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Abstract—In this paper, we present an extension of the multi-
criteria decision making based on the Analytic Hierarchy Process
(AHP) which incorporates uncertain knowledge matrices for
generating basic belief assignments (bba’s). The combination of
priority vectors corresponding to bba’s related to each (sub)-
criterion is performed using the Proportional Conflict Redistribu-
tion rule no. 5 proposed in Dezert-Smarandache Theory (DSmT)
of plausible and paradoxical reasoning. The method presented
here, called DSmT-AHP, is illustrated on very simple examples.
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I. INTRODUCTION

The Multi-criteria decision-making (MCDM) problem con-

cerns the elucidation of the level of preferences of decision

alternatives through judgments made over a number of criteria

[6]. At the Decision-maker (DM) level, a useful method for

solving MCDM problem must take into account opinions

made under uncertainty and based on distinct criteria with

different importances. The difficulty of the problem increases

if we consider a group decision-making (GDM) problem

involving a panel of decision-makers. Several attempts have

been proposed in the literature to solve the MCGDM problem.

Among the interesting solutions developed, one must cite

the works made by Beynon [3]–[6]. This author developed a

method called DS/AHP which extended the Analytic Hierar-

chy Process (AHP) method of Saaty [15]–[17] with Dempster-

Shafer Theory (DST) [23] of belief functions to take into

account uncertainty and to manage the conflicts between

experts opinions within a hierarchical model approach. In this

paper, we propose to follow Beynon’s approach, but instead

of using DST, we investigate the possibility to use Dezert-

Smarandache Theory (DSmT) of plausible and paradoxical

reasoning developed since 2002 for overcoming DST limita-

tions1 [24]. This new approach will be referred as DSmT-AHP

method in the sequel. DSmT allows to manage efficiently the

fusion of quantitative (or qualitative) uncertain and possibly

highly conflicting sources of evidences and proposes new

methods for belief conditioning and deconditioning as well [7].

DSmT has been successfully applied in several fields of appli-

cations (in defense, medicine, satellite surveillance, biometrics,

image processing, etc). In section II, we briefly introduce the

principle of the AHP developed by Saaty. In section III, we

recall the basis of DSmT and its main rule of combination,

called PCR5 (Proportional Conflict Redistribution rule # 5).

In section IV, we present the DSmT-AHP method for solving

the MCDM problem. The extension of DSmT-AHP method

for solving MCGDM problem is then introduced in section V.

Conclusions are given in Section VI.

II. THE ANALYTIC HIERARCHY PROCESS (AHP)

The Analytic Hierarchy Process (AHP) is a structured

technique developed by Saaty in [8], [15], [16] based on

mathematics and psychology for dealing with complex de-

cisions. AHP and its refinements are used around the world

in many decision situations (government, industry, education,

healthcare, etc.). It helps the DM to find the decision that best

suits his/her needs and his/her understanding of the problem.

1A presentation of these limitations with a discussion is done in Chap 1
of [24], Vol. 3. It is shown clearly that the logical refinement proposed by
some authors doesn’t bring new insights with respect to what is done when
working directly on the super-power set (i.e. on the minimal refined frame
satisfying Shafer’s model). There is no necessity to work with a refined frame
in DSmT framework which is very attractive in some real-life problems where
the elements of the refined frame do not have any (physical) sense/meaning
or are just impossible to clearly determine physically (as a simple example,
if Mary and Paul have possibly committed a crime alone or together, there
is no way to refine these two persons into three finer exclusive physical
elements satisfying Shafer’s model). Aside the possibility to deal with different
underlying models of the frame, it is worth to note that PCR5 or PCR6 rules
provide a better ability than the other rules to deal efficiently with highly
conflicting sources of evidences as shown in all fields of applications where
they have been tested so far.



AHP provides a comprehensive and rational framework for

structuring a decision problem, for representing and quantify-

ing its elements, for relating those elements to overall goals,

and for evaluating alternative solutions. The basic idea of

AHP is to decompose the decision problem into a hierarchy

of more easily comprehended sub-problems, each of which

can be analyzed independently. Once the hierarchy is built,

the DM evaluates the various elements of the hierarchy by

comparing them to one another two at a time [21]. In making

the comparisons, the DM can use both objective information

about the elements as well as subjective opinions about the

elements’ relative meaning and importance. The AHP converts

these evaluations to numerical values that are processed and

compared over the entire range of the problem. A numerical

weight or priority is derived for each element of the hierarchy,

allowing diverse and often incommensurable elements to be

compared to one another in a rational and consistent way. This

is the main advantage of AHP with respect to other decision

making techniques. At its final step, numerical priorities are

calculated for each of the decision alternatives. These num-

bers represent the alternatives’ relative ability to achieve the

decision goal. The AHP method can be summarized as [19]:

1) Model the problem as a hierarchy containing the decision

goal, the alternatives for reaching it, and the criteria for

evaluating the alternatives.

