Thermal annealing of carbon nanotubes reveals a strong toxicological impact of the structural defects
Agathe Figarol, Jérémie Pourchez, Delphine Boudard, Valérie Forest, Sarah Berhanu, Jean-Marc Tulliani, Jean-Pierre Lecompte, Michèle Cottier, Didier Bernache-Assollant, Philippe Grosseau

To cite this version:
Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects

Agathe Figarol · Jérémie Pourchez · Delphine Boudard · Valérie Forest · Sarah Berhanu · Jean-Marc Tulliani · Jean-Pierre Lecompte · Michèle Cottier · Didier Bernache-Assollant · Philippe Grosseau

Received: 6 January 2015 / Accepted: 8 April 2015 / Published online: 22 April 2015
© Springer Science+Business Media Dordrecht 2015

Abstract The biological response to pristine and annealed multi-walled carbon nanotubes (MWCNT) was assessed on murine macrophages (RAW 264.7). First, the physicochemical features of the as-produced MWCNT and annealed at 2125 °C for 1 h were fully characterized. A decrease in structural defects, hydrophobicity and catalytic impurities was detected after annealing. Thereafter, their impact on cytotoxicity, oxidative stress, and pro-inflammatory response was investigated at concentrations ranging from 15 to 120 μg mL⁻¹. No effect of the 2125 °C treatment was detected on the cytotoxicity. In contrast, the annealed carbon nanotubes showed a significant increase of the pro-inflammatory response. We assumed that this behavior was due to the reduction in structural defects that may modify the layer of adsorbed biomolecules. Surprisingly, the purification of metallic catalysts did not have any significant impact on the oxidative stress. We suggested that the structural improvements from the 2125 °C treatment can decrease the carbon nanotube scavenging capacity and thus allow a higher free radical release which may counterbalance the decrease of oxidative stress due to a lower content of metallic impurities.

Electronic supplementary material The online version of this article (doi:10.1007/s11051-015-2999-0) contains supplementary material, which is available to authorized users.
Keywords Carbon nanotubes · Annealing · High temperature treatment · Oxidative stress · Inflammation · Defects · Environmental and health effects

Abbreviations

B.E.T. Brunauer–Emmet–Teller method
CNT Carbon nanotubes
CNTa Annealed carbon nanotubes
CVD Chemical vapor deposition
DCF 2',7'-Dichlorodihydrofluorescein
DMEM Dulbecco’s Modified Eagle’s Medium
FEG-SEM Field-emission gun-scanning electron microscopy
HR-TEM High-resolution transmission electron microscopy
H₂DCF-DA 2',7'-Dichlorodihydrofluorescein
LDH Lactate dehydrogenase
MWCNT Multi-walled carbon nanotubes
ROS Reactive oxygen species
TDS Thermal desorption
TNF-α Tumor necrosis factor α
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction

Introduction

Carbon nanotubes (CNT) have received a great deal of attention since their full description in the early 1990s (Iijima 1991). CNT have demonstrated high electric and thermal conductivity, exceptional mechanical resistance, and adsorption capacity leading to numerous studies in academic and industrial research (Baughman et al. 2002; De Volder et al. 2013). However, CNT are classified as inhalable fibers due to their small aerodynamic diameter. Common public opinion associates their morphological resemblance to asbestos fibers and this raises health concerns. Based on the scientific literature, the biological impact of inhaled CNT remains uncertain, but it has been shown that this nanomaterial has the capacity to trigger pathogenic pathways. In vivo studies in rats and mice have reported evidences of inflammation, formation of granulomas, fibrotic structures, and oxidative stress (Muller et al. 2005; Shvedova et al. 2008; Porter et al. 2010). Similarly, cell exposure to CNT could trigger cytotoxicity, pro-inflammatory response, and oxidative stress (Brown et al. 2007; Shvedova et al. 2009; Fröhlich et al. 2012). Nonetheless, available data are still fragmentary and often contradictory. The use of different biological models and toxicity assessment methodologies, as well as the lack of full physicochemical data in nanotoxicology studies can, at least partially, explain the contrasting findings. Thus, one of the main keys to improve our understanding of CNT toxicity is to design specific toxicological works in order to accurately examine the biological impact of given physicochemical features (Jiang et al. 2009; Kayat et al. 2011; Schrurs and Lison 2012).

