R. Baughman, A. Zakhidov, and W. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-792, 2002.
DOI : 10.1126/science.1060928

T. Belin and F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science and Engineering: B, vol.119, issue.2, pp.105-118, 2005.
DOI : 10.1016/j.mseb.2005.02.046

URL : https://hal.archives-ouvertes.fr/hal-00288405

S. Boncel and K. Koziol, Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon, Applied Surface Science, vol.301, pp.488-491, 2014.
DOI : 10.1016/j.apsusc.2014.02.108

A. Bougrine, N. Dupont-pavlovsky, and A. Naji, Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties, Carbon, vol.39, issue.5, pp.685-695, 2001.
DOI : 10.1016/S0008-6223(00)00165-2

D. Brown, I. Kinloch, and U. Bangert, An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis, Carbon, vol.45, issue.9, pp.1743-1756, 2007.
DOI : 10.1016/j.carbon.2007.05.011

C. Bussy, M. Pinault, and J. Cambedouzou, Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity, Particle and Fibre Toxicology, vol.9, issue.1, pp.46-56, 2012.
DOI : 10.1186/1743-8977-9-46

URL : https://hal.archives-ouvertes.fr/inserm-00761589

X. Cai, R. Ramalingam, and H. Wong, Characterization of carbon nanotube protein corona by using quantitative proteomics, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.5, pp.583-593, 2013.
DOI : 10.1016/j.nano.2012.09.004

A. Casey, E. Herzog, and M. Davoren, Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity, Carbon, vol.45, issue.7, pp.1425-1432, 2007.
DOI : 10.1016/j.carbon.2007.03.033

J. Chen, J. Shan, and T. Tsukada, The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing, Carbon, vol.45, issue.2, pp.274-280, 2007.
DOI : 10.1016/j.carbon.2006.09.028

C. Cheng, K. Müller, and K. Koziol, Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells, Biomaterials, vol.30, issue.25, pp.4152-4160, 2009.
DOI : 10.1016/j.biomaterials.2009.04.019

D. Volder, M. Tawfick, S. Baughman, R. Hart, and A. , Carbon Nanotubes: Present and Future Commercial Applications, Science, vol.339, issue.6119, pp.535-539, 2013.
DOI : 10.1126/science.1222453

D. Dutta, S. Sundaram, and J. Teeguarden, Adsorbed Proteins Influence the Biological Activity and Molecular Targeting of Nanomaterials, Toxicological Sciences, vol.100, issue.1, pp.303-315, 2007.
DOI : 10.1093/toxsci/kfm217

T. Ebbesen and T. Takada, Topological and SP3 defect structures in nanotubes, Carbon, vol.33, issue.7, pp.973-978, 1995.
DOI : 10.1016/0008-6223(95)00025-9

C. Exley, The pro-oxidant activity of aluminum, Free Radical Biology and Medicine, vol.36, issue.3, pp.380-387, 2004.
DOI : 10.1016/j.freeradbiomed.2003.11.017

I. Fenoglio, M. Tomatis, and D. Lison, Reactivity of carbon nanotubes: Free radical generation or scavenging activity?, Free Radical Biology and Medicine, vol.40, issue.7, pp.1227-1233, 2006.
DOI : 10.1016/j.freeradbiomed.2005.11.010

I. Fenoglio, G. Greco, and M. Tornatis, Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects, Chemical Research in Toxicology, vol.21, issue.9, pp.1690-16971, 2008.
DOI : 10.1021/tx800100s

S. Fiorito, M. Monthioux, and R. Psaila, Evidence for electro-chemical interactions between multi-walled carbon nanotubes and human macrophages, Carbon, vol.47, issue.12, pp.2789-2804, 2009.
DOI : 10.1016/j.carbon.2009.06.023

V. Forest, A. Figarol, and B. D. , Adsorption of lactate dehydrogenase enzyme on carbon nanotubes: how to get accurate results about the cytotoxicity of these nanomaterials Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes, 2012.

B. Fubini, G. Zanetti, and S. Altilia, Relationship between Surface Properties and Cellular Responses to Crystalline Silica:?? Studies with Heat-Treated Cristobalite, Chemical Research in Toxicology, vol.12, issue.8, pp.737-745, 1021.
DOI : 10.1021/tx980261a

C. Ge, Y. Li, and J. Yin, The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials, NPG Asia Materials, vol.4, issue.12, 2012.
DOI : 10.1002/jcp.10056

S. Hirano, S. Kanno, and A. Furuyama, Multi-walled carbon nanotubes injure the plasma membrane of macrophages, Toxicology and Applied Pharmacology, vol.232, issue.2, pp.244-251, 2008.
DOI : 10.1016/j.taap.2008.06.016

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

J. Jiang, G. Oberdorster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, vol.85, issue.1, pp.77-89, 2009.
DOI : 10.1007/s11051-008-9446-4

V. Kagan, Y. Tyurina, and V. Tyurin, Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron, Toxicology Letters, vol.165, issue.1, 2006.
DOI : 10.1016/j.toxlet.2006.02.001

A. Kapralov, W. Feng, and A. Amoscato, Adsorption of Surfactant Lipids by Single-Walled Carbon Nanotubes in Mouse Lung upon Pharyngeal Aspiration, ACS Nano, vol.6, issue.5, pp.4147-4156, 2012.
DOI : 10.1021/nn300626q

J. Kayat, V. Gajbhiye, R. Tekade, and N. Jain, Pulmonary toxicity of carbon nanotubes: a systematic report, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.1, pp.40-49, 2011.
DOI : 10.1016/j.nano.2010.06.008

S. Lanone, P. Andujar, A. Kermanizadeh, and J. Boczkowski, Determinants of carbon nanotube toxicity, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.2063-2069, 2013.
DOI : 10.1016/j.addr.2013.07.019

W. Leshuai and L. Zhang, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes, Int J Toxicol, vol.26, pp.103-113, 2007.