2) Establish priorities among the elements of the hierarchy by

making a series of judgments based on pairwise comparisons

of the elements.

3) Check the consistency of the judgments and eventually

revise the comparison matrices by reasking the experts when

the consistency in judgments is too low.

4) Synthesize these judgments to yield a set of overall priori-

ties for the hierarchy.

5) Come to a final decision based on the results of this process.

Example 1: According to his/her own preferences and using

the Saaty’s 1-9 ordinal scale, a DM wants to buy a car among

four available models belonging to the set Θ = {A, B, C, D}.

To simplify the example, we assume that the objective of DM

is to select one of these cars based only on three criteria

(C1=Fuel economy, C2=Reliability and C3=Style). According

to his/her own preferences, the DM ranks the different criteria

pairwise as follows: 1 - Reliability is 3 times as important as

fuel economy, 2 - Fuel economy is 4 times as important as

style, 3 - Reliability is 5 times as important as style, which

means that the DM thinks that Reliability criteria (C2) is the

most important criteria, followed by fuel economy (C1) and

style is the least important criteria2. The relative importance

of one criterion over another can be expressed using pairwise

comparison matrix (also called knowledge matrix) as follows:

M =
[

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

]

≈
[

1.0000 0.3333 4.0000
3.0000 1.0000 5.0000
0.2500 0.2000 1.0000

]

where the element mij of the matrix M indicates the relative

importance of criteria Ci with respect to the criteria Cj.

2The relationships between preferences given by a DM may not be transitive
as shown in this example, nevertheless one has to deal with these inputs even
in such situations.

In this example, m13 = 4/1 indicates that the criteria C1

(Fuel economy) is four times as important as the criteria

C3 (Style) for the DM, etc. From this pairwise matrix,

Saaty demonstrated that the ranking of the priorities of the

criteria can be obtained from the normalized eigenvector3,

denoted w, associated with the principal eigenvalue of the

matrix, denoted λ. In this example, one has λ = 3.0857 and

w = [0.2797 0.6267 0.0936]′ which shows that C2 criterion

(reliability) is the most important criterion with the weight

0.6267, then the fuel economy criterion C1 is the second most

important criterion with weight 0.2797, and finally C3 criterion

(Style) is the least important criterion with weight 0.0936 for

the DM. A similar ranking procedure can be used to find the

relative weights of each car A, B, C or D with respect to

each criterion C1, C2 and C3 based on given DM preferences,

hence one will get three new normalized eigenvectors denoted

w(C1), w(C2) and w(C3). By example, if one has the

following normalized vectors

[w(C1)w(C2) w(C3)] =

[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

then the solution of the MCDM problem (here the selec-

tion of the ”best” car according to the DM multicriteria

preferences) is finally obtained by multiplying the matrix

[w(C1) w(C2) w(C3] by the criteria ranking vector w. For

this example, one will get:
[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

×
[

0.2797
0.6267
0.0936

]

=

[

0.3771
0.1163
0.2630
0.2436

]

Based on this result, the car A which has the most important

weight (0.3771) will be selected by the DM. The costs could

also be included in AHP by taking into account the benefit

to cost ratios which will allow to chose alternative with

lowest cost and highest benefit. For example, let’s suppose

that the cost of car A is 21000 euros, the cost of car B is

13000 euros, the cost of car C is 12000 euros and the cost

of car D is 18000 euros, then the normalized cost vector

is [0.3281 0.2031 0.1875 0.2812]′, so that the benefit-cost

ratios are now [0.3771/0.3281 = 1.1492 0.1163/0.2031 =
0.5724 0.2630/0.1875 = 1.4026 0.2436/0.2812 = 0.8663]′.
Taking into account now the cost of vehicles, now the best

solution for the DM is to choose the car C since it offers the

highest benefit-cost ratio.

