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Abstract. The aim of this work is to focus on the Stokes-Darcy coupled problem in order to propose
a robust monolithic approach to simulate composite manufacturing process based on liquid resin in-
fusion. The computational domain can be divided into two non-miscible sub-domains: a purely fluid
domain and a porous medium. In the purely fluid domain, the fluid flows according to the Stokes'
equations, while the fluid flows into the preforms according to the Darcy's equations. Specific condi-
tions have to be considered on the fluid/porous medium interface. Under the effect of a mechanical
pressure applied on the high deformable preform/resin stacking, the resin flows and infuses through
the preform which permeability is very low, down to 10−15m2. Flows are solved using finite element
method stabilized with a sub-grid scale stabilization technique (ASGS). A special attention is paid
to the interface conditions, namely normal stress and velocity continuity and tangential velocity con-
straint similar to a Beaver-Joseph-Saffman’s condition. The originality of the model consists in using
one single mesh to represents the Stokes and the Darcy sub-domains (monolithic approach). A level
set context is used to represent Stokes-Darcy interface and to capture the moving flow front. This
monolithic approach is now perfectly robust and leads to perform complex shapes for manufacturing
process by resin infusion.

Introduction

Resin infusion-based processes are used for manufacturing large structures of good quality (low void
content) with high fiber volume fraction, especially for large pieces in aeronautics. Resin infusion-
based processes consist of infusing liquid resin through the thickness of the reinforcement rather than
in the plane (Fig. 1 (a)).

Under the effect of a mechanical pressure applied on the whole stacking, the resin flows into the
preforms which can be seen as a porous medium subject to large deformations. However, despite nu-
merous advantages, the control of these processes is difficult, especially for the most critical properties
related to the final piece like its dimensions and its fibre volume fraction. To control this process, we
developed a model based on the coupling between the resin flow within the porous domain (Darcy),
and the purely fluid domain (Stokes).

The Stokes-Darcy coupled problem has been studied by many researchers in many fields of engi-
neering using both a decoupled approach [7], [10] and monolithic approach as proposed by [12]. The
decoupled strategy consists of using two different element spaces to solve the Stokes and Darcy equa-
tions, whereas the unified strategy consists in using the same finite element space. In the monolithic
approach proposed by Pacquaut et al. [12] P1+/P1 elements in Stokes and HVM (Hughes Variational
Multiscale) Method for stabilization in Darcy are used. Due to consistency errors and spurious oscil-
lations that appear in this previous approach, we use a robust approach which yields improvements
compared to the latest one. The robustness of the approach which is assessed in this paper, is ensured
by using ASGS method (Algebraic Subgrid Scale) to stabilize velocity and pressure approximated by

1



linear and continuous elements in Stokes and Darcy domains. Signed functions are used to represent
the Stokes-Darcy interface and to capture the moving flow front.

The paper is organized as follows. The first section presents the mathematical modelling for the
Stokes-Darcy coupled problem. The next section introduces both the velocity-pressure mixed formu-
lation for the Stokes-Darcy problem and the variational multiscale method used for stabilization. Then,
a specific section is dedicated to the interface treatment and capturing. The last section shows numeri-
cal validation and results in severe regimes (low permeability, down to 10−15m2, complex geometries)
to illustrate the capability of modelling manufacturing processes by resin infusion.

Mathematical model

Let us define Ω ⊂ R
m (m = 2 or m=3) as a bounded domain made up by two non overlapping sub-

domains Ωs and Ωd separated by a surface Γ = ∂Ωs ∩ ∂Ωd with Γs,D ∩ Γs,N = ∅, corresponding to
two different kinds of boundary conditions: Dirichlet or Neumann conditions (Fig. 1 (a)). Index s is
used to denote everything that concerns the purely fluid domain (governed by the Stokes' equations)
and index d for the porous medium (governed by the Darcy's equations). Γ is the interface between
the Stokes and Darcy domains. In this section, we present the modelling of the resin flow, considered
as an incompressible fluid, into the fluid distribution medium and into the preforms. Both Stokes' and
Darcy's equations and their weak formulation are then introduced.