Surface treatments of the as-produced CNT change their properties and enlarge their potential applications. High temperature treatment, also called thermal annealing or graphitization, has been well documented as a way to improve the purity (i.e. decrease of metallic impurity content) and structural order of multi-walled carbon nanotubes (MWCNT). Common production techniques of MWCNT such as chemical vapor deposition (CVD) require the use of metallic nanoparticles as catalysts. As a result, metal residues are classically found entrapped in MWCNT or on their surface. Moreover, these MWCNT are non-perfect cylindrical graphene sheets and exhibit structural defects in crystalline lattices mainly associated to sp³ carbon hybridization (Ebbesen and Takada 1995). According to Bourgrine et al. (2001), annealing MWCNT at 1600 °C under argon reduces the level of metallic impurities due to the vanishing of metal particles. Besides, over 1600 °C, the carbon interlayer spacing starts to contract, with better results obtained at 2400 °C. Boncel and Koziol (2014) suggested that metallic impurities gradually escape as vapors through one CNT open end at a temperature for which a sufficiently high vapor pressure of metal is achieved. Chen et al. (2007) confirmed this purification and structural enhancement with a threshold value of 1800 °C. Heat treatment time was prolonged from 2 to 60 min at the maximum temperature. They stated that the effect of duration time was much lower than that of annealing temperature. Enhancement of MWCNT crystallinity appears to improve their electric conductivity, which could be of great interest for microelectronic or biomedical applications (Fiorito et al. 2009). Similarly, their axial strength and Young’s modulus are improved, encouraging the development of high
performance composite material (Pinault et al. 2004; Yamamoto et al. 2013).

Nowadays, the availability of annealed MWCNT on the market is increasing while their effects on health are still not fully understood. In fact, Fiorito et al. (2009) compared MWCNT purified by acid functionalization or by annealing at 2400 °C and concluded that the latter were less cytotoxic but induced a higher pro-inflammatory response on primary human macrophages. Contradicting results from Simon-Deckers et al. (2008) evidenced no impact on the cytotoxicity of human epithelial cells (A549) of MWCNT annealed at 2000 °C compared to raw MWCNT shortened by ultrasonication. Cheng et al. (Cheng et al. 2009) reached a similar conclusion when comparing MWCNT annealed at 2600 °C and raw MWCNT on human monocyte-derived macrophages (HMM). A more complete study was published as two companion papers (Fenoglio et al. 2008; Muller et al. 2008) and assessed the physicochemical and biological effects of annealing MWCNT at 2400 °C. In vitro genotoxicity on lung epithelial cells (RLE) seemed to be slightly reduced by this thermal treatment. A decrease in cytotoxicity and inflammation was furthermore observed in vivo in Wistar rats after intratracheal instillations (2 mg/rat). However, high levels of cytotoxicity were observed again after a 6 h grinding. Fenoglio et al. (2008) and Muller et al. (2008) suggest thus that the positive effect on cytotoxicity and pro-inflammatory response was mainly occasioned by the decrease in surface reactive sites due to the higher structural order. Unfortunately, the effects on oxidative stress have not been directly studied as a cellular response. However, in cell-free conditions, annealed MWCNT demonstrated a lower scavenging capacity of the oxygen radicals (Fenoglio et al. 2008; Muller et al. 2008). Furthermore, no MWCNT directly generated any oxidative species. The scavenging activity of CNT corresponds to their “antioxidant” capacity. Thus, it lowers the concentration of reactive oxygen species (ROS) of the surrounding medium. This activity has been shown to be enhanced by lattice defects (Fenoglio et al. 2006, 2008; Galano et al. 2010). To the best of our knowledge, few studies have been conducted to examine the impact of the oxidative stress of the CNT purification by an annealing treatment. Frequently, a causal link between metallic impurities and oxidative stress has been suggested (Kagan et al. 2006; Shvedova et al. 2012; Ge et al. 2012; Bussy et al. 2012). Fe is often used as a catalyst for CNT production and is implicated in the Fenton reaction: $\text{H}_2\text{O}_2 + \text{Fe}^{2+} \rightarrow \text{OH}^- + \text{Fe}^{3+} + \text{OH}^-$. Kagan et al. (2006; Shvedova et al. 2012; Ge et al. 2012) and Bussy et al. (2012) exposed a mechanism of release of Fe impurities in the acidic lysosomes after cellular uptake of CNT in murine macrophages. Al, another metallic catalyst, is a non-redox-active metal; however, it can have a strong pro-oxidant activity (Exley 2004; Mahdi et al. 2010; Ruipérez et al. 2012). Al-superoxide could indeed stabilize ferrous ion by reducing its rate of oxidation. It thus indirectly promotes the production of ROS with the use of the ferrous ions in the Fenton reaction. Furthermore, Zhang et al. (2011) compared the cellular response of HeLa cells exposed to MWCNT annealed at 2400 °C, oxidized by a HNO$_3$ treatment or irradiated with 60Co. Annealed MWCNT exhibited a lower level of structural defects than oxidized or irradiated MWCNT. The induced oxidative stress and cytotoxicity were also lower for annealed CNT. Liu et al. (2011) focused on the acellular activity of an antioxidant, the glutathione (GSH). All the studied carbon-based nanomaterials, including CNT, were linked with a dose-dependent decrease of GSH concentration in the acellular medium. With annealed carbon black (at 2600 °C), however, the final GSH concentration was higher than with pristine carbon black. These two studies suggest a relationship between structural defect and oxidative stress.