In this paper we do not focus on the rank reversal problem of

AHP as discussed in [9], [10], [13], [18], [22], but we propose

an extension of AHP using aggregation method developed

in DSmT framework, able to make a difference between

importance of criteria, uncertainty related to the evaluations

of criteria and reliability of the different sources.

3Note that if the relationships on the criteria is transitive, then we can
easily construct the normalized vector of priorities from a system of algebraic
equations, without employing Saaty’s matrix approach. For example if in the
previous example one assumes4 M23 = 12/1 and M32 = 1/12 instead of
5/1 and 1/5, then the normalized weighting vector will be directly obtained
as w = [4/17 12/17 1/17]′.



III. BASICS OF DSMT

Let Θ = {θ1, θ2, · · · , θn} be a finite set of n elements

assumed to be exhaustive. Θ corresponds to the frame of

discernment of the problem under consideration. In general,

we assume that elements of Θ are non exclusive in order to

deal with vague/fuzzy and relative concepts [24], Vol. 2. This

is the so-called free-DSm model. In DSmT, there is no need

to work on a refined frame consisting in a discrete finite set

of exclusive and exhaustive hypotheses5 because DSm rules

of combination work for any models of the frame. The hyper-

power set DΘ is defined as the set of all propositions built from

elements of Θ with ∪ and ∩, see [24], Vol. 1 for examples.

A (quantitative) basic belief assignment (bba) expressing the

belief committed to the elements of DΘ by a given source

is a mapping m(·): DΘ → [0, 1] such that: m(∅) = 0 and
∑

A∈DΘ m(A) = 1. Elements A ∈ DΘ having m(A) > 0 are

called focal elements of m(.). The credibility and plausibility

functions are defined in almost6 the same manner as in DST

[23]. In DSmT, the Proportional Conflict Redistribution Rule

no. 5 (PCR5) is used generally to combine bba’s. PCR5

transfers the conflicting mass only to the elements involved

in the conflict and proportionally to their individual masses,

so that the specificity of the information is entirely preserved

in this fusion process. For example: consider two bba’s m1(.)
and m2(.), A ∩B = ∅ for the model of Θ, and m1(A) = 0.6
and m2(B) = 0.3. With PCR5 the partial conflicting mass

m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed to A and

B only with respect to the following proportions respectively:

xA = 0.12 and xB = 0.06 because
xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

In this paper, we work in the power set 2Θ since most of read-

ers are usually already familiar with this fusion space. Let’s

m1(.) and m2(.) be two independent7 bba’s, then the PCR5

rule is defined as follows (see [24], Vol. 2 for full justification

and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (1)

where all denominators in (1) are different from zero. If a

denominator is zero, that fraction is discarded. All proposi-

tions/sets are in a canonical form. A variant of (1), called

PCR6, for combining s > 2 sources and for working in

other fusion spaces (hyper-power sets or super power-sets) is

presented in [24]. Additional properties of PCR5 can be found

in [7]. Extension of PCR5 for combining qualitative bba’s can

be found in [24], Vol. 2 & 3.

5referred as Shafer’s model in the literature.
6We just replace 2Θ by DΘ in the definitions of credibility and plausibility

functions.
7i.e. each source provides its bba independently of the other sources.

IV. DSMT-AHP FOR SOLVING MCDM

DSmT-AHP aimed to perform a similar purpose as AHP

[15], [16], SMART [28] or DS/AHP [2], [4], etc. that is to find

the preferences rankings of the decision alternatives (DA), or

groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: We extend the construction of the matrix for

taking into account the partial uncertainty (disjunctions)

between possible alternatives. If no comparison is avail-

able between elements, then the corresponding elements

in the matrix is zero. Each bba related to each (sub-)

criterion is the normalized eigenvector associated with the

largest eigenvalue of the ”uncertain” knowledge matrix

(as done in standard AHP approach).

• Step 2: We use the DSmT fusion rules, typically the

PCR5 rule, to combine bba’s drawn from step 1 to get a

final MCDM priority ranking. This fusion step must take

into account the different importances (if any) of criteria

as it will be explained in the sequel.

• Step 3: Decision-making can be done based either on the

maximum of belief, or on the maximum of the plausibility

of Decision alternatives (DA), as well as on the maximum

of the approximate subjective probability of DA obtained

by different probabilistic transformations.

