4 -8.41 

Real-5 49 2 91.2 97.3 103.3 90.5 92.0 94.5 -9.31 

Average   89.9 94.7 101.9 88.0 88.6 91.0 -12.02 

 

 

 5.5 Test on min-max multiple TSP benchmarks 

This section considers a special case with only P1 patients without time window 

constraints over a planning horizon of one day. The problem reduces to the classical 

Min-Max Multiple Traveling Salesman Problem (min-max MTSP). We test TSI-F-S on the 

min-max MTSP benchmark, and compare our results with existing solutions. Golden et al. 

[40] proposed a very sophisticated tabu search based adaptive memory procedure to solve a 

class of VRPs with min-max objective, including the min-max MTSP. They generated 

min-max MTSP test instances and solved them. Somhom et al. [37] designed a 

competition-based neural network, denoted NN, for the min-max MTSP. Their results were 

still the best known results for these instances. They also generated new standard min-max 

MTSP test instances and gave the solutions by their neural network. Meanwhile, Somhom et 

al. [37] also solved the Golden’s instances and compared the results.  

We test our best approach TSI-F-S on these two sets of test instances, for each of which 

two stopping criteria are adopted for the TSI-F-S. The first criterion is defined on the maximal 

iteration number of TSI-F-S, i.e., N1=15000, N2=9000 and T=∞. Meanwhile, since Somhom’s 

approach is rather fast and Somhom’s running time is shorter than that of Golden’s heuristic, 

we adopt maximal run time as the second stop criterion for TSI-F-S. Since Somhom used a 

rather old computer (a Sun Sparc 10 with a CPU frequency of about 100 MHz), for each test 

instance, we set 10% of Somhom’s computing time as the stop criterion of TSI-F-S, i.e., N1=∞, 

N2=∞, and T is the one tenth of Somhom’s computing time. In the following TSI-F-S under 

this set of parameters is denoted TSI-F-S′. TSI-F-S algorithm with each stopping criterion runs 

10 times for each instance. 

Results of our algorithm are detailed in Tables 8 and 9. In Table 8, columns ‘Instance’, 

‘n’ and ‘K’ give the instance, the number of patients and vehicles. For each algorithm, the 

best solution over 10 runs (see columns ‘Best’) and the average single run computing time in 

seconds (see columns ‘CPU’)  are given. Deviations between NN and our tabu search 

approach with the two stop criteria are given in columns ‘Dev%’.  

Similarly, Table 9 compares TSI-F-S with the ATS approach of Golden et al. [40] and NN 
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approach of Somhom et al. [37] on Golden’s test instances. For each Golden’s instance, 

Golden et al. were able to generate the best known result. Note that in Table 9, columns 

‘Dev’ indicate the deviation between ‘ATS’ and ‘TSI-F-S’ and the deviation between ‘NN’ and 

‘TSI-F-S′’, respectively.  

Although our heuristics are not designed for the min-max MTSP, results in Tables 8 and 9 

indicate that the performance of the proposed TSI-F-S algorithm is still very good. TSI-F-S with 

first stop criterion is able to improve the best known solution for 18 out of 24 Somhom’s test 

instances. The average best solution cost found by TSI-F-S is 4.17% smaller than the previous 

best known solution. Even with reduced running time our approach, TSI-F-S′, still can find 

better solutions for 14 out of 24 test instances. Regarding Golden’s instances in Table 9, our 

TSI-F-S algorithm with the first stop criterion is able to get 5 new best solutions and find 6 

existing best solutions out of 17 instances. But using the first stop criterion, TSI-F-S requires 

long computing times compared with ATS, which was running on a SUN SPARC 10. 

However, TSI-F-S′ allows getting solutions close to best ones, as the average deviation from 

the best solution of the literature is 1.6%. Furthermore, TSI-F-S′ obviously outperforms the 

method of Somhom et al. [37]. TSI-F-S′ is able to improve Somhom’s best solutions for 14 out 

of 17 instances and gives two new best solutions. The average best solution cost found by 

TSI-F-S′ is 1.37% smaller than previous Somhom’s best solution. Despite the bias in the 

comparison between algorithms running on different machines, we can state that our 

approach gets slightly worse on average than the state of the art heuristic (ATS) on min-max 

MTSP, and outperforms another very fast heuristic (NN). 