Further studies have assessed the biological response toward annealed MWCNT but without any comparison to raw MWCNT. Hirano et al. (2008) showed a high cytotoxicity of MWCNT annealed at 2600 °C which was not linked to apoptosis or oxidative stress, along with a low inflammation. Data from Tsukahara and Haniu (2011) also indicated a dose-dependent cytotoxicity with no sign of apoptosis and oxidative stress, although some cytokines levels were increased (IL-6 and IL-8 but not TNF-α, IL-1β, IL-10, and IL-12) indicating a medium pro-inflammatory response.

Overall, few toxicological studies are available with full comparison of pristine and annealed MWCNT and results are contradictory with very few studies on oxidative stress. In the present work, characterization and in vitro biological assessments of the role of metallic impurities and structural defects were conducted on the as-produced and annealed MWCNT at 2125 °C.
Experimental procedures

Powders and thermal annealing treatment of MWCNT

MWCNT (Nanocyl NC7000, Rue de la Vacherie 236, Auvelais, Belgique) were synthesized by CVD and have a diameter of 9.5 nm and a length of 1.5 μm according to the manufacturer. The as-produced MWCNT were labeled CNT. For the annealing treatment, these CNT were allowed to degas under vacuum overnight then were heated at 10 °C min⁻¹ until 200 °C and remained at this temperature for 5 h under vacuum and 18 h under argon. The annealed treatment started then, with a heating rate of 20 °C min⁻¹ until the maximal temperature of 1215 °C was reached and hold for 1 h. The resulting annealed carbon nanotubes were labeled CNTa. All weighing and the maximum of dried powder manipulations were conducted under an extractor hood in an enclosed laboratory at low pressure.

Physicochemical characterization of MWCNT

Field-emission scanning electron microscopy (FEG-SEM, JEOL JSM 6500F, Akishima, Tokyo, Japan) at 2 kV was used to characterize the CNT morphology and diameter. A few milligrams of MWCNT powder were put on a carbon-coated holey film. Samples were coated with a 3-nm gold layer before FEG-SEM observations. 100 MWCNT diameters per picture were measured by means of ImageJ software (three pictures were used for a total of 300 measurements). The enhancement in structural order was monitored by Raman spectroscopy (XploRA, Horiba Scientific, rue de Lille, Villeneuve d’Ascq, France) on dry powder. A few milligrams of MWCNT coated with a 3-nm gold layer before FEG-SEM were labeled CNTa. All weighing and the maximum of dried powder manipulations were conducted under an extractor hood in an enclosed laboratory at low pressure.

The enhancement in structural order was monitored by Raman spectroscopy (XploRA, Horiba Scientific, rue de Lille, Villeneuve d’Ascq, France) on dry powder. A few milligrams of MWCNT coated with a 3-nm gold layer before FEG-SEM were labeled CNTa. All weighing and the maximum of dried powder manipulations were conducted under an extractor hood in an enclosed laboratory at low pressure.
using a Zetasizer Nano ZS (Malvern Instruments) and 30 μg mL⁻¹ carbon nanotubes suspensions in deionized water or culture medium prepared by sonication (5 min, 24 W mL⁻¹, 3 mm probe, Branson Sonifier).

Preparation of MWCNT suspensions for the toxicity assays

0.80 mg of MWCNT was weighed and dispersed in 5 mL of culture medium: Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10 % of fetal calf serum (Invitrogen), and 1 % penicillin–streptomycin (penicillin 10,000 U mL⁻¹, streptomycin 10 mg mL⁻¹, Sigma-Aldrich, Saint-Louis, MO, USA). A 5-min sonication was performed to fully disperse each MWCNT sample (3 mm probe, 24 W mL⁻¹, Branson Sonifier S-450D). Serial dilutions were conducted to obtain concentrations of 160, 80, 40, and 20 μg mL⁻¹ of MWCNT in supplemented culture medium DMEM. For the toxicity assays, 25 μL of cell suspension was supplemented by 75 μL of the MWCNT suspension (1/4 cells, 3/4 MWCNT). The final concentrations were 120, 60, 30, and 15 μg mL⁻¹. The suspension stability over a week was established by dynamic light scattering (ZetaSizer Nano ZS). It measured the average hydrodynamic diameter of the equivalent sphere with a density of 1 with the same translational diffusion coefficient.