Example 2: Let’s consider now a set of three cars Θ =
{A, B, C} and the criteria C1=Fuel Economy, C2=Reliability.

Let’s assume that with respect to each criterion the following

”uncertain” knowledge matrices are given:

M(C1) =

[

A B ∪ C Θ

A 1 0 1/3
B ∪ C 0 1 2

Θ 3 1/2 1

]

M(C2) =

[

A B A ∪ C B ∪ C

A 1 2 4 3
B 1/2 1 1/2 1/5

A ∪ C 1/4 2 1 0
B ∪ C 1/3 5 0 1

]

Step 1: (bba’s generation) Applying AHP method, one gets the

following priority vectors w(C1) ≈ [0.0889 0.5337 0.3774]′

and w(C2) ≈ [0.5002 0.1208 0.1222 0.2568]′ which are

identified with the bba’s mC1(.) and mC2(.) as follows:

mC1(A) = 0.0889, mC1(B ∪ C) = 0.5337, mC1(A ∪ B ∪
C) = 0.3774 and mC2(A) = 0.5002, mC2(B) = 0.1208,

mC2(A ∪ C) = 0.1222 and mC2(B ∪ C) = 0.2568.

Step 2: (Fusion) When the two criteria have the same full

importance in the hierarchy they are fused with one of the

classical fusion rules. In [4] Beynon proposed to use Demp-

ster’s rule. Here we propose to use the PCR5 fusion rule since

it is known to have a better ability to deal efficiently with

possibly highly conflicting sources of evidences [24], Vol. 2.

With PCR5, one gets:

Elem. of 2Θ mC1(.) mC2(.) mP CR5(.)

∅ 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ∪ B 0 0.1208 0
C 0 0 0.0652

A ∪ C 0 0.1222 0.0461
B ∪ C 0.5337 0.2568 0.3887

A ∪ B ∪ C 0.3774 0 0

Step 3: (Decision-making) A final decision based on

mPCR5(.) must be taken. Usually, the decision-maker (DM)

is concerned with a single choice among the elements of Θ.



Many decision-making approaches are possible depending on

the risk the DM is ready to take. A pessimistic DM will

choose the singleton of Θ giving the maximum of credibility

whereas an optimistic DM will choose the element having the

maximum of plausibility. A fair attitude consists usually in

choosing the maximum of approximate subjective probability

of elements of Θ. The result however is very dependent on

the probabilistic transformation (Pignistic, DSmP, Sudano’s,

etc) [24], Vol. 2. Below are the values of the credibility, the

pignistic probability and the plausibility of A, B and C:

Elem. of Θ Bel(.) BetP (.) P l(.)

A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic or pignistic

attitudes, whereas the car B will be preferred if an optimistic

attitude is adopted since one has Pl(B) > Pl(C) > Pl(A).
The MCDM problem deals with several criteria having

different importances and the classical fusion rules cannot

be applied directly as in step 2. In AHP, the fusion is done

from the product of the bba’s matrix with the weighting

vector of criteria. Such AHP fusion is nothing but a simple

componentwise weighted average of bba’s and it doesn’t

actually process efficiently the conflicting information between

the sources. It doesn’t preserve the neutrality of a full ignorant

source in the fusion. To palliate these problems, we propose

a solution for combining sources of different importances in

the framework of DSmT and DST.

Before going further, it is essential to explain the difference

between the importance and the reliability of a source of

evidence. The reliability is an objective property of a source,

whereas the importance of a source is a subjective character-

istic expressed by the fusion system designer. The reliability

of a source represents its ability to provide the correct as-

sessment/solution of the given problem. It is characterized by

a discounting reliability factor, usually denoted α in [0, 1],
which should be estimated from statistics when available,

or by other techniques [11]. The reliability can be context-

dependent. By convention, we usually take α = 1 when the

source is fully reliable and α = 0 if the source is totally

unreliable. The reliability of a source is usually taken into

account with Shafer’s discounting method [23] defined by:
(

mα(X) = α · m(X), for X 6= Θ

mα(Θ) = α · m(Θ) + (1 − α)
(2)

The importance of a source is not the same as its reliability

and it can be characterized by an importance factor, denoted β
in [0, 1] which represents somehow the weight of importance

granted to the source by the fusion system designer. The choice

of β is usually not related with the reliability of the source

and can be chosen to any value in [0, 1] by the designer

for his/her own reason. By convention, the fusion system

designer will take β = 1 when he/she wants to grant the

maximal importance of the source in the fusion process, and

will take β = 0 if no importance at all is granted to this

source in the fusion process. The fusion designer must be able

to deal with importance factors in a different way than with

reliability factors since they correspond to distinct properties

associated with a source of information. The importance of

a source is particularly crucial in hierarchical multi-criteria

decision making problems, specially in the AHP [16], [20].