Table 8. Results on Somhom min-max MTSP test instances 

Instance N K 

NN TSI-F-S′ TSI-F-S 

Best CPU
a 

Best CPU Dev% Best CPU Dev% 

eil22 22 2 157 0.3 159 0.0 1.3 159 2 1.3 

  3 117 0.3 115* 0.0 -1.7 115* 2 -1.7 

  4 111 0.2 109* 0.0 -1.8 109* 2 -1.8 

eil30 30 2 230 0.6 224* 0.1 -2.7 224* 6 -2.7 

  3 174 0.4 165* 0.0 -5.5 165* 4 -5.5 

  4 171 0.4 156* 0.0 -9.6 156* 4 -9.6 

eil51 51 2 247 1.9 224 0.2 -10.3 222* 29 -11.3 

  3 170 1.9 161 0.2 -5.6 157* 24 -8.3 

  4 136 2.0 126* 0.2 -7.9 126* 23 -7.9 

eil76 76 2 289 4.8 281 0.5 -2.9 275* 97 -5.1 

  3 205 4.9 205 0.5 0.0 192* 62 -6.8 

  4 159 5.1 174 0.5 8.6 155* 51 -2.6 

kroA100 100 2 11484 17.3 12077 1.7 4.9 11525 188 0.4 

  3 9062 15.9 8783 1.6 -3.2 8054* 147 -12.5 

  4 7497 14.8 7079 1.5 -5.9 6729* 127 -11.4 
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kroA150 150 2 14885 24.5 14844 2.5 -0.3 13960* 920 -6.6 

  3 10527 23.1 11658 2.3 9.7 10768 485 2.2 

  4 8571 22.7 9080 2.3 5.6 8147* 412 -5.2 

kroA200 200 2 17353 37.3 17507 3.7 0.9 16045* 2138 -8.2 

  3 11502 37.9 12765 3.8 9.9 12359 1354 6.9 

  4 10433 33.3 10413 3.3 -0.2 9943* 851 -4.9 

eil101 101 2 340 15.1 339 1.2 -0.3 337* 298 -0.9 

  3 232 13.6 241 1.4 3.7 237 179 2.1 

  4 187 15.5 188 1.6 0.5 187 139 0.0 

Average    12.2  1.2 -0.5  314.4 -4.2 

a
 CPU times obtained on a SUN SPARC 10;  

Asterisk indicates the new best solution and boldface shows best result between TSI-F-S′ and NN. 

Table 9. Results on Golden min-max MTSP test instances 

Instance n K 

ATS TSI-F-S  NN TSI-F-S′ 

Best CPU
a 

Best CPU Dev%  Best CPU Best CPU Dev% 

CMT_50 50 5 110.20 210 110.17* 19.6 0.0  112.70 3.5 110.17* 0.4 -2.3 

  6 99.26 190 99.18* 18.9 -0.1  102.23 5.9 99.18* 0.6 -3.1 

  7 91.62 160 91.62 19.5 0.0  94.34 10.2 91.62 1.0 -3.0 

CMT_75 75 10 91.21 210 91.22 54.4 0.0  94.14 5.3 92.52 0.5 -1.8 

   11 88.72 210 89.09 57.4 0.4  93.84 10.7 92.18 1.1 -1.8 

   12 88.08 210 88.08 52.0 0.0  90.80 13.3 88.64 1.3 -2.4 

CMT100 100 8 111.12 610 110.81* 116.6 -0.3  115.18 11.5 115.66 1.2 0.4 

  9 105.39 610 105.48 113.3 0.1  107.34 17.5 109.59 1.7 2.1 

  10 100.37 550 101.94 115.6 1.5  105.68 25.7 103.33 2.6 -2.3 

CMT150 150 12 100.12 1100 99.99* 318.3 -0.1  104.30 36.5 106.60 3.7 2.2 

CMT199 199 15 99.86 51 99.86 825.7 0.0  103.87 40.4 103.22 4.0 -0.6 

CMT120 120 7 199.39 1400 199.62 170.2 0.1  202.71 24.6 201.73 2.5 -0.5 

CMT12_100 100 10 117.05 7 117.05 101.7 0.0  117.05 6.1 117.05 0.6 0.0 

Fisher_71 4 4 65.10 960 65.08 59.3 0.0  65.46 4.5 65.11 0.5 -0.5 

 5 5 59.32 790 59.32 36.6 0.0  61.79 6.1 59.74 0.6 -3.4 

 6 6 55.19 700 55.10* 44.3 -0.2  58.25 9.0 55.10* 0.9 -5.7 

Fisher_134 134 7 293.54 41 293.54 250.4 0.0  296.02 20.4 294.44 2.0 -0.5 

Average    471.1  139.6 0.1   14.8  1.5 -1.4 
a
 CPU times obtained on a SUN SPARC 10;  

Asterisk indicates the new best solution and boldface shows best result between TSI-F-S′ and NN.  

5.6 Test on the Periodic Traveling Salesman Problem benchmarks 

Besides the min-max objective adopted in this paper, some other objectives, such as total 

travel distance minimization, are widely used in VRPs. Our TS algorithm is flexible and can 

be extended to other objectives. In this subsection, we simply explain how to extend our 
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heuristic to minimize the total travel distance. 

To minimize the total travel distance, we keep the initial solution of Section 4.1 despite 

its poor performance for this new objective. During the neighbor search, solutions are 

evaluated as f′(s) =c′(s), where c′(s) is the total travel distance. Similar evaluation is needed 

in the local search procedure for intra-route improvement. Finally, the aspiration value of 

each attribute is the total travel distances of the best feasible solution found with this 

attribute.  