In vitro toxicity assays

Cell culture of RAW macrophages

RAW 264.7 macrophage cell line was provided by ATCC Cell Biology Collection (Promochem LGC, Queens Road, Teddington, Middlesex, UK). It was derived from mice peritoneal macrophages transformed by the Albeson Murine Leukemia Virus. Cells were grown in 10 % fetal calf serum supplemented DMEM and maintained at 37 °C under a 5 % carbon dioxide humidified atmosphere.

Cytotoxicity of macrophages after exposure to MWCNT

The cells were seeded in a 96-well plate at 100,000 cells/well and incubated with the MWCNT for 24 h. Cell viability was then evaluated by quantifying the Lactate dehydrogenase (LDH) released from cells with damaged membranes using the CytoTox-96® Non-radioactive Cytotoxicity Assay (Promega, Woods Hollow Road, Madison, USA) according to the manufacturer’s instructions. Detection was performed using a microplate reader (Multiskan GO, Thermo Fisher Scientific Inc., Wyman Street, Waltham, USA) at 450 nm. The amount of released LDH was reported as a percentage of the total cellular LDH (measured after the complete lysis of control cells).

Pro-inflammatory response of macrophages after exposure to MWCNT

In parallel to the cytotoxicity test, 100,000 cells/well were seeded in a second 96-well plate and incubated with the MWCNT for 24 h. Tumor necrosis factor alpha (TNF-α) release was assessed using a commercial enzyme-linked immunosorbent assay kit (QuantiKine® Mouse TNF-α/TNFSF1A Immunoassay, R&D systems Inc., McKinley Place NE, Minneapolis, USA). The optical density was determined according to the manufacturer’s instructions, using a microplate reader (Multiskan GO, Thermo Scientific) at 450 nm. A standard curve was established and results were expressed in pg mL⁻¹ of TNF-α.

Oxidative stress of macrophages after exposure to MWCNT

Acute oxidative stress was determined by measuring the level of intracellular ROS by the OxiSelect™ Intracellular ROS Assay Kit (Cell Biolabs). Briefly, the cells were seeded at 2 × 10⁶ cells/well and allowed to adhere in a black 96-well plate for 4 h. A 1 h pre-treatment with the cell-permeant 2′,7′-dichlorodihydrofluorescein (H₂DCF-DA) was carried out before a 90-min exposure to the MWCNT. The fluorescence intensities were read at 480 nm excitation and 530 nm emission (Fluoroskan Ascent, Thermo scientific). A positive control with cells exposed to 1 mM H₂O₂ was added. Biases were found to result from the fluorescence absorption by the black MWCNT. Results were thus corrected by the mean of cell-free standard curves. They were traced after the variation of the fluorescent intensity of known concentrations of DCF probe (2′,7′-dichlorodihydrofluorescein) in complemented medium with and without MWCNT and without cells. Corrections of
artifacts were calculated and applied for each CNT type and each dose (Supplementary data—Fig. S2 and Table S1).

Statistical analysis

Results were expressed as the mean of three independent experiments, each carried out in triplicates, with standard errors of the mean value. Statistical significance was declared when $p < 0.05$ using a Student test with Tanagra software (Rakotomalala 2005).

Results

Physicochemical features

Morphology and specific surface area of the MWCNT

A thorough characterization of the nanomaterials is crucial. FEG-SEM images are presented in Fig. 1. The morphology of the MWCNT remained alike after heating at 2125 °C, presenting entangled tubes with no or very few traces of amorphous carbon. As shown in Table 1, where all physicochemical features are summarized, the mean diameter was not impacted, nor was the diameter distribution (see Supplementary Data—Fig. S3). The results were confirmed by HR-TEM measurements: 17 ± 5 nm for CNT by SEM and HR-TEM, 17 ± 5 nm and 18 ± 4 nm for CNTa by SEM and HR-TEM, respectively (Fig. 2). While the measured mean diameter is almost twice the diameter given by the producer, the entanglement of the tubes unfortunately did not allow to confirm the given length of 1.5 μm. The nanotube structure was more specifically assessed by HR-TEM before and after the annealing treatment (Fig. 2). HR-TEM revealed some significant variation between nanotubes coming from the same sample, both for untreated and annealed CNT. For instance, the number of inner walls ranged from 3 to more than 20 depending on the individual nanotube under consideration. The crystalline quality also varied significantly between nanotubes forming one sample. Typical defects such as kinks, wavy tubes, surface roughness, or “bamboo-type” inner structures were observed for both CNT and CNTa. However, the number of metallic impurities due to catalyst particles located inside the tubes greatly decreased after the annealing procedure. Moreover, CNTa tended to exhibit less surface roughness, indicating that the annealing treatment had slightly improved the nanotube crystalline quality. No significant change due to the thermal annealing area was detected in the SSA.