The Stokes' equations, which express momentum and mass balances when inertia is neglected, is
written as: Find the velocity vs and the pressure ps fields defined by

−∇ · (2ηε̇(vs)) +∇ps = fs in Ωs

∇ · vs = 0 in Ωs

vs = v1 on Γs,D

σn,s = −pext,sns on Γs,N

(1)

where ε̇ is the strain rate tensor defined by ε̇(vs) = 1
2
(∇vs +∇vsT ), fs is the volume force, v1 is the

velocity prescribed on the boundary Γs,D, ns is the unit vector normal to the boundary of Ωs, σn,s is
the normal stress prescribed on Γs,N to be equal to−pext,sns and η is the fluid viscosity assumed to be
constant (Newtonian fluid).

Respectively, the Darcy's equations are then expressed as: Find the velocity vd and pressure pd
such as

η

K
vd +∇pd = fd in Ωd

∇ · vd = 0 in Ωd

vd · nd = gd on Γd,D

pd = pext,d on Γd,N

(2)

where K is the permeability tensor which can be reduced to a scalar in the isotropic case, pext,d is a
pressure to be prescribed on Γd,N , nd is the outward unit vector normal to the boundary of Ωd and fd
is the volume force.

Conditions (mass conservation and continuity of the stress) has to be considered on the interface
Γ of normal n = ns = −nd (Fig. 1 (b)).
Continuity of the normal velocity. The mass conservation through the interface Γ is expressed by
the continuity of the normal velocity field v across Γ

vs · ns + vd · nd = 0 on Γ (3)

Continuity of the fluid normal stress. The continuity of normal stress over the interface Γ is ex-
pressed by

n · σs · n = n · σd · n onΓ (4)
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Beaver-Joseph-Saffman condition. The Beaver Joseph Saffman condition allows the tangential ve-
locity to be specified on the interface Γ [4], it writes

2n · ε̇(vs) · τi = − α√
Kii

(vs · τi), i = 1, 2 (5)

where α is a dimensionless parameter, so-called slip coefficient, τi are the tangential vectors on the
interface andKii are the permeabilities related to the tangential directions.

(a)

(b)

Fig. 1: Domain decomposition into three zones for the modelling of resion infusion process: fluid
distribution medium with resin, dry and wet preforms (a), 2D representation of the Stokes-Darcy
domain (b).

Weak formulation

The weak formulation of the Stokes-Darcy coupled problem is obtained by summing up the Stokes
and Darcy's weak formulations and by taking into consideration interface conditions described in the
Mathematical model section. All details concerning both the weak formulation of Stokes' and Darcy's
systems separately are given in [1, 2, 3]. For a sake of simplicity, we choose to write the L2 inner
product in Ωd/s as < ·, · >. The following functional spaces are used as velocity, pressure and test
function spaces

L2(Ωi) = {q : Ωi → R |
∫

Ωi

q2dΩi < ∞}

H1(Ωs)
m = {u ∈ L2(Ωs)

m | ∇u ∈ L2(Ωs)
m×m}

H1
Γs,D

(Ωs)
m = {u ∈ H1(Ωi)

m | u = u1 on Γs,D}
H

1,t
Γs,D

(Ωs)
m = {u ∈ H1(Ωs)

m | u = 0 on Γs,D} (6)

H(div,Ωd) = {u ∈ L2(Ωd)
m | ∇ · u ∈ L2(Ωd)}

HΓd,D
(div,Ωd) = {u ∈ H(div,Ωd)| u · n = u2 onΓd,D}

H t
Γd,D

(div,Ωd) = {u ∈ H(div,Ωd)| u · n = 0 onΓd,D}
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with i = s or i = d andm is the dimension equal to 2 or 3.

The mixed formulation of the Stokes-Darcy problem is established by considering a velocity v on
Ω and a pressure field p on Ω such as v|Ωi

= vi and p|Ωi
= pi with i = s or i = d. The integrals over

Ωs and Ωd must be re-defined on Ω. This is achieved by introducing the Heaviside function Hi equal
to 1 in the domain i and vanishing elsewhere. These functions allow us to write

∫

Ωi

(...)dΩ =

∫

Ω

(...)HidΩ with i = s or i = d (7)

Hence, the variational formulation of the Stokes-Darcy coupled problem consists in finding [v, p] ∈
V ×Q such that

Bc[(v, p), (w, q)] = Lc([w, q], ∀[w, q] defined in V0 ×Q (8)

with

V = H1
Γs,D

×HΓd,D
(div,Ωd)

V0 = H
1,t
Γs,D

×H t
Γd,D

(div,Ωd) (9)

Q = L2(Ωs)× L2(Ωd)

The bilinear form Bc and the linear form Lc are defined by

Bc([v, q], [w, q]) = < 2ηε̇(v) : ε̇(w)Hs >Ω + <
µ

K
v,wHd >Ω − < p ,∇ · w >Ω

+ < q, ∇ · v >Ω + <
αη√
K

v ,w >Γ (10)

Lc([v, p], [w, q]) = < f,w >Ω + < h, q >Ω + < pext,sn,w >Γs,N
+ < pext,dn,w >Γd,N

(f, h) are defined by (fi, hi) in Ωi.