The modified TSI-F-S is tested on existing Periodic Traveling Salesman Problem (PTSP) 

benchmarks. The PTSP can be seen as a special case of our problem with only P1 patients 

and only one vehicle on each day. Compared with min-max MTSP solved in Section 5.3, the 

PTSP has been extensively studied [19, 64-67]. Note that the classical PTSP has a constraint 

that at least one customer must be visited each day, which was introduced by Chao et al. [65]. 

This constraint is not meaningful in our problem and most real-life applications, so it is 

ignored in our heuristic and experiments. In order to test our approach, first, based on the 

classical PTSP benchmarks of Cordeau et al. [6], we derive 22 new test instances. We set 

new patterns to the customers in the Cordeau’s benchmark, which forbid empty routes on 

each day in feasible solutions. Other data, e.g., the locations of the depot and customers are 

used directly. TSI-F-S is compared with the tabu search designed by Cordeau et al. [6] for the 

PTSP. For each test instance Cordeau’s tabu search is executed 10 times on a 2.66G CPU, 

and each run stops with maximal 15000 iterations. Our TSI-F-S also solves each instance 10 

times. It is stopped when running time reached the same as Cordeau’s tabu search. Results 

are shown in Table 10. Table 10 gives best solution costs of both Cordeau’s algorithm and 

TSI-F-S, their running time in second and deviations, where Column ‘t’ gives the number of 

days in the planning horizon. TSI-F-S is competitive with respect to Cordeau’s algorithm. 

TSI-F-S is able to find 6 better solutions out of 22 test instances and the same best solutions 

for 8 instances. For the 8 remaining instances, Cordeau’s approach outperforms TSI-F-S 

algorithm. The superiority and difference between TSI-F-S and Cordeau’s algorithm are not 

clear. Both approaches use similar schemes and our approach wastes time in infeasible local 

search designed to deal with constraints that do not exist in PTSP that does not have time 

windows and precedence constraints.  

Meanwhile, we find PTSP computational experiments of Cacchiani et al. [27] also relax 

the constraint of at least one customer visited every day. We compare our TSI-F-S with the 

set-covering based heuristic of Cacchiani et al. on series of classical PTSP instances. 

Cacchiani et al. executed their heuristic on an Intel Xeon 2.67 GHz CPU for solving each 

PTSP instance, with a time limit of 2 hours. We used TSI-F-S to solve each instance 10 times. 

For small instances (less than 100 customers), we set the stop criterion as the total running 

time of 5 minutes, and for larger instances the TSI-F-S was executed with time limit of 15 

minutes. The comparison is presented in Table 11. To have a full comparison with all other 
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PTSP methods, we also present in Table 11 results of the following state-of-the-art 

algorithms: the heuristics of Chao et al. [65] in column ‘CGW’ and of Paletta [66] in ‘P’, the 

tabu search of Cordeau et al. [6] in ‘CGL’, the heuristic algorithms of Bertazzi et al. [67] in 

‘BPS’ and of Hemmelmayr et al. [19] in ‘HDH’, and a set-covering based heuristic algorithm 

of Cacchiani et al. [27] in ‘CHT’. Since both Cacchiani et al. [27] and our TSI-F-S neglect the 

constraint introduced by Chao et al. [65], results of these two approaches may not be feasible 

with respect to this constraint. Such results are marked with double asterisks ‘**’. We 

consider all instances in the computation of the average percentage gap with approach of 

Cacchiani et al. For other state-of-the-art algorithms, we do not consider these ‘infeasible’ 

instances when calculating percentage gaps. As shown in Table 11, CHT finds 3 new best 

solutions which break Chao et al. constraint (p03, p06 and p09), while TSI-F-S finds 7 such 

solutions (p01, p03, p04, p06, p09, p17 and p19). For three common instances p03, p06 and 

p09, TSI-F-S finds better solutions than CHT. Besides these new solutions, TSI-F-S reaches the 

same best solutions 5 times (instances p11-p15). 

 Although our approach is able to find new best solutions, it is slightly dominated on 

average by several specialized algorithms; the gaps among other algorithms are: -0.96%, 

0.78%, 0.26%, 0.73%, 1.95% and 1.44%. Such results cannot completely prove the benefit 

of TSI-F-S for solving the classical PTSP when compared with specialized state-of-the-art 

algorithms. However, we think that the results on PTSP are acceptable for an approach 

which includes many useless features for this problem. Moreover, algorithms considering 

explicitly the Chao et al. constraint are favored on some instances. The Chao et al. constraint 

requires all vehicles to be used. It reduces the solution space and can be easily handled in 

many solution algorithms. TSI-F-S and CHT are therefore penalized, when the best (near 

optimum) solutions of the PTSP without Chao et al. constraint satisfy this constraint. In such 

cases, both approaches have to explore a larger solution space. The comparison between 

CHT and TSI-F-S shows that TSI-F-S outperforms CHT when best solutions found do not satisfy 

Chao et al. constraint, and CHT outperforms TSI-F-S in the opposite case. In other words, we 

state that TSI-F-S performs better than CHT when best solutions do not use all vehicles, and it 

performs worse otherwise. It means that TSI-F-S can be improved when it is likely that not all 

vehicles will be used. 