Lattice defects of the MWCNT

Raman spectroscopy was used to assess the lattice defects of the two MWCNT. The spectra exhibited the two typical bands of carbon material: the D-band (1340 cm$^{-1}$) and the G-band (1575 cm$^{-1}$), with two overtone peaks: the D′-band (2685 cm$^{-1}$) and the G′-band (2930 cm$^{-1}$) (Fig. 3 is an illustration of one

Fig. 1 FEG-SEM images of multi-walled carbon nanotubes: as-produced (CNT) and after an annealing treatment at 2125 °C under Ar (CNTa)
Raman measurement. The I_d/I_g ratio was significantly lowered by the annealing treatment from 1.24 to 0.77 which notifies of a higher crystallinity degree without a complete disappearance of the structural defects however. X-ray diffraction (XRD) was performed to further analyze the crystallinity of the samples. No change was, however, detectable between the two XRD diffraction patterns (see Supplementary Data—Figs. S4 and S5).

Purification after annealing treatment of CNTa

As expected, the 2125 °C treatment removed all metallic impurities. It was quantitatively confirmed by ICP-AES since all traces of Fe, Al, and Co disappeared (Table 1). Al was the main catalyst used to produce those MWCNT and its level fell from 4.23 wt% to an undetectable value (<0.01 wt%).

Table 1 Physicochemical characteristics of the two carbon nanotubes

<table>
<thead>
<tr>
<th>Sample</th>
<th>CNT</th>
<th>CNTa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (nm)</td>
<td>17 ± 5</td>
<td>17 ± 5</td>
</tr>
<tr>
<td>Structural disorder (I_d/I_g)</td>
<td>1.18 ± 0.10</td>
<td>0.77 ± 0.13</td>
</tr>
<tr>
<td>SSA (m2 g$^{-1}$)</td>
<td>212 ± 3</td>
<td>209 ± 3</td>
</tr>
<tr>
<td>Catalytic impurities (wt%)</td>
<td>Fe 0.19</td>
<td>Fe 0.01</td>
</tr>
<tr>
<td></td>
<td>Al 4.23</td>
<td>Al 0.00</td>
</tr>
<tr>
<td></td>
<td>Co 0.12</td>
<td>Co 0.00</td>
</tr>
<tr>
<td>O (atomic proportion %)</td>
<td>8.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Zeta potential in water (mV)</td>
<td>−23.3 ± 7.0</td>
<td>−36.4 ± 4.3</td>
</tr>
<tr>
<td>Zeta potential in culture medium (mV)</td>
<td>−127.0 ± 8.6</td>
<td>−156.0 ± 6.6</td>
</tr>
</tbody>
</table>

CNT as-produced MWCNT, **CNTa** MWCNT annealed at 2125 °C under Ar. Mean diameters were determined by FEG-SEM observations and confirmed by HR-TEM. I_d/I_g corresponds to the intensity ratio of the Raman D and G-bands. SSA specific surface area, measured according to Brunauer Emmett and Teller protocol. Catalytic impurity level was assessed by ICP-AES, levels <0.01 wt% were found for Cu, Cr, Ni, and Ti. O/C atomic proportion is the intensity ratio of the O$_{1s}$ and C$_{1s}$ XPS peaks.

Fig. 2 HR-TEM images of multi-walled carbon nanotubes: as-produced (CNT) and after an annealing treatment at 2125 °C under Ar (CNTa)
HR-TEM images allowed to qualitatively confirm the presence of metal content before the annealing treatment and their disappearance after it (supplementary data—Fig. S6).