That’s why it is primordial to show how the importance can

be efficiently managed in evidential reasoning approaches.

The main question we are concerned here is how to deal

with different importances of sources in the fusion process in

such a way that a clear distinction is made/preserved between

reliability and importance? Our preliminary investigations for

the search of the solution of this problem were based on the

self/auto-combination of the sources. But such approach is

very disputable and cannot be used satisfactorily in practice

whatever the fusion rule is adopted because it can be easily

shown that the auto-conflict tends quickly to 1 after several

auto-fusions [11]. Actually a better approach can be used for

taking into account the importances of the sources and can

be considered as the dual of Shafer’s discounting approach

for reliabilities of sources. The idea was originally introduced

briefly by Tacnet in [24], Vol.3, Chap. 23, p. 613. It consists

to define the importance discounting with respect to the

empty set rather than the total ignorance Θ (as done with

Shafer’s discounting). Such new discounting deals easily with

sources of different importances and is very simple to use.

Mathematically, we define the importance discounting of a

source m(.) having the importance factor β in [0, 1] by:
(

mβ(X) = β · m(X), for X 6= ∅

mβ(∅) = β · m(∅) + (1 − β)
(3)

Here we allow to deal with non-normal bba since mβ(∅) ≥ 0
as suggested by Smets in [26]. This new discounting pre-

serves the specificity of the primary information since all

focal elements are discounted with same importance factor.

Here we use the positive mass of the empty set as an

intermediate/preliminary step of the fusion process. Clearly

when β = 1 is chosen by the fusion designer, it will mean

that the source must take its full importance in the fusion

process and so the original bba m(.) is kept unchanged.

If the fusion designer takes β = 0, one will deal with

mβ(∅) = 1 which is interpreted as a fully non important

source. m(∅) > 0 is not interpreted as the mass committed

to some conflicting information (classical interpretation), nor

as the mass committed to unknown elements when working

with the open-world assumption (Smets interpretation), but

only as the mass of the discounted importance of a source in

this particular context. Based on this discounting, one adapts

PCR5 (or PCR6) rule for N ≥ 2 discounted bba’s mβ,i(.),
i = 1, 2, . . .N by considering the following extension, denoted

PCR5∅, defined by: ∀X ∈ 2Θ

mPCR5∅
(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)



A similar extension can be done for PCR5 and PCR6 formulas

for N > 2 sources given in [24], Vol. 2. A detailed presenta-

tion of this technique with several examples will appear in [25]

and thus it is not reported here. The difference between eqs.

(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅
(∅) ≥ 0.

Since we usually work with normal bba’s for decision making

support, the combined bba will be normalized. In the AHP

context, the importance factors correspond to the components

of the normalized eigenvector w.

Example 3: Take back example 2 assume that C2 (the relia-

bility) is three times more important than C1 (fuel economy)

so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1

as expressed in the prior DM preferences for ranking criteria.

w = [w1 w2]
′ can also be obtained directly by solving the

algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting

with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the

following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and

mβ2,C2(.), one gets the results in the table. For decision-

making support, one prefers to work with normal bba’s.

Therefore mPCR5∅
(.) is normalized by redistributing back

mPCR5∅
(∅) proportionally to the masses of other focal el-

ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),

then mPCR5∅
(.) = mPCR5(.) which is normal because in

such case mβi=1,Ci(.) = mCi(.). From mnormalized
PCR5∅

(.) one

can easily compute the credibility, pignistic probability or

plausibility of each element of Θ for decision-making. In this

example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)

A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic

mean) is used directly with bba’s mC1(.) and mC2(.), one

gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-

making
Elem. of Θ Bel(.) BetP (.) Pl(.)

