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ABSTRACT

In this article, manually segmented corneal endothelial mosaic will be characterized with spatial statistical func-
tions and criteria issued from granulometry and morphometry. A novel approach to simulate spatial tessellations
with Gaussian random fields with Gaussian and Bessel covariance functions, watershed and h-maxima is reported.
Finally, these random spatial tessellations will be characterized and compared to corneal mosaics.
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1 INTRODUCTION

The cornea is the transparent part of an eye in contact with the outside. Its role is to refract the light toward
the retina. The cornea is made of different layers, the epithelium in contact with the outside, the Descemet
membrane, the stroma and the endothelium.

The human corneal endothelium is a monolayer of space-filling flat hexagonal cells, which do not regenerate
and are responsible for the maintenance of the cornea transparency. During the first years of life, the human
corneal endothelial mosaic is a nearly regular hexagonal tessellation. But, with corneal growth and corneal
diseases, the endothelial mosaic becomes less regular both in shape and size. Ophthalmologists need to have
more knowledge about the endothelium, and above all about the cell density and morphology, to control in a
better way grafts and disease evolution.

In this article, manually segmented corneal mosaic will then be characterized with criteria issued from gran-
ulometry and morphometry, and then compared to simulated tessellations obtained as realizations of Gaussian
random fields.

2 MOSAIC CHARACTERIZATION

To compare corneal mosaics, and to simulate tessellations, some statistical information are needed. A tessellation
(or mosaic) is the coverage of a region D ⊂ R

2 by a countable set of regions Ci ⊂ D such that for all i 6= j,
Ci ∩ Cj = ∅ and ∪iCi = D.

2.1 Centroid spatial distribution

To analyse the cell diameter and spatial distribution, the spatial distribution of their centroid is studied with
the Ripley L function12, the spherical contact distribution function F (also known as the empty space function
or the point-event distance function) and the nearest-neighbour function G5 (also named event-event function).
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Figure 1: Manually segmented corneal mosaic (a), and the statistical functions L (b), F (c), and G (d).

Let d be a distance over T ⊂ R
2. Let P be a stationary point process on T , here it will be the cell centroids.

Ripley’s K function (reduced second moment function) of P is given, for all t ∈ R
+, by:

K(t) :=
E

[

∑

x∈T ∩Bσ(t) N ((Bσ(t) + x) \ x)
]

βE [N (T )]
,

where Bσ(t) is the open ball of radius t centred at the spatial origin σ ∈ T , ∀A ⊂ T , N(A) is the number of
points of P belonging to A, and β is the intensity of P given by N(T ) = β × Area(T ). Ripley’s L function is
given, for all t ∈ R

+, by:

L(t) :=

√

K(t)

π
.

The spherical contact distribution function F of the point process P is given, for a fixed u ∈ A ⊂ R
2 and for

all t ∈ R
+, by:

F (t) := P [d(u, P ) ≤ t] ,

where:
∀A ⊂ R

2, d(u, A) := min
b∈A

‖u − b‖2.

The nearest-neighbour function G of the point process P on B ⊂ R
2 is given, for u ∈ B and for all t ∈ R

+,
by:

G(t) := P!u [d(u, P ) ≤ t] ,

where P!u is the reduced Palm distribution of P \ {u} at u which can be seen as the conditional probability on
the process P given that there is a point of P at u7. By stationarity assumption, G does not depend on u.

2.2 Centroid distribution of the corneal mosaic

These three functions of a manually segmented corneal mosaic are compared to the ones of a stationary Poisson
process and a stationary Matérn hard core point process of type II8 (Figure 1).

There is no cells of diameter lower to t∗ = 17.5 for the reference mosaic Figure 1a (the L and the G functions
are null for t < t∗).

2.3 Granulometry

The polymegathism (i.e. size variability) of endothelial cells interest the ophtalmologists. The area and perimeter
kernel density estimate9 of endothelial cells are hence computed (Figure 2), and are non-Gaussian.
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Figure 2: Area and perimeter kernel density estimate of a manually segmented corneal mosaic.

2.4 Morphometry

2.4.1 Shape diagrams

Ophthalmologists are also concerned by the pleomorphism (i.e. shape variability) of cells. Shape diagrams13,14

are then studied. Shape diagrams are cloud point representations of the morphology of compact sets. The
coordinate axes of the shape diagram are morphometrical functionals defined as ratios of geometrical functionals
acting on the considered compact sets.

The considered geometrical functionals are the area A, the perimeter P , the radii of the inscribed and
circumscribed circles (r and R), and the minimum and maximum Feret diameters (w and d).

The two shape diagrams used here are14–16:

• D1 which has w/d (diameter variation) as x−coordinate and 4A/πd2 (roundness) as y−coordinate,

• D2 which has 2πr/P (circularity) as x−coordinate and 4R/P (thinness) as y−coordinate.

For the manually segmented mosaic, each cell is mapped onto the diagrams D1 and D2 successively (Figure 3).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) D1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) D2

Figure 3: Shape diagrams D1 and D2 of the manually segmented endothelial mosaic.