X. Liu, S. Sen, and J. Liu, Antioxidant Deactivation on Graphenic Nanocarbon Surfaces, Small, vol.14, issue.7, pp.2775-2785, 2011.
DOI : 10.1002/smll.201100651

I. Lynch and K. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, issue.1-2, pp.40-47, 2008.
DOI : 10.1016/S1748-0132(08)70014-8

A. Mahdi, S. Tripathi, J. Neerja, and M. Hasan, Aluminium Mediated Oxidative Stress : Possible Relationship to Cognitive Impairment of Alzheimer's Type, Annals of Neurosciences, vol.13, issue.1, pp.18-24, 2010.
DOI : 10.5214/ans.0972.7531.2006.130104

H. Mao, W. Chen, and S. Laurent, Hard corona composition and cellular toxicities of the graphene sheets, Colloids and Surfaces B: Biointerfaces, vol.109, pp.212-218, 2013.
DOI : 10.1016/j.colsurfb.2013.03.049

J. Muller, F. Huaux, and N. Moreau, Respiratory toxicity of multi-wall carbon nanotubes, Toxicology and Applied Pharmacology, vol.207, issue.3, pp.221-231, 2005.
DOI : 10.1016/j.taap.2005.01.008

J. Muller, F. Huaux, and A. Fonseca, Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects, Chemical Research in Toxicology, vol.21, issue.9, pp.1698-1705, 2008.
DOI : 10.1021/tx800101p

H. Nagai, Y. Okazaki, and S. Chew, Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1330-1338, 2011.
DOI : 10.1073/pnas.1110013108

A. Peigney, C. Laurent, and E. Flahaut, Specific surface area of carbon nanotubes and bundles of carbon nanotubes Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects, Carbon Diam Relat Mater, vol.3912, issue.13, pp.507-514, 2001.

D. Porter, A. Hubbs, and R. Mercer, Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes, Toxicology, vol.269, issue.2-3, pp.136-147, 2010.
DOI : 10.1016/j.tox.2009.10.017

R. Rakotomalala, TANAGRA: un logiciel gratuit pour l'enseignement et la recherche. RNTI-E-3, pp.697-702, 2005.

F. Ruipérez, J. Mujika, and J. Ugalde, Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(III) to Fe(II), Journal of Inorganic Biochemistry, vol.117, pp.118-123, 2012.
DOI : 10.1016/j.jinorgbio.2012.09.008

A. Schinwald, F. Murphy, and A. Prina-mello, The Threshold Length for Fiber-Induced Acute Pleural Inflammation: Shedding Light on the Early Events in Asbestos-Induced Mesothelioma, Toxicological Sciences, vol.128, issue.2, pp.461-470, 2012.
DOI : 10.1093/toxsci/kfs171

F. Schrurs and D. Lison, Focusing the research efforts, Nature Nanotechnology, vol.105, issue.9, pp.546-548, 2012.
DOI : 10.1080/08958370902942533

A. Shvedova, E. Kisin, and A. Murray, Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis, AJP: Lung Cellular and Molecular Physiology, vol.295, issue.4, pp.552-565, 2008.
DOI : 10.1152/ajplung.90287.2008

A. Shvedova, E. Kisin, and D. Porter, Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?, Pharmacology & Therapeutics, vol.121, issue.2, pp.192-204, 2009.
DOI : 10.1016/j.pharmthera.2008.10.009

A. Shvedova, A. Pietroiusti, B. Fadeel, and V. Kagan, Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress, Toxicology and Applied Pharmacology, vol.261, issue.2, pp.121-133, 2012.
DOI : 10.1016/j.taap.2012.03.023

A. Simon-deckers, B. Gouget, and M. Mayne-l-'hermite, In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes, Toxicology, vol.253, issue.1-3, pp.137-146, 2008.
DOI : 10.1016/j.tox.2008.09.007

URL : https://hal.archives-ouvertes.fr/hal-00331950

T. Tsukahara and H. Haniu, Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells, Molecular and Cellular Biochemistry, vol.25, issue.4, pp.57-63, 2011.
DOI : 10.1007/s11010-011-0739-z

G. Vietti, S. Ibouraadaten, and M. Palmai-pallag, Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay, Particle and Fibre Toxicology, vol.10, issue.1, p.52, 2013.
DOI : 10.1093/chromsci/35.11.509

J. Wörle-knirsch, K. Pulskamp, H. Krug, Y. Wang, and R. Bergsträßer, Oops they did it again! Carbon nanotubes hoax scientists in viability assays Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption, Nano Lett Appl Surf Sci, vol.6, issue.254, pp.1261-1268247, 2006.

G. Yamamoto, K. Shirasu, and Y. Nozaka, Structure???property relationships in thermally-annealed multi-walled carbon nanotubes, Carbon, vol.66, 2013.
DOI : 10.1016/j.carbon.2013.08.061

X. Zhang, Y. Zhu, and J. Li, Tuning the cellular uptake and cytotoxicity of carbon nanotubes by surface hydroxylation, Journal of Nanoparticle Research, vol.47, issue.12, pp.6941-6952, 2011.
DOI : 10.1007/s11051-011-0603-9