Table 10. Results on New Periodic Traveling Salesman Problem test instances 

Instance n t Cordeau TSI-F-S CPU Dev% 

t-p1-new 50 2 552.28 551.46 4.8 -0.15 

t-p2-new 50 5 1129.80 1127.41 5.4 -0.21 

t-p3-new 50 5 590.58 590.58 3.6 0.00 

t-p4-new 75 2 591.03 593.92 9.0 0.49 

t-p5-new 75 5 1387.62 1394.73 9.6 0.51 

t-p6-new 75 10 817.87 849.31 7.2 3.70 
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t-p7-new 100 2 690.90 688.26 14.4 -0.38 

t-p8-new 100 5 1621.08 1676.45 15.0 3.30 

t-p9-new 100 8 977.58 964.31 9.6 -1.38 

t-p10-new 100 5 1373.60 1398.28 13.8 1.77 

t-p11-new 65 4 490.97 490.97 6.0 0.00 

t-p12-new 87 4 664.10 664.10 9.0 0.00 

t-p13-new 109 4 830.80 830.80 13.2 0.00 

t-p14-new 131 4 994.60 994.60 18.0 0.00 

t-p15-new 153 4 1157.07 1157.07 23.4 0.00 

t-p16-new 48 4 742.90 722.82 4.2 -2.78 

t-p17-new 66 4 918.44 918.44 6.6 0.00 

t-p18-new 84 4 935.13 935.13 10.2 0.00 

t-p19-new 102 4 1079.30 1097.58 13.8 1.67 

t-p20-new 120 4 1206.45 1198.96 15.6 -0.62 

t-p21-new 77 4 1396.18 1396.77 7.8 0.04 

t-p22-new 154 4 4326.08 4375.27 24.0 1.12 

Average       0.32 

Boldface shows better result between two approaches. 

Table 11. Results on classical Periodic Traveling Salesman Problem test instances 

Instance CGW P CGL BPS HDH CHT TSI-F-S 

p01 442.1 436.50 439.02 436.50 432.10 432.10 428.98** 

p02 1106.7 1122.44 1111.93 1122.44 1106.84 1105.81 1111.93 

p03 474.0 469.16 469.69 469.64 467.42 446.17** 428.98** 

p04 554.2 559.68 556.21 559.49 552.39 550.07 547.24** 

p05 1394.0 1387.90 1389.54 1384.75 1384.58 1384.15 1384.58 

p06 657.3 643.59 651.28 655.06 652.65 581.94** 556.82** 

p07 662.4 ─ 660.41 646.65 649.17 658.09 657.89 

p08 1635.2 ─ 1634.68 1633.92 1615.51 1612.60 1624.58 

p09 735.3 ─ 734.16 733.13 729.33 698.04** 660.54** 

p10 1248.8 ─ 1240.01 1249.15 1237.72 1239.96 1245.71 

p11 491.0 490.97 490.97 490.97 490.97 490.97 490.97 

p12 664.1 664.10 664.10 664.10 664.10 664.10 664.10 

p13 830.8 830.80 830.80 830.80 830.80 830.80 830.80 

p14 994.6 994.60 994.60 994.60 994.60 994.60 994.60 

p15 1157.1 1157.07 1157.07 1157.07 1157.07 1157.12 1157.07 

p16 726.8 660.12 660.12 660.12 660.12 649.96 662.28 

p17 776.5 776.43 776.43 776.43 776.71 774.54 764.49** 

p18 873.7 876.44 873.73 876.44 875.82 887.05 887.05 

p19 974.6 958.51 958.88 958.51 965.54 974.60 939.35** 

p20 1053.6 1033.58 1034.51 1033.58 1035.51 1053.59 1077.85 

p21 1379.1 ─ 1375.08 1375.07 1375.07 1375.08 1375.08 
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p22 4323.6 ─ 4319.72 4323.49 4312.31 4312.32 4318.07 

p23 8753.3 8390.53 8553.10 8498.00 8349.26 8405.10 8554.91 

pr01 ─ 2064.84 2068.46 2064.84 2064.84 2064.84 2076.89 

pr02 ─ 3232.72 3293.50 3231.50 3208.49 3208.22 3317.17 

pr03 ─ 4084.75 4106.72 4118.63 4045.73 4065.15 4120.76 

pr04 ─ 4636.67 4661.97 4621.36 4547.77 4557.92 4689.63 

pr05 ─ 4757.90 4698.83 4682.54 4628.24 4623.86 4707.66 

pr06 ─ 5688.42 5699.96 5595.45 5529.68 5559.11 5699.84 

pr07 ─ 4479.65 4453.15 4474.17 4436.31 4446.60 4458.21 

pr08 ─ ─ 5405.40 5475.70 5370.59 5383.44 5475.72 

pr09 ─ 7405.52 7469.73 7346.32 7244.02 7256.65 7464.23 

pr10 ─ 8394.52 8493.74 8415.31 8216.48 8243.32 8492.69 

Dev% -0.96 0.78 0.26 0.73 1.95 1.44  

Boldface shows the best result among approaches. 