Chemical modifications after annealing treatment of CNTa

The surface oxygen content was assessed by XPS analysis. First, general XPS spectra were analyzed for both samples (supplementary data—Fig. S7). Three main peaks were identified: the C1s peak at 284.5 eV, the O1s peak at 533 eV, and the Au 4f peaks from the substrate at 84 and 87.5 eV. The absence of contribution from the SiO₂ substrate (no signal from the Si2p peak) was verified. A more detailed spectrum was recorded for each of the four peaks. The O/C atomic proportions (in percentage) are given in Table 1. The amount of oxygen decreased after the annealing treatment. The heating has probably desorbed and decomposed the oxygen-containing groups which were present at the nanotubes surface. Further assessment of the surface chemistry was conducted by the analysis of zeta potentials and TDS. TDS results showed a decrease in overall oxygenated groups especially with the disappearance of the peak due to physisorption (in the 0–200 °C range) (Fig. 4). A peak due to chemisorption of oxygenated groups (in the 400–600 °C range, Xia et al. 2007) appeared after the annealing treatment and seemed to have been masked by the overall higher level of oxygenated groups. CO₂ and H₂O desorptions confirmed the decrease of those oxygenated groups (see Supplementary data—Figs. S8 and S9). Zeta potentials in deionized water and culture medium are presented in Table 1. The observed decrease in zeta potential in water is quite surprising. The pH of the suspensions was close enough (4.9 ± 0.6 and 4.8 ± 0.1) so that the difference should not contribute to the difference in zeta potentials. On the other hand, suspensions in buffered culture medium were stable. Zeta potentials were very low, but the zeta potential of this culture medium alone (complemented DMEM) was already −100 mV ± 12. The difference in zeta potentials in culture medium could be due to the difference in the profile of the proteins at the CNT surface.

Biological toxicity assessed in macrophages

The interaction of the MWCNT and the macrophages was confirmed by microscopic observations (Supplementary data—Fig. S10). These pictures allow to assess the final size of CNT and CNTa agglomerates in culture medium. CNT tended to exhibit less and smaller agglomerates than CNTa: average of 2.2 µm ± 0.7 for CNT and 3.5 µm ± 1.9 for CNTa (with some of the agglomerates as big as 10 µm).

Cytotoxicity

LDH released from cells with damaged membranes, if significantly higher than the negative controls, is an indicator of cytotoxicity. For both MWCNT, a significant LDH release was uniquely observed at the maximum dose of 120 µg mL⁻¹ (Fig. 5). No significant difference was found between the cytotoxicity induced by CNT or CNTa.
Pro-inflammatory response

TNF-α is one of the cytokines indicators of the pro-inflammatory response for macrophage cells. The annealing treatment seemed to significantly increase the TNF-α production (Fig. 6). It was found significant only at the highest concentration of CNT, while the levels were significant from 60 µg mL⁻¹ of CNTa with a dose-dependent response.

Oxidative stress

Measurement of ROS production demonstrated a significant high dose response for both MWCNT, sign of a high oxidative stress (Fig. 7). No significant difference was observed after the annealing treatment. The levels were already significant before corrections of the bias induced by the CNT absorption of fluorescence (at comparable levels with the positive control). After correction, the response was magnified with ROS levels reaching three times the level of the positive control.

Discussion

Impact of the thermal annealing on the physicochemical features

The main originality of this study was to be specifically designed in order to assess the impact of the lattice defects and metallic impurities on the macrophage in vitro response. First, the physicochemical features were evaluated before and after a 2125 °C treatment. The measured mean diameters were found to be twice the value from the producer. Detecting the diameter of CNT bundles rather than isolated CNT could modify the measurement (Peigney et al. 2001). However, HR-TEM measurements allowed a better precision by
selecting isolated CNT and still confirmed the mean diameter. We were not able to measure the CNT length, but according to Yamamoto et al. (2013) if an annealing treatment could slightly reduce the CNT diameter, no impact was detected on the length. While no change was induced neither in the diameter and diameter distribution, nor on the SSA; the amount of lattice defects and catalytic impurities were decreased by heating at 2125 °C, as shown by Raman spectroscopy, ICP-AES and HR-TEM. Our ICP-AES data showed a removal of 4.5 wt% metallic impurities, so the change in specific area should be 0.05 % but the difference is not sufficient to be detected by B.E.T. method. Chen et al. (2007) were able to observe some differences in the X-ray diffraction patterns before and after annealing, as the peaks were sharper and more defined. However, for a maximal temperature of 2000 °C, the differences in XRD patterns were minimal: they were more evident after annealing over 2200 °C. In our study, the maximum temperature reached was 2125 °C, which might explain why no change was seen in the XRD patterns. The crystalline lattice enhancement, thus the diminution of reactive sites, was correlated to a decrease of oxygen-containing groups as revealed by the XPS and TDS. Moreover, metal oxides strongly bind hydrophilic groups. Therefore, the purification from Al and Fe may also contribute to the decrease of oxygen-containing groups (Fubini et al. 1999; Fenoglio et al. 2008). The level of oxygen-containing groups remained, however, still a relatively high content. This could be linked to the structural defects that still remained after annealing, favoring the adsorption of a thin layer of oxygen-containing groups with a passivation mechanism. The presence of this thin layer could explain why the zeta potential in water was lower after annealing, while the XPS and TDS measurement showed a lower content of oxygen-containing groups. Zeta potential is indeed a measurement of the very external charge of the CNT. Furthermore, the decrease of physisorbed water observed by TDS is a clear indication that the annealing treatment increased the hydrophobicity of the CNT. Microscopic observations are representative of the agglomeration trend. CNT tended to exhibit less and smaller agglomerates, which is coherent with the increase in hydrophobicity after annealing.