Finite element approximation with ASGS stabilization

We consider the bounded domain Ω ⊂ R
m discretized into nel non-overlapping elements. This one

single unstructured mesh is made up of triangles ifm = 2 and of tetrahedrons ifm = 3. The Galerkin
approximation of both the Stokes and the Darcy problems requires the use of velocity-pressure interpo-
lation that satisfy the adequate inf-sup condition. Different interpolation pairs are known to satisfy this
condition for each problem independently, but the key issue is to find interpolations that satisfy both
at the same time. In this paper, we choose the use of stabilized finite element methods. The philosophy
of the stabilized methods is to strengthen classical variational formulations so that discrete approxima-
tion which would otherwise be unstable becomes stable and convergent. One of the stabilized finite
element method approximation for Stokes-Darcy problem is VMS (Variational Multiscale Method)
[8, 9]. An important feature is that the finite element space are conforming Vh × Qh ⊂ V × Q and
that the finite element spaces in Stokes' and Darcy's domains are the same because we use a mono-
lithic approach. Let Vh and Qh be the finite element spaces of the piecewise linear and continuous
functions, which contains the solutions vh,i and ph,i. The basic idea of this method is to approximate
the effect of the component of the continuous solution which cannot be captured by the finite element
solution. It consists in splitting the continuous solution for velocity and pressure into two components,
one coarse corresponding to the finite element scale [vh,i, ph,i], and a finer component corresponding
to lower scale [v′i, p′i] for resolutions. The velocity is approximated as vi = vh,i + v′i and the pressure
field is approximated as pi = ph,i+p′i. We consider a subgrid space V ×Q = (Vh×Qh)

⊕

(V ′×Q′).
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Invoking this decomposition in the continuous problem (Eq. 10) for both solution and test functions,
one gets the two-scales systems

Bc([vh, ph]), [wh, qh]) + Bc([w′, p′], [wh, qh]) = Lc([wh, qh]) (11)

Bc([vh, ph], [w′, p′]) +Bc([v′, p′], [w′, q′]) = Lc([w′, q′]) (12)

for all [wh, qh] ∈ Vh × Qh and [w′, q′] ∈ V ′ × Q′. After approximating Eq. 12 with an algebraic
formulation, by introducing an operator of projection onto V ′×Q′, the approximated fields [v′, p′] are
taken into account in the finite element problem (Eq. (11) [1].

For Stokes and Darcy flows coupled through their interfaces, the stabilized problem with ASGS
can be written as follows

Bc,stable([vh, ph][wh, qh]) = Lc,stable([wh, qh]) (13)

with

Bc,stable([vh, ph], [wh, qh]) = 2η < Hsε̇(vh) : ε̇(wh) >Ω +
η

K
< Hd wh, vh >Ω

− < ∇ · wh, ph > + < ∇ · vh, qh >Ω +τp,c < ∇ · vh,∇ · wh >Ω

+ < α
η√
K

(vh · τ ), (wh · τ ) >Γ

+τu,c <
η

K
vh +∇ph,−

η

K
wh −∇qh >Ω (14)

Lc,stable([wh, qh]) = < f,wh >Ω + < h, qh >Ω + < pext,sn,wh >Γs,N

+ < pext,dn,wh >Γs,D
−τp,c < h,∇ · wh >Ω

+τu,c < f,− η

K
wh −∇qh >Ω

τp,c, τu,c are the stabilization parameters, that we compute in the case of a scalar permeabilityK as

τp,c = cp
η

K
l2p Hd + c1η Hs

τu,c =
(

c1ηHs + cu
η

K
l2uHd

)−1

h2
k (15)

with cp and cu some algorithmic constants. lu and lp are length scales which we choose to take
(L0hk)

1/2, L0 is a characteristic length of the domain and hk is the element size.