6 Conclusions and future research 

This paper investigates a special periodic vehicle routing problem with time windows in 

home health care industry, an extension of the classical PVRP and PTSP. The problem is of 

interest because of its theoretical complexity and of the important practical applications in 

the home health care logistics. We propose hybridization of tabu search and different local 

search schemes, for solving this complex problem. One salient feature of our approach is the 

hybridization of feasible and infeasible local search methods in the tabu search algorithm for 

solving the vehicle routing problem. Different integration strategies of feasible and infeasible 

local searches are tested on different scales and types test instances. We find experimentally 

that infeasible local search with small probability followed by a feasible local search with 

high probability outperforms other strategies. Our proposed methods are also extensively 

tested on different test instances, including VRPTW-based benchmarks, min-max Multiple 

TSP, Periodic Traveling Salesman Problem, and real-life data from a HHC company. 

Future research can be pursued in several directions. First, it is interesting to consider 

explicitly the planning decision and daily routing decisions instead of the implicit patient 

demand pattern model of this paper. This requires the modeling of patient demand and the 

therapeutic protocols of patients. Another important research direction is to take into account 

the uncertainties of demand and availabilities times in the planning and routing decisions. 

Another relevant research direction is the real time routing decisions to face arrival of 

emergency demands and random perturbations. 
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Appendix 

This appendix gives detailed computational results for VRPTW-based test instances. In these 

tables, ‘Instance’ refers to the instance label, ‘Best’, ‘AVG’ and ‘Worst’ are the best, the 

average and the worst solution cost of the 10 independent runs for each instance, ‘BR’ is the 

number of best runs, ‘CPU’ is the computational time in seconds.
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Table 12. Detailed results on comparison of different pILS settings in TSI-F-S 

 

pFLS=80% and pILS=0% pFLS=80% and pILS=2% pFLS=80% and pILS=5% pFLS=80% and pILS=10% 

Instance Best Average Worst BR Best Average Worst BR Best Average Worst BR Best Average Worst BR 

C101_30 214.65 284.56 526.75 0 207.06 210.13 233.24 0 205.75 208.18 214.33 2 207.06 208.00 214.65 0 

C104_30 190.36 200.88 232.68 0 175.62 194.68 221.71 2 175.62 188.01 201.44 1 175.62 191.08 205.58 1 

C109_60 223.39 234.81 252.52 3 223.39 223.39 223.39 10 223.39 223.39 223.39 10 223.39 225.68 246.26 9 

C201_60 220.26 248.40 284.76 0 215.20 219.08 223.70 0 215.32 223.19 228.24 0 218.38 223.60 228.93 0 

R108_30 188.49 206.04 221.72 1 188.49 190.26 206.14 9 188.49 188.50 188.50 5 188.49 189.90 202.58 5 

R207_30 231.01 239.58 245.66 0 234.83 236.09 245.23 0 232.06 235.68 241.28 0 230.94 235.45 243.07 1 

R210_60 208.84 230.13 246.23 1 208.84 211.56 215.63 6 208.84 211.56 215.63 6 208.84 210.52 218.80 8 

RC105_60 197.59 220.01 256.87 0 193.09 194.50 197.85 4 193.09 194.48 197.03 1 193.44 194.99 199.04 0 

RC201_60 214.22 243.01 276.22 1 229.62 233.26 239.21 0 236.62 240.37 244.53 0 237.68 241.12 244.86 0 

RC204_60 228.22 231.14 250.01 8 228.22 229.66 242.62 9 228.22 228.22 228.22 10 228.22 230.23 248.30 9 

 

 

pFLS=80% and pILS=20% pFLS=80% and pILS=30% pFLS=80% and pILS=40% pFLS=80% and pILS=50% 

Instance Best Average Worst BR Best Average Worst BR Best Average Worst BR Best Average Worst BR 