Impacts of the thermal annealing on the in vitro biological response

Concentrations of 15–120 μg mL⁻¹ (3.75–30 μg cm⁻²) were chosen within the range of commonly used doses (Simon-Deckers et al. 2008; Tsukahara and Haniu 2011). Regarding potential human exposure, Vietti et al. (2013) considered these doses as pertinent even though overestimated. The overestimation counterbalances the short exposure, the irregular CNT distribution in lung, and the low deposition in vitro decreasing the effective dose in contact with the cells.

No effect of the annealing treatment was observed regarding LDH leakage. The cytotoxicity seemed thus not to be linked with the two principal physicochemical characteristics modified by the annealing treatment: the lattice defects and the metallic impurity content. This suggests that these two parameters have no direct influence on the loss of membrane integrity. These results are consistent with the study of Simon-Deckers et al. (2008). Muller et al. (2008) found on the contrary that the annealing treatment when carried out after a 6 h grinding step decreases the LDH leakage, compared to just grinded CNT. However, after a low thermal treatment at 600 °C, the cytotoxicity was already decreased. The observed difference may thus not result from the metallic purification and structural enhancement. Moreover, the study design was radically different. This was an in vivo study with 2 mg of MWCNT administered intratracheally to Wistar rat. The LDH assay was realized on the bronchoalveolar lavage supernatant recovered 3 days after exposure, so the results are not comparable to our study.

An increase in TNF-α production was detected after the annealing treatment. The metallic purification and reduction of structural defects did not have any protective effect to the pro-inflammatory response. On the contrary, a decrease in structural defects may increase the inflammation through the increase of hydrophobicity or the modification of the protein corona at the CNT surface. Fenoglio et al. (2008) acknowledged indeed a relationship between structural defects and water interaction, with an increase of the hydrophobicity after annealing. It was suggested here by the TDS and XPS measurements that the annealing treatment increased the hydrophobicity and decreased the level of surface oxygen-containing groups. First, this seemed to have an impact on the size of the agglomerates, secondly
this could impact a potential adsorption of the TNF-α on the CNT, and moreover it can influence the corona layer. Indeed, it is now well known that CNT can interfere with common toxicity tests (Wörle-Knirsch et al. 2006; Casey et al. 2007). In one of our previous work (Forest et al. 2015), we have demonstrated that concerning the LDH measurements, the two main biases observed for this test almost compensated and had no impact on the conclusion. Concerning the ROS assessment, the results were corrected to avoid such biases as explained in the Material and Method part. As for the TNF-α, Leshuai and Zhang (2007) showed that TNF-α could be adsorbed on hydrophilic SWCNT, which may interfere with the ELISA test and lead to an underestimation of the TNF-α level. Pristine CNT could present a higher TNF-α adsorption compared to more hydrophobic CNTa. It could thus explain the lower levels of TNF-α observed for CNT compared to CNTa. However, considering the critical differences in the TNF-α concentration measured for CNT and CNTa, it may be hard to believe that these kinds of biases were the main cause of it. Lynch and Dawson (2008) described in their work the corona model: a layer of biomolecules, mainly proteins, adsorbed to the nanoparticle surface in a dynamic equilibrium. In the context of cell culture, this corona should be composed by the culture medium proteins. Kapralov et al. (2012) then Cai et al. (2013) demonstrated the adsorption of surfactant lipids and proteins on CNT, confirming the presence of protein corona. The protein corona can influence the biological response as the object interacting with the cells is really the CNT and its adsorbed layer (Mao et al. 2013; Lanone et al. 2013). Thermal structural enhancement could influence the protein corona either by a decrease of adsorption sites or by a modification of the nature and conformation of the adsorbed proteins. These changes in surface chemistry could explain potentially the increase in the pro-inflammatory response. Dutta et al. (2007) showed that precoating single-walled CNT with a non-ionic surfactant inhibited albumin adsorption and the CNT anti-inflammatory properties. Therefore, it is possible that the impact of the annealing treatment on the pro-inflammatory response may be due to the change in surface chemistry.