Orthotropic permeabilities. In the Liquid Resin Infusion processes, the permeability is orthotropic,
for that we have to extend our stabilization method. Consequently, the stabilization parameters τp,c and
τu,c must be updated accordingly. In the orthotropic case, the permeability tensorK in the structural
frameR = (0;XI , XII , XIII) is given by

K =





KI 0 0
0 KII 0
0 0 KIII





(0;XI ,XII ,XIII)

(16)

In considering that the Darcy's equations are independent in each space direction, the stabilization
parameter τu,c can be extended as a tensor of stabilization terms, the new stabilization parameters are
defined by

τp,c = cp
η

K
l2p Hd + c1ηHs

τu,c =

(

1

c1 η
HsI+

1

cu η l2u
HdK

)

h2
k (17)
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whereK is a "representative" permeability defined here, such as
[max(KI , KII , KIII) + min(KI , KII , KIII)]/2.

Interface capturing. In our monolithic approach, both interfaces Γ separating the Stokes' and Darcy's
domains and Γf the moving flow front, are not described by a set of boundary elements. These inter-
faces go through the mesh elements. Consequently, two functions φ and φf has to be introduced to de-
pict these interfaces. φ, φf are chosen as a signed distance function, respectively to Γ and Γf . Γ and Γf

are then respectively described by the zero iso-surface of φ : Γ = {φ = 0} and φf : Γf = {φf = 0}.
When considering the discrete problem, φ and φf are approximated by continuous and piecewise linear
φh and φfh on Ωh.

The drawback of the monolithic approach is that the surface integrals are not easily and directly
computable. There is two ways to compute the surface integral< α η

K
(vh ·τ ), (wh ·τ ) >Γ involved in

Eq. 14. Either the surface integral is turned into a volume integral by introducing a Dirac delta function,
or it is computed exactly by rebuilding a piecewise linear interface [13]. The exact computation of the
surface integrals shows more accurate results than Dirac approximation [3]. Moreover, the Stokes' ans
Darcy's contributions are averaged over the elements cut by the interface Γ thanks to the Heaviside
functions Hs and Hd introduced in Eq. 7, 10.

The specificity of our approach is the introduction of a moving flow front, depicted above by the
level-set function φf , separating the part of the domain which already filled with the resin from the part
which is not filled yet. Because of our monolithic approach, the velocity and pressure fields have to be
defined on the whole computational domain assuming that the empty part is filled with a Newtonian
incompressible fluid (referred to the "air") having a very low viscosity ηa ≪ ηf , where ηf is the
fluid viscosity. Taking into account this moving flow front into Eq. 14 consists of simply replacing
the constant resin viscosity η by the viscosity ηφ, equal to ηf in the filled domain (when φf > 0) and
equal to ηa in the empty domain (when φf < 0):

ηφ = H(φ)ηf + (1−H(φ))ηa (18)

Once the velocity is computed, φf is transported by solving the following transport equation [11]:

∂φf

∂t
+ v ·∇φf = 0 ∀(x, t) ∈ Ω× (0, T )

φf (x, t = 0) = φ0(x) ∀x ∈ Ω (19)
φf (x, t) = g(x, t) ∀x ∈ ∂Ω−, ∀t ∈ (0, T )

where ∂Ω− = {x ∈ ∂Ω;v · n < 0} is the inflow part of the boundary ∂Ω.
In order to avoid spurious oscillations when applying the continuous piecewise linear function

φfh approximation, the advection equation (Eq. 19) is solved by using a classical Streamline-Upwind
Petrov-Galerkin method and by using an implicit Euler or Crank-Nicolson schemes for the time dis-
cretization. As stated above, φf is a signed distance function (i.e. ||∇φf || = 1 which ensures the reg-
ularity of φf ) but this property is generally not conserved during the computation (in fact, it depends
on the velocity field v). Hence, a reinitialization step may be necessary to ensure that the solution is
not deteriorated and to recover the property of the signed distance function (i.e., ||∇φf || = 1) without
disturbing the position of the flow front. Further details about the reinitialization can be found in [6].

