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Making EGO and CMA-ES complementary for global

optimization

Hossein Mohammadi, Rodolphe Le Riche, Eric Touboul

Abstract

The global optimization of expensive-to-calculate continuous functions
is of great practical importance in engineering. Among the proposed algo-
rithms for solving such problems, Efficient Global Optimization (EGO) and
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are regarded
as two state-of-the-art unconstrained continuous optimization algorithms.
Their underlying principles and their performances are different, yet com-
plementary: EGO fills the design space in an order controlled by a condi-
tional Gaussian process while CMA-ES learns and samples multi-normal
laws in the space of design variables. In this paper, a new algorithm, called
EGO-CMA, is proposed which combines the EGO and the CMA-ES algo-
rithms. In EGO-CMA, the EGO search is interrupted early and followed
by a CMA-ES search whose starting point, initial step size and covariance
matrix are calculated from the already sampled points and the associated
conditional Gaussian process. EGO-CMA improves the performance of
both EGO and CMA in our 2 to 10 dimensional experiments.

Keywords: Black-box global optimization; CMA-ES; EGO; Optimization
of expensive functions

1 Introduction

Continuous numerical optimization problems are at the core of many applica-
tions in science and engineering. It often happens that the underlying function
is not only expensive to evaluate but also mathematically multimodal.

One approach to deal with expensive and multimodal optimization problems
is to use surrogate models or metamodels. The idea of employing surrogate
models for optimization of costly functions, with a focus on Gaussian Processes,
has been reviewed in [13]. The deterministic Efficient Global Optimization
(EGO) algorithm [14], which relies on a kriging model (i.e., conditional Gaussian
Process), has become a standard for continuous global optimization in less than
twenty dimensions when the number of function evaluations is inferior to 1000
[20].

Another popular algorithm in continuous global optimization is the stochas-
tic Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10]. CMA-ES
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is interpreted as a robust local search method in [7]. Its robustness is attributed
to invariance properties with respect to objective function scaling and coordi-
nate system rotations. This algorithm was consistently found to be highly
performing on the Black-Box Optimization Benchmarking (BBOB) framework
for low, moderate, and highly multimodal functions for problems dimensions
between 5 and 40 [9] if it is coupled with a restart mechanism. In [1, 6], restart
strategies are proposed to prevent premature convergence of CMA-ES to a local
minimum.

Much research on global optimization of costly functions has already in-
volved augmenting Evolution Strategies (ES) with metamodels [12]. The gen-
eral idea is to replace some evaluations of the true objective function with
metamodel estimates and trigger true evaluations through an error rate mea-
sure. Let us focus here on the Covariance Matrix Adaptation (CMA) variant of
evolution strategies. In [15], CMA-ES has been coupled with a local regression
metamodel, making the lmm-CMA algorithm, where the metamodel allows sav-
ings in the ranking of the candidate solutions. References [18, 17] present the
s*ACM-ES (surrogate Assisted Covariance Matrix adaptation Evolution Strat-
egy), an algorithm with a ranking support vector machine as metamodel and
where the number of iterations (generations) done with the metamodel depend
on its error rate.

Kriging has sometimes been the metamodel added to the evolution strate-
gies. The motivation for using kriging is the availability of a prediction uncer-
tainty. In the work of [22], a pre-selection of the most promising points is done
based on a kriging model, which enables sampling more solutions and makes the
search more efficient. Two criteria are investigated as performance measures,
the (mean) objective function prediction and the probability of improvement
over the best observed point. Note that this probability of improvement can
be defined thanks to the kriging uncertainty. In [3], kriging serves as a local
metamodel and various performances are measured by different compromises
between search intensification around the current best solution and exploration.
In [16], a local kriging enables dealing with noisy objective functions by easing
the estimation of the objective function expectation.

The optimization algorithm introduced in this paper differs from previous
contributions in the fact that the EGO and CMA-ES search principles are
invoked one after each other without iterations. The motivation is that EGO
is efficient in the early design of experiments stage of the optimization, while
CMA-ES is a converging search process.

2 A brief introduction to EGO and CMA-ES

2.1 Efficient Global Optimization (EGO)

EGO algorithm which first proposed in [14] is a method for using conditional
Gaussian Processes (GP) to find the unconstrained minimum of a continuous
multi-dimensional function. EGO iteratively creates a design of experiments
aimed at finding the lower point of a function. At each iteration, one point is
added to the existing design points such that a global optimization oriented infill
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sampling criterion is maximized. There are different types of infill sampling
criteria, see [2], but the expected improvement (EI) criterion is particularly
popular. Because it does not have any arbitrary parameters to tune in order
to set a compromise between search intensification and exploration. In the
following the mathematical background of this algorithm is given.

Kriging model which is used in the EGO algorithm has been founded on the
theory of Gaussian processes. A GP defines a distribution over functions. For-
mally, a GP indexed byD is a collection of random variables

(
Y (x);x ∈ D ⊆ Rd

)
such that for any n ∈ N and any x1, ...,xn ∈ D,

(
Y (x1), ..., Y (xn)

)
follows a

multivariate Gaussian distribution. A GP is parameterized by a mean function,
µ(.), and a covariance function, or kernel, K(., .) [19].