C101_30 207.14 209.12 219.24 0 207.06 209.60 229.24 0 207.14 209.48 229.24 0 207.14 212.88 233.24 0 

C104_30 175.62 195.38 205.92 1 175.62 194.23 208.92 1 175.62 192.82 214.23 1 183.67 193.95 202.15 0 

C109_60 223.39 225.15 241.02 9 223.39 223.63 225.15 8 223.39 227.44 246.26 8 223.39 225.99 241.02 6 

C201_60 215.32 222.75 241.37 0 215.25 224.10 241.43 0 216.39 231.19 247.89 0 213.32 234.87 256.97 1 

R108_30 188.49 193.57 239.18 6 188.49 193.89 241.95 3 188.49 196.86 239.77 2 188.49 188.49 188.50 7 

R207_30 232.03 235.68 243.41 0 230.94 234.57 235.66 1 234.83 235.39 238.37 0 230.94 235.07 238.37 1 

R210_60 208.84 212.91 215.63 4 208.84 214.95 215.63 3 208.84 214.90 220.45 2 208.84 214.53 215.63 1 

RC105_60 196.49 197.75 202.45 0 196.49 199.95 205.56 0 199.36 209.28 221.20 0 197.81 217.13 285.52 0 

RC201_60 229.03 238.42 245.70 0 229.62 235.74 239.80 0 228.97 240.74 250.69 0 229.59 242.79 251.97 0 

RC204_60 228.22 230.89 248.30 8 228.22 234.38 268.03 8 228.22 228.22 228.22 10 228.22 231.06 241.44 7 
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Table 13. Detailed results on small scale VRPTW-based instances 

 

TSC TSI-F-S TSFLS TSILS TSF-I-P 

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU 

C101 50 214.33 290.60 461.07 0 55.6 205.75 212.08 233.24 1 62.2 214.65 284.56 526.75 0 71.1 207.14 212.42 231.85 0 53.5 207.14 217.73 240.16 0 57.4 

C104 50 175.62 194.85 212.49 1 48.9 175.62 190.55 202.04 1 56.7 190.36 200.88 232.68 0 51.9 175.62 189.32 202.04 1 58.0 175.62 192.44 202.04 1 48.2 

C109 50 220.53 223.78 253.04 9 51.6 220.53 220.53 220.53 10 53.3 220.53 220.98 225.02 9 53.5 220.53 220.58 221.00 9 57.4 220.53 223.74 252.61 9 54.3 

C201 50 218.35 255.00 384.00 1 55.7 218.35 218.35 218.35 10 58.4 218.35 246.01 352.23 3 65.9 220.85 247.17 331.17 0 58.4 218.35 221.61 242.76 4 48.3 

C203 50 229.74 235.07 244.73 1 52.9 229.74 230.63 238.63 9 45.0 229.74 239.61 296.80 2 47.7 229.74 233.41 242.67 5 51.3 229.74 230.37 233.63 5 59.3 

C208 50 194.77 199.21 227.38 2 49.6 194.77 196.00 200.82 5 58.7 194.77 200.21 245.31 7 57.7 194.77 197.10 203.28 2 47.1 194.77 198.37 209.71 3 51.4 

R101 50 181.10 190.48 203.54 4 44.9 181.10 187.79 207.49 2 40.4 181.10 194.35 207.49 1 46.0 181.10 182.66 194.10 2 59.5 181.10 187.75 194.10 1 48.7 

R104 50 186.85 194.94 221.75 2 43.8 186.85 187.34 188.02 2 48.4 186.85 187.19 188.01 4 46.0 186.85 187.49 188.02 3 48.6 186.85 187.28 188.02 4 48.1 

R108 50 188.49 213.28 252.48 1 38.2 188.49 190.32 197.61 5 47.6 188.49 206.04 221.72 1 49.8 188.49 189.30 195.60 2 53.9 188.49 195.99 220.46 2 58.9 

R110 50 182.46 182.46 182.46 10 34.4 182.46 182.46 182.46 10 34.7 182.46 182.46 182.46 10 35.4 182.46 182.46 182.46 10 36.2 182.46 182.46 182.46 10 36.7 

R207 50 231.55 240.12 248.50 0 43.8 231.01 234.78 235.92 0 61.6 231.01 239.58 245.66 0 62.4 231.01 235.42 241.28 0 52.9 230.94 234.61 235.92 1 60.8 

R210 50 186.98 228.61 282.77 1 56.2 186.98 206.19 241.15 4 68.6 186.98 208.32 237.12 2 49.5 186.98 210.57 240.89 3 64.5 186.98 203.08 231.59 3 51.2 

RC103 50 185.17 191.24 226.37 4 49.9 185.17 185.37 187.19 9 50.5 185.17 185.71 188.22 8 51.5 185.17 185.52 188.22 8 46.7 185.17 185.30 186.44 9 54.5 

RC105 50 189.11 189.54 193.38 0 50.1 186.45 187.78 189.11 5 55.9 186.45 189.27 193.38 1 44.4 186.45 189.27 193.38 1 57.7 189.11 191.91 199.55 0 47.1 

RC108 50 226.27 247.79 265.00 0 55.9 207.80 223.27 247.44 6 62.1 242.16 257.99 286.09 0 59.7 209.10 238.69 256.87 0 67.2 244.87 246.90 256.25 0 60.1 

RC201 50 217.86 241.81 291.01 5 60.6 217.86 217.89 218.03 8 53.7 217.86 229.13 276.46 7 45.4 217.86 217.95 218.03 5 56.0 217.86 218.02 218.48 6 47.7 