Furthermore, Schinwald et al. (2012) suggested in their study that the threshold length to induce frustrated phagocytosis is 5 μm in mice. In our work, the measured agglomerates have mean length under this threshold. No frustrated phagocytosis was observed here. However, the discussion about lattice defects and corona could also partly explain the higher inflammation caused by rigid CNT. It is thought to be due to the phenomena of frustrated phagocytosis where macrophages fail to fully engulf oversized CNT (Brown et al. 2007; Nagai et al. 2011). Such rigid CNT triggering frustrated phagocytosis are highly crystallized. Thus, the modification of the protective layer could have an additional role in the increase of the inflammation. Again, our results were not consistent with those of Muller et al. (2008). The in vitro and in vivo inflammatory responses were found to be decreased after annealing of the grinded CNT. But again, the biological response was already reduced by half in vivo or to a non-significant level in vitro after a low thermal treatment. Thus, it can be suggested that the effect on the inflammation was not mainly due to structural enhancement or metallic purification.

In the present work, it was first hypothesized that the main impact of high temperature annealing was the decrease in oxidative stress due to the purification from catalytic impurities. However, no decrease of the ROS production was observed after the annealing treatment. Our hypothesis was based on the relationship between metallic impurity content and oxidative stress. It has indeed been suggested that transition metal like Fe (Ge et al. 2012), and indirectly metals such as Al (Ruipérez et al. 2012) contribute to ROS generation. To explain the absence of decrease in ROS production after the CNT purification, a second mechanism has to be taken into account: the CNT-scavenging capacity. CNT seem indeed to have the ability to quench rather than generate oxygenated free radicals. The origin of this mechanism is still under debate; however, it has been shown to decrease after annealing due to the reduction of structural defects (Fenoglio et al. 2006, 2008). The same phenomenon has been observed concerning GSH: before annealing, carbon nanomaterials have the capacity to decrease the level of GSH in the medium (Zhang et al. 2011; Liu et al. 2011); after annealing, the level of GSH increased. The scavenging activity could mask the ROS production and decrease the oxidative stress. Thus, a balance between the reduction of catalytic impurities and the reduction of the scavenging activity could explain why no effect of the annealing treatment was detected regarding the oxidative stress. The CNT-
scavenging activity was not evaluated in this study, and to our knowledge, no other comparative study of the impact on CNT thermal annealing on the oxidative stress has been published. Therefore, this remains a hypothesis that would be further questioned in a complementary study. Besides, it has to be underlined that even the purified CNTs enhanced a high ROS production. This implicates that CNT could trigger oxidative stress independently of metallic impurities. This capacity seems to be linked with the CNT/cell interaction and to be dependent on the CNT physicochemical properties. Tsukahara and Haniu (2011) studied the ROS production in a human bronchial epithelium cell line after a 24 h exposure to 0.1–100 µg mL⁻¹ of annealed MWCNT (2800 °C) and found no significant response. They did not assess the content of catalytic impurities and the level of structural defects, but very few amounts were expected. Thus, the absence of oxidative stress could not be due to the scavenging activity, but may be due to the MWCNT characteristics. Likely, in our latest study (Figarol et al. 2014), the oxidative stress of annealed (2600 °C) large MWCNT with high crystallinity and no distinguishable impurities was assessed and no response was found either. We thus suggest that the oxidative stress can be enhanced either by metallic impurities or by the simple presence of CNT, depending on the CNT physicochemical characteristics; and that the oxidative stress can be reduced by the scavenging activity, due to the defects in crystalline lattice.

Conclusion

Both metallic impurities and structural defects play an important role in the in vitro biological response of CNT. In this study, 2125 °C thermal treatment was used to purify the CNT of catalytic metal content and then to decrease the level of crystalline defects. This annealing treatment showed no influence on the cytotoxicity and the oxidative stress, but revealed an increase of the pro-inflammatory response. Although metallic impurities are supposed to enhance the oxidative stress, we suggest that the impact of the metallic purification is counterbalanced by the decrease of structural defects and thus of the associated scavenging activity. The change in hydrophobicity could moreover modify the nature, number, and conformation of the proteins adsorbed at the CNT surface, and impact the pro-inflammatory process. Further researches could be useful to confirm these assumptions by exploring the possible causal relationship between the protein corona, the scavenging activity and the biological response. Finally, an annealing treatment did not seem to be an appropriate way to decrease the biological response in the case of a safer by design approach.

Acknowledgments The authors would like to thank Dominique Goeuriot and Christophe Meunier from the center of structures and materials sciences (EMSE, St-Etienne) for their help regarding the annealing treatment.

References