2.4.2 Shape diagrams comparison

The root-mean-squared distance (RMSD) is computed on those shape diagrams to characterize the amount of
dispersion of points around the centroid of the shape diagram, that is to say the shape homogeneity of the mosaic
cells.

Let (x, y) = {(x1, y1), . . . , (xN , yN )} be the coordinates of N points of the shape diagram. The root-mean-
squared distance of (x, y) is given by:

RMSD(x, y) =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2(yi − ȳ)2,

where x̄ is the mean of the vector x.

Moreover, the RMSD of the reference endothelial mosaic is 0.118 for the first shape diagram D1, and 0.070
for the second one D2.

In the following, all these characteristics of the manually segmented endothelial mosaic (Figure 1a), will be
compared to the characteristics employed in a novel approach to obtain random spatial tessellations.



3 MOSAIC SIMULATION

3.1 Random fields

To simulate tessellations, the first used tool is a random field. Most definitions and results about random fields
come from1–3,11,18.

A random field Xt associates to each point t of a topological space T ⊂ R
2 a real random variable which

depends of its neighbourhood field values. These values could also be seen as heights and a random field may
thus be viewed as an hyper-surface. In this work the random fields will be Gaussian, separable, stationary and
isotropic.

To simulate a Gaussian random field, the only think needed is a covariance function. In this work, two
covariance functions will be used: the Gaussian and the Bessel ones. For all τ ≥ 0 (τ designate the distance
between points of the space T ), the Gaussian covariance function CG is given by:

CG(τ) = exp

(

−
τ2

2l2

)

,

where l ≥ 0 is the correlation length, and the Bessel covariance function CB is given by:

CB(τ) =

{

2νΓ(ν + 1)
(

τ
l

)−ν
Jν

(

τ
l

)

if τ > 0,
1 if τ = 0,

where l ≥ 0 is the (angular) period, Γ is the gamma function (or Euler integral of the second kind), and Jν is
the Bessel function for ν ≥ 0.

3.2 Generalized Voronoï diagram

To simulate tessellations, germs that will be the nuclei of the cells are needed. The germs will be the local
maxima or h-maxima locations of Gaussian random field realizations. The definition of this kind of maximum
come from mathematical morphology17

Let h be a non-negative real number. A point z of X belongs to an h-maximum if and only if z doesn’t
belong to the mathematical reconstruction of X by X − h. If h = 0, the h-maximum is called local maximum.
The orthogonal projection of the h-maxima over T will be called extended h-maxima.

They are several ways to obtain tessellations from germs. The most widely used is the Voronoï diagram4, it
could be used only with local maxima’s. Some cells of the tessellation obtained with the Voronoï diagram are
too small, because the inter-point distance between local maxima’s could be very small.

This way to obtain tessellation cannot be used with extended h-maxima, for h > 0, because extended h-
maxima are compact and connected sets. A generalization of the Voronoï diagram is then used with such germs
named skeleton by influence zone or SKIZ6.

The steps to obtain a tessellation from a realization of a Gaussian random field, his extended h-maxima and
the related SKIZ are shown in Figure 4.

4 MOSAIC COMPARISON

The manually segmented endothelial mosaic Figure 1a is now compare to tessellations simulated with the SKIZ
of realizations of Gaussian random fields with Gaussian and Bessel covariance functions.

4.1 Spatial distribution functions

In Figure 5, the L, F and G functions of the local maxima and centroids of tessellations cells obtained by the
SKIZ of realizations of Gaussian random fields with Gaussian and Bessel covariance functions are added to the
ones of Figure 1. As expected, the distance between local maxima could be close to zero, whereas with the use
of the SKIZ, i.e. of h-maxima with a non-null h, there is no too small-size cells. This confirm the choice of
using h-maxima and the SKIZ rather than local maxima and the Voronoï diagram. Furthermore, the statistical
functions of simulated tessellations with the Bessel covariance function are closer to the corneal mosaic.



(a) Field realization (b) Extended h-maxima (c) SKIZ

Figure 4: Steps in the simulation of a tessellation from (a) a realization of a Gaussian random field, here, with
a Gaussian covariance function. (b) First the extended h-maxima are found, and (c) next the tessellation is
obtained with the SKIZ.
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Figure 5: The L (a,b), F (c,d) and G (e,f) function for a stationary Poisson process, the reference endothelial
mosaic, the local maxima and the SKIZ cells centroids of realizations of Gaussian random fields with Gaussian
CG (a,c,e) and Bessel CB (b,d,f) covariance functions.

4.2 Granulometry

To compare area and perimeter kernel density estimate (Figure 6), two histogram distance10 function will be used,
the Chi-Squared (χ2) histogram distance function which is a bin-to-bin distance function and the Quadratic-Chi
histogram distance function (QCm) which is a cross-to-bin distance function.
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Figure 6: Area and perimeter kernel density estimate for the endothelial mosaic, and 106 tessellation cells
obtained with the SKIZ method for various h and realization of Gaussian random fields with a Gaussian CG and
a Bessel CB covariance function.