A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance

discounting technique coupled with PCR5-based fusion rule

(what we call the DSmT-AHP approach) will suggest, as with

classical AHP, to choose the alternative A since the car A has

a bigger credibility (as well as a bigger pignistic probability

and plausibility) than cars B or C. It is however worth to

note that the values of Bel(.), BetP (.) and Pl(.) obtained by

both methods are slightly different. The difference in results

can have a strong impact in practice in the final result for

example if the costs of vehicles have also to be included in

the final decision (as explained at the end of the example 1).

Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished

when using DSmT-AHP with respect to what we obtain with

classical AHP as seen in the following table. The uncertainty

reduction is a nice expected property specially important for

decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP

A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of

PCR5∅ rule, one gets the following results when compar-

ing the fusion of mC1(.) with mC2(.) (i.e. without im-

portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of

criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-

tance discounted bba’s as we have proposed in this work just

because the importance discounting technique preserves the

specificity of the primary information and thus Dempster’s

rule does not make a difference in results when combining

either mC1(.) with mC2(.) or when combining mβ1 6=1,C1(.)
with mβ2 6=1,C2(.) due to the way of processing of the total

conflicting mass of belief. PRC5 deals more efficiently with

importance discounted bba’s as we have shown in this exam-

ple. So it is not surprising that such discounting technique

has never been proposed and used in DST framework and this

explains why only the classical Shafer’s discounting technique

(the reliability discounting) is generally adopted. By using

Dempster’s rule, the fusion designer has no other choice

but to consider importance and reliability as same notions !

The DSmT framework with PCR5 (or PCR6) rule and the

importance discounting technique proposed here provides an

interesting and simple solution for the fusion of sources with

different importances which makes a clear distinction between

importances and reliabilities of sources.



V. DSMT-AHP FOR SOLVING MCGDM

Previously, a new approach mixing AHP with DSmT solv-

ing MCDM problem has been presented. In many practical

situations however, the decision must be taken by a group

of n > 1 Decision Makers (GDM), denoted GDM =
{DMi, i = 1, 2, . . . , n}, rather than a single DM, and from

the Multi-Criteria preference rankings of the DMi’s. The

importance (influence) of each member of the GDM is usually

non-equivalent [1] and the importance of each DM of the

GDM must be efficiently taken into account in the final

decision-making process. Let’s denote by mDMi(.) the re-

sult of DSmT-AHP approach (see section IV) related with

DMi ∈ GDM . The MCGDM problem consists in combining

all opinions/preferences rankings mDMi(.), i = 1, . . . , n
with their own (possibly different) importances. When all

DMi’s have equal importance, the classical fusion rules8 ⊕
for combining mDMi(.) can be directly used to get the final

result mMCGDM (.) = [mDM1 ⊕mDM2 ⊕ . . .⊕mDMn ](.); If

the DMi’s have different importance weights wi, the DSmT-

AHP approach can also be used at the GDM fusion level

using the importance discounting approach presented here. The

result for group decision-making is given by the PCR5∅ fusion

of mβi,DMi(.), with βi = wi and then the result must be

normalized for decision making support. In [6], Beynon used

the classical discounting technique [23] to readjust mDMi(.)
with wi’s and he identified the importance factors with the

reliability factors. In our opinions, this is disputable since

importance of a DMi is not necessarily related with its

reliability but rather with the importance in the problem of the

choice of his/her Multi-Criteria to establish his/her ranking, or

it can come from other (political, hierarchical, etc.) reasons.

In our new approach, we make a clear distinction between

notions of importance and reliability and both notions can be

easily taken into account [25] with DSmT-AHP for solving

MCGDM problems, i.e. we can use the classical discounting

technique for taking into the reliabilities of the sources, and

use the importance discounting proposed here for dealing with

the importances of sources.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new method for Multi-

Criteria Decision-Making (MCDM) and Multi-Criteria Group

Decision-Making (MCGDM) based on the combination of

AHP method developed by Saaty and DSmT. The AHP

method allows to build bba’s from DM preferences of solutions

which are established with respect to several criteria. The

DSmT allows to aggregate efficiently the (possibly highly

conflicting) bba’s based on each criterion. This DSmT-AHP

method allows to take into account also the different impor-

tances of the criteria and/or of the different members of the

decision-makers group. The application of this DSmT-AHP

approach for the prevention of natural hazards in mountains is

currently under progress, see [24], Vol.3, Chap. 23, and [27].

8typically the PCR5 or PCR6 rules, or eventually Dempster’s rule if the
conflict between DMi’s is low.
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