Numerical tests and simulations of resin infusion based process

Bi-dimensional flow. The first simulation consists in a bi-dimensional flow with an orthotropic per-
meability of the porous medium. The aim of the numerical test is to validate the Stokes-Darcy coupling
presented in this paper for a transient flow with a very low permability. The simulation has been car-
ried out by using the finite element software Z-set [5]. The computational domain is divided into a
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purely fluid domain elliptical in shape (Stokes' domain at the center) and a porous medium (Fig. 2).
The Stokes-Darcy interface and the resin flow front are depicted by both the zero iso-surface value
coloured in white and the zero iso-surface value coloured in black on the Fig. 2 (a). The physical
parameters for this simulation are ηa = 1.10−5Pa.s and ηf = 3.10−2Pa.s. The permeability tensor
K is defined in the structural frame R = (0;XI ,XII) by the permeability KI = 5.10−15m2 and
KII = 1.10−15m2. A pressure equals to 1.105Pa is applied on the center of the computational domain
and a pressure equals to 0Pa is applied on the boundary of the whole domain. This case has been
investigated in [14]. An analytical solution allows to describe the position of the flow front during
the simulation. The Fig. 2 (a) shows the pressure iso-values provided by the simulation. A pressure
gradient appears in the wet preform zone. Fig. 2 (b) compares both the simulation results to the ana-
lytical solution in the two main directions XI and XII . One can verify the good correlation between
the analytical and the numerical solutions.

(a)

(b)

Fig. 2: Pressure field in a bi-dimensional Stokes-Darcy flow with an orthotropic permeability (a),
evolution of the flow front (b).

Numerical simulation of the manufacturing process by resin infusion with moving interface.
The example proposed here represents the manufacturing of a simple piece in which resin is injected
and then infuses through the preforms. The computational domain is depicted on the Fig. 3 (a) with
an injection channel through which the resin is injected. The boundary conditions prescribed for this
simulation are a normal stress on the inflow part of the domain and a zero normal velocity on the other
edges of the domain. The permeability tensorK is defined in the structural frameR = (0;XI ,XII) of
each porous domain of the part, by the permeabilityKI = 1.10−13m2 KII = 1.10−15m2. The compu-
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tational domain is discretized with a fixed mesh of 9,592 triangular elements corresponding to 5,031
nodes. Fig. 3 shows the evolution of the flow front showing that the orthotropic permeability (Fig. 3
(b),(d),(f)) has a strong effect on the filling of the porous medium compared with the isotropic case
(Fig. 3 (c),(c),(g)). The type of permeability also affects the pressure fields in the porous domain and
then modify the flow in the tilted part. Moreover, the results seem to show that when the front reaches
the top of the horizontal part of the domain, air is entrapped air, causing defects. These defects could
be reduced by placing properly the vents in an optimization process. The robustness of our approach to
simulate realistic geometries in the context of the manufacturing processes of composite materials has
been demonstrated. These simulations were conducted with with a Stokes-Darcy monolithic approach
with a moving flow front and very low orthotropic permeabilities (10−13 ∼ 10−15m2).

All the developments have been extended to 3D case and a numerical simulation of the manufac-
turing process by resin infusion has been performed but not included in this paper.

(a)

(b) t = t1 (c) t = t1

(d) t = t2 (e) t = t2

(f) t = t3 (g) t = t3

(h)

Fig. 3: Geometry and boundary conditions used for the simulation of the manufacturing process by
resin infusion (a) Evolution of the resin flow front and pressure fields for three different times for
orthotropic permeability KI = 1.10−13m2 and KII = 1.10−15m2 (b), (d), (f) and for an isotropic
permeabilityKI = KII = 1.10−15m2 (c), (e), (g).
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Conclusion

A unified strategy has been developed to solve the Stokes-Darcy coupled problem. A stabilized fi-
nite element method has been proposed to stabilize Stokes-Darcy coupled problem in the case where
the Brezzi-Babuska stability condition is not fulfilled. This stabilization method is based on a vari-
ational multiscale technique called ASGS method. Convergence of this method was validated in [1]
and compared with another approach [3] showing the accuracy of the results.

A numerical simulation of a bi-directional flow were presented to validate the Stokes-Darcy cou-
pling with orthotropic permeabilities. At the end of the paper, 2D simulations of the manufacturing
process by resin infusion were presented. In these simulations, two signed distance functions were
used, one to represent the interface between the purely fluid domain and the porous medium and a
second to capture the flow front. It was shown that our monolithic approach is relevant to simulate the
resin infusion processes in severe regimes (very low orthotropic permeabilities...).

Regarding the prospects for the future work, we shall take into account the deformation of preforms
by using an Updated Lagrangian scheme relying on displacement-based finite element. A special care
will be paid to the interaction of the preform deformation and the resin infusion. Indeed, the resin
pressure will be modified by the permeability change induced by preform compaction, and conversely
the mechanical response of the porous medium will be represented via a Terzaghi’s model modified
according to the current resin pressure.
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