RC204 50 182.17 212.12 278.85 1 51.3 182.17 183.30 192.45 8 69.9 182.17 184.95 193.18 4 46.9 182.17 183.94 197.39 7 66.7 182.17 186.13 208.78 6 49.9 

RC208 50 240.81 255.76 316.10 2 64.6 241.47 246.54 253.88 0 76.5 240.81 248.12 253.88 1 53.2 241.47 250.73 255.57 0 78.6 240.81 246.24 253.88 1 74.9 
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Table 14. Detailed results on medium scale VRPTW-based instances 

 

TSC TSI-F-S TSFLS TSILS TSF-I-P 

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU 

C101 100 230.39 247.35 300.83 0 222.0 228.22 229.81 230.82 1 318.7 228.22 238.99 250.32 1 221.5 255.52 286.89 315.33 0 268.8 230.39 233.98 244.56 0 243.2 

C104 100 228.13 231.42 251.88 6 208.1 228.13 228.13 228.13 10 212.8 228.13 232.64 251.87 7 247.9 228.13 234.19 257.76 1 198.8 228.13 228.79 231.42 8 184.0 

C109 100 224.67 249.40 337.61 0 264.8 223.39 223.39 223.39 10 227.8 223.39 234.81 252.52 3 289.4 242.28 258.58 274.10 0 290.0 223.39 238.14 276.49 2 217.5 

C201 100 218.16 252.04 276.90 0 242.2 215.25 218.45 223.11 1 345.7 220.26 248.40 284.76 0 217.2 251.60 279.55 313.82 0 287.5 218.45 230.24 247.11 0 269.6 

C203 100 226.01 250.82 359.67 4 173.3 226.01 226.01 226.01 10 242.8 226.01 226.01 226.01 10 190.4 227.36 259.07 285.81 0 224.0 226.01 227.58 241.73 9 185.8 

C208 100 214.55 239.92 271.49 0 254.8 199.33 203.20 205.02 0 429.6 196.00 220.83 234.17 1 270.9 205.02 242.36 295.94 0 370.3 204.67 211.58 231.43 0 247.9 

R101 100 197.22 204.61 220.54 3 316.7 197.22 197.22 197.22 10 472.6 197.22 216.58 305.88 3 321.2 197.22 201.19 219.85 7 565.1 197.22 197.22 197.22 10 336.0 

R104 100 200.73 201.91 210.00 5 302.4 200.73 200.81 201.52 9 360.0 200.73 206.94 232.62 4 303.3 203.43 214.43 222.91 0 268.5 200.73 201.37 206.91 7 346.2 

R108 100 196.38 203.77 218.44 2 226.8 196.38 196.89 201.10 7 288.3 196.74 204.91 211.18 0 243.0 196.38 207.34 250.13 1 276.7 196.38 200.57 213.76 3 299.9 

R110 100 228.08 229.10 238.19 8 206.6 228.08 228.08 228.08 10 230.9 228.08 229.57 235.46 1 215.2 228.20 237.90 263.19 3 260.3 228.08 230.76 237.85 4 248.6 

R207 100 203.17 209.06 239.95 6 240.9 203.17 203.17 203.17 10 205.4 203.17 203.17 203.17 10 183.6 203.17 203.20 203.42 9 224.8 203.17 203.17 203.17 10 218.3 

R210 100 208.84 223.65 242.50 2 216.0 208.84 211.56 215.63 6 205.3 208.84 230.13 246.23 1 235.2 215.63 231.21 245.42 0 210.4 208.84 219.45 245.42 2 212.6 

RC103 100 245.46 265.78 294.05 0 300.5 245.07 246.82 252.69 1 370.2 245.46 249.36 258.82 1 221.4 254.71 283.53 307.69 1 349.1 249.63 261.38 298.34 1 377.8 

RC105 100 195.64 226.76 273.15 0 344.8 193.09 194.28 196.57 1 506.6 197.59 220.01 256.87 0 357.5 205.11 225.82 282.00 0 341.5 198.86 214.77 225.80 0 357.9 

RC108 100 241.51 246.59 266.30 5 210.2 241.51 241.51 241.51 10 233.3 241.51 244.88 252.78 5 225.8 247.05 252.66 268.21 0 260.4 241.51 245.09 257.06 4 235.7 

RC201 100 220.59 243.81 263.16 0 287.5 227.10 231.95 236.46 0 417.1 214.22 243.01 276.22 1 301.2 249.88 317.02 367.18 0 240.6 243.61 289.27 347.56 0 263.2 

RC204 100 228.22 242.73 258.90 3 248.5 228.22 228.22 228.22 10 257.6 228.22 231.14 250.01 8 328.5 228.22 238.86 258.20 3 282.2 228.22 228.22 228.22 10 277.8 

RC208 100 228.25 229.19 236.45 8 187.3 228.25 228.25 228.25 10 189.8 228.25 228.25 228.25 10 231.4 228.25 243.52 304.80 3 256.0 228.25 228.25 228.25 10 196.1 
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Table 15. Detailed results on large scale VRPTW-based instances 

