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Research subject 

•  Caracterization and analysis of common fault injection 
mechanism 
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Today’s subject 

•  Power glitches fault injection mechanism 
 Analysis and practice 



Agenda 

•  Timing constraints of synchronous digital IC 
•  Static stresses (global effect) 
•  Transient stresses 
•  Conclusion 
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How to inject faults through timing constraints 
violation? 

•  Overclocking: (Frequency increase, i.e. period decrease) 
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Tclk <  Dclk!Q + DpMax - Tskew +δsu 

•  Underpowering or overheating: (Propagation time increase) 

Tclk <  Dclk!Q + DpMax - Tskew +δsu 



Target 

•  Platform: FPGA Spartan 3A 

•  Algorithm: AES 128 bit 
none-secure implementation 

•  Frequency: 100 MHz 

•  Power supply: 1.2V 

6 



Experimental proof 

Common fault injection means 

•  Clock stress (overclocking) 
•  Power stress (underpowering) 

•  Overheating 
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A common mechanism ! 

⇒ Timing constraints 
violations. 

•  10,000 input dataset 
•  Critical path faulted 

DCIS 2012 - ,,,,,, 
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Issues 

•  Low timing resolution 



Transient perturbations 

•  Clock glitch 

•  Power supply glitch 
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Questions 
•  Injection mechanism? Timing violation? 

•  Achievable resolution? 
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Clock glitch 

Glitchy clk 

Tclk - ΔT 

•  35ps resolution 

•  Global effect 

•  Timing constraints violation (obvious) 

•  A tool for critical time measurement 

•  Used to build a template/reference library 

To be compared, 



Power glitch: Ideal 

11 



Power glitch: Input capacitance 
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10ns 

80ns 



Power glitch: impedance adaptation 
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10ns 
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Power glitch: Input capacitance 
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Spartan 3A 



Power glitch: impedance adaptation 
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Power glitch 

•  Target a specific 
round but also affect 
the neighboring 
rounds, 
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1,2V 
1V •  Global offset must be 

added. 

70%  20%  
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Power glitch 

•  Analysis of injected faults: 
 70% identical to clock glitch injection 
 20% neighboring rounds 
 10% the second most critical path of the round 
   

•  Conclusion: Clock and power glitch induced faults are due 
to timing constraints violation  

•  >90% single-bit fault 
A spatial effect component? 

Linked to voltage transient propagation 
through the power supply grid  
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•  Voltage decrement => critical path increase  
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Metastability 

Data-dependency 

Underpowering 
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•  Injection mechanism? 



•  Overclocking, underpowering, overheating generate 
exactly the sames faults => same mechanism, 

•  Static stresses give accurate results BUT random 
temporal localization, 

•  Transient stresses give a better temporal localization 
BUT inducing spactial effect, 

•  Indepth investigation are going to explain these spatial 
effects. 
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Overclocking 

•  Fault occurrence rate vs applied stress 



Overheating  
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Metastability 

Data-dependency 

•  Temperature increase => critical path increase  
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δset-up δhold 

Qdownstream 

Setup time violation (i.e. timing constraint violation) : 
 ⇒ metastability (non-deterministic) 
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Context 

•  Many of our daily used electronic devices embed 
cryptographic features, 

•  Often targeted by malicious attackers, 

•  Indepth understanding of attack means is needed to protect 
properly these devices. 
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Inverter : 
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•  Power Supply. 
  VDD      => tpLH  

•  Mobility :  
temperature dependent. 

 T°    => tpLH  
  (generally) 