Let P and Q be two non-negative bounded histograms, which bins are intervals
[

i
k

, i+1
k

[

⊂ [0, 1[, k ∈ N
∗.



The Chi-Squared histogram distance function is:

χ2(P, Q) =
1

2

∑

i

(Pi − Qi)
2

Pi + Qi

.

Let A be a matrix defined by:

∀i, j ∈ {1, . . . , k}, Aij := 1 −
d(xi, xj)

maxi,j d(xi, xj)
,

where d is a distance function on [0, 1]. Let 0 ≤ m < 1. The Quadratic-Chi histogram distance function is:

QCm(P, Q) :=

√

√

√

√

∑

i,j

(

(Pi − Qi)

(
∑

c(Pc + Qc)Aci
)
m

)

(

(Pj − Qj)
(
∑

c(Pc + Qc)Acj

)m

)

Aij .

The two distances, Figure 7, indicate that the perimeter and area histograms of simulated tessellations are
closer to the endothelial ones for h between 0.05 and 0.2 for the Gaussian covariance function, and between 0.15
and 0.2 for the Bessel one.
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Figure 7: Comparison, with the Chi-Squared χ2 and the Quadratic-Chi QCm histogram distance, between area
and perimeter kernel density estimate of endothelial cells and 106 tessellation cells obtained with the SKIZ
method for various h and realizations of Gaussian random fields with a Gaussian CG and a Bessel CB covariance
function, respectively.

4.3 Morphometry

The aim here is to identify which shape diagram of tessellations simulated with the SKIZ of realizations of
Gaussian random fields with Gaussian and Bessel covariance functions is closer in terms of centroid and shape
to that of endothelial cells.

First, the RMSD of the shape diagrams of simulated tessellations is computed table 1. The cells simulated
with a Bessel covariance present more homogeneity in shape than the ones simulated with a Gaussian covariance,
and is closer to the RMSD obtained for the endothelial tessellation with h = 0.15.

Moreover, to analyse the spatial homogeneity of cells, two others criteria are studied, the Euclidean distance
between the centroids of the shape diagrams and the Fréchet-Nikodỳm distance between dilated shape diagrams.



Table 1: Root-mean-squared distance (RMSD) of shape diagrams of simulated cells obtained from the h-maxima
transform of Gaussian random fields with Bessel and Gaussian covariance with different h.

h Bessel covariance Gaussian covariance

D1 D2 D1 D2

RMSD RMSD RMSD RMSD

0 0.252 0.182 0.157 0.094

0.05 0.170 0.110 0.146 0.086

0.1 0.128 0.074 0.146 0.086

0.15 0.127 0.070 0.148 0.085

0.2 0.128 0.071 0.146 0.083

0.25 0.131 0.073 0.150 0.087

0.3 0.130 0.072 0.147 0.085

The Fréchet-Nikodỳm distance (or symmetric-difference distance) between two Lebesgue measurable subsets
A and B of T is given by:

d∆(A, B) := µ(∆(A, B)),

where µ is the Lebesgue measure on T and ∆ is the symmetric difference operator:

∆(A, B) = (A ∪ B) \ (B ∩ A)

= (A \ B) ∪ (B \ A).

Results are presented in table 2. One more time, simulated cells obtained from Gaussian random fields with
a Bessel covariance function are closer to endothelial cells regarding their morphometrical characteristics than
cells simulated with a Gaussian covariance function.

Table 2: Euclidean distance (δ) and Fréchet-Nikodỳm distance d∆ between centroids of shape diagrams of
endothelial and simulated cells. Simulated cells are obtained from the h−maxima transform of Gaussian random
fields with Bessel and Gaussian covariance with different h values. The more interesting results are highlighted
in bold.

h Bessel covariance Gaussian covariance

D1 D2 D1 D2

δ d∆ δ d∆ δ d∆ δ d∆

0 0.199 0.506 0.176 0.507 0.102 0.367 0.099 0.331

0.05 0.069 0.380 0.072 0.379 0.088 0.327 0.084 0.284

0.1 0.044 0.260 0.048 0.227 0.092 0.315 0.084 0.270

0.15 0.051 0.244 0.048 0.216 0.090 0.320 0.081 0.261

0.2 0.054 0.244 0.051 0.209 0.094 0.296 0.080 0.260

0.25 0.063 0.243 0.054 0.187 0.100 0.326 0.084 0.291

0.3 0.068 0.251 0.056 0.216 0.100 0.311 0.080 0.297

5 CONCLUSION

The novel mathematical approach used to simulate random spatial tessellations gives more variability in shapes
and sizes of cells than the methods used up to now. With this approach, the Bessel covariance function is the
best, amongst the ones studied in this article, to simulate tessellations close to the corneal mosaic. The choice
of the optimal value for the h parameter is not obvious, the different criteria of the present granulometric and
morphometric study gives an h value lying between 0.1 and 0.25. Other random fields and covariance functions
will be tested and used. Other manually segmented corneal endothelial mosaic at different time of life and
different pathologies will be characterized.
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