 

TSC TSI-F-S TSFLS TSILS TSF-I-P 

Instance De Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU Best Avg Worst N CPU 

C1_4_1 350 525.85 531.41 551.20 4 5137.9 525.85 530.11 549.86 4 6241.5 525.85 546.79 612.73 4 4107.8 553.93 608.91 674.62 0 4729.6 525.85 533.71 559.91 7 4785.8 

C1_4_5 350 557.61 606.43 769.88 4 5088.3 557.61 558.75 565.94 7 5857.3 557.61 563.25 578.90 7 5427.0 599.11 636.21 672.47 0 4966.0 557.61 566.30 578.90 5 4362.2 

C1_4_8 350 542.56 542.56 542.56 10 5208.8 542.56 542.56 542.56 10 5978.4 542.56 545.57 572.64 9 4401.4 555.11 651.26 805.94 0 5342.3 542.56 542.78 544.76 5 5442.0 

C2_4_3 350 469.17 588.25 878.67 0 5258.5 469.11 469.95 474.20 7 5923.9 469.11 471.51 475.43 5 5553.4 538.10 604.56 654.02 0 5779.7 469.11 472.76 492.50 5 5663.2 

C2_4_7 350 505.09 556.92 764.40 0 5891.3 507.76 523.36 542.87 0 6901.1 507.76 527.60 549.91 0 6381.2 533.38 601.88 659.84 0 5644.2 502.07 519.05 535.22 1 4602.0 

C2_4_9 350 487.57 517.20 600.18 3 5211.4 487.57 497.46 514.91 1 5184.7 487.57 492.14 527.86 4 6258.6 500.31 547.53 610.77 0 5290.7 487.57 502.08 525.86 4 5644.1 

R1_4_2 350 501.08 519.08 569.88 3 4860.2 505.27 510.63 518.88 0 6674.6 501.13 535.46 641.32 0 5075.8 557.63 596.26 665.74 0 4683.8 518.88 538.95 570.77 0 5001.5 

R1_4_3 350 572.00 591.45 654.91 6 5431.9 572.00 572.00 572.00 10 5008.0 572.00 608.79 717.36 5 4209.3 584.42 607.63 615.46 0 5886.3 572.00 582.70 646.56 7 4576.2 

R1_4_7 350 536.12 544.21 571.18 1 4744.6 536.12 536.60 539.21 2 5874.6 536.13 547.36 578.45 0 4706.5 596.59 626.75 692.43 0 4892.2 536.13 544.78 576.54 0 4817.5 

R2_4_1 350 601.41 611.80 657.72 8 3831.1 601.41 601.41 601.41 10 5517.5 601.41 601.41 601.41 10 3763.4 614.31 692.81 763.59 0 5395.0 601.41 602.94 616.69 9 4091.8 

R2_4_5 350 552.85 643.50 775.12 1 4860.2 552.85 592.26 661.72 1 6969.6 552.85 554.97 572.70 5 5725.5 598.55 641.73 716.12 0 5644.9 552.85 569.38 663.46 2 5106.8 

R2_4_8 350 575.02 692.58 834.06 0 4063.5 558.88 562.11 574.81 7 4945.0 558.88 569.31 577.76 2 4153.0 677.84 717.39 840.33 0 6643.4 558.88 569.25 577.37 1 5195.4 

RC1_4_3 350 570.71 581.48 609.91 4 5271.3 570.71 570.71 570.71 10 4973.0 570.71 588.14 635.32 3 4248.1 587.69 612.20 667.81 0 5621.6 570.71 571.28 576.05 7 5478.2 

RC1_4_5 350 526.33 528.58 539.78 8 4468.2 526.33 526.33 526.33 10 6366.9 526.33 534.01 582.72 6 4772.2 584.14 609.52 636.41 0 5236.0 526.33 553.78 640.21 3 5928.5 

RC1_4_8 350 558.88 560.64 574.13 8 3920.0 558.88 558.88 558.88 10 6230.7 558.88 561.59 574.13 5 4992.7 578.84 588.99 614.73 0 4503.7 558.88 573.08 623.80 2 4662.7 

RC2_4_2 350 572.00 711.82 945.00 1 4879.2 572.00 572.00 572.00 10 6239.8 572.00 577.28 624.38 8 7163.2 604.23 650.93 679.80 0 5446.9 572.00 572.00 572.00 10 6120.7 

RC2_4_5 350 522.34 575.12 783.77 4 4828.9 522.34 535.12 562.84 1 6204.6 522.34 526.04 540.46 7 5471.5 576.68 661.88 744.89 0 5863.6 522.34 522.94 528.36 9 5738.2 

RC2_4_8 350 534.36 594.39 943.18 5 6189.5 534.36 537.98 543.06 2 6275.8 534.36 544.86 595.40 4 6104.7 636.13 706.85 752.86 0 6100.3 534.36 542.51 568.59 3 5603.9 

 