The choice of kernel plays a key role in the obtained kriging model. The
practice is that a parametric family of kernels is selected (e.g., Matérn, polyno-
mial, exponential) and then the unknown parameters are estimated based on
the observed values. For example, a squared exponential kernel is expressed as

cov
(
Y (xi), Y (xj)

)
= K

(
Y (xi), Y (xj)

)
= σ2

d∏
k=1

exp

(
−
| xik − x

j
k |

2

2θ2k

)
, (1)

in which σ2 is a scale parameter known as process variance. The parameter
θk is called characteristic length-scales and determine the correlation length.
These parameters are usually estimated by ML or cross-validation. Interested
readers are referred to [19] for more about kernels.

Now suppose that kernel K(., .) and its associated centered (µ(.) = 0) GP
are given. The matrix of design points X =

(
x1, ...,xn

)
denotes the locations

where the samples are taken with the response values y =
(
y1, ..., yn

)>
. To take

into account this information, one can extract the posterior distribution of the
underlying GP (Y (x))x∈D. The posterior mean and variance of the conditional
GP are given by [19]:

m(x) = c(x)>C−1y , (2)

v(x) = σ2 − c(x)>C−1c(x) , (3)

where c(x) =
(
K(x,x1), ...,K(x,xn)

)>
is the vector of covariances between a

new point x and the n already observed sample points. The n × n matrix C
is a covariance matrix between the data points and its elements are defined as
Ci,j = K

(
xi,xj

)
.

A point is expected to improve the objective function if its predicted value
is better than the current best point or the uncertainty in its prediction is
such that the possibility of producing a better solution is high. Let ymin be
the minimum sampled value of the true function we have observed yet. The
improvement over the current ymin can be defied as

I(x) = max{0, ymin − Y (x)}. (4)

Then, EI is computed as follows:

EI(x) =

{
(ymin −m(x))Φ

(
ymin−m(x)

s(x)

)
+ s(x)φ

(
ymin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0,
(5)
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where s(x) =
√
v(x), φ(.) and Φ(.) are the probability density function (pdf)

and the cumulative distribution function (cdf) of the standard normal distri-
bution respectively.

At each iteration of EGO, the EI criterion is maximized and the optimal
solution is added to the current design points. Then, the function value is
evaluated at the optimal solution. The new function value is added to y and
the parameters of kriging model are re-estimated.

The EI function is highly multimodal. Hence, the optimization is usually
performed using stochastic optimization algorithms. For example, in the Scilab
KRISP toolbox [need reference], the maximization of the EI is done by CMA-
ES algorithm. Using such stochastic algorithms makes EGO stochastic as well.
But if the EI maximization is done deterministically, EGO is a deterministic
global optimization algorithm, as opposed to CMA-ES.

2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-
ES)

First introduced by Hansen, Ostermeier, and Gawelczyk [11], CMA-ES is con-
sidered as the state-of-the-art algorithm for numerical black-box optimization
if sufficient budget is afforded. CMA-ES is an iterative stochastic optimization
algorithm where at each iteration, a population of search points are generated
according to a multivariate normal law.

Let m(g) be the mean vector of the multivariate normal distribution in
generation g. The ith individual denoted by x

(g+1)
i is generated through:

x
(g+1)
i = N

(
m(g),

(
σ(g)

)2
C(g)

)
= m(g) + σ(g)N

(
0,C(g)

)
, i = 1, ..., λ, (6)

where σ(g) ∈ R+ is called mutation step size and C(g) ∈ Rd×d is a covariance
matrix. The former controls the step length and the later governs the shape
of the distribution ellipsoid. It should be noted that the initialized covariance
matrix is the identity matrix; C(0) = I.

After generating λ individuals, they are evaluated and ranked according
to the objective (fitness) function. Then µ best of them are selected. We
denote the ith best search point by xi:λ. This selection that is only based on
the fitness ranking makes CMA-ES invariant with respect to any monotonous
transformation of the objective function. In general, λ and µ are determined
as follows:

λ = 4 + b3 ln(d)c, (7)

µ = bλ
2
c. (8)

How to update the mean, the covariance matrix and the step size for the
next generation, i.e., m(g+1), C(g+1), and σ(g+1) has critical influence on the
algorithm performance. The mean of the next generation is obtained from
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x
(g+1)
1:λ , ...,x

(g+1)
µ:λ as follows:

m(g+1) =

µ∑
i=1

ωix
(g+1)
i:λ = m(g) + σ(g)

µ∑
i=1

ωiyi:λ, (9)

where yi:λ =

(
x
(g+1)
i:λ −m(g)

)
σ(g) and ωi denotes the weight. This update moves the

mean vector towards the best solutions. Note that the weights in Equation (9)
are strictly positive and normalized:

µ∑
i=1

ωi = 1, ω1 > ω2... > ωµ > 0, (10)

and their default values can be found in [8].
The update of the step size and the covariance matrix uses the notion of

“evolution path”. The evolution path contains the correlation between consec-
utive steps and stores information of the previous updates. We refer to [10] for
more information in this regard. We end up this section by giving a summary
of CMA-ES algorithm.

1. Initialize the distribution parameters: m(0),C(0), σ(0).

2. Set parameters λ and µ to their default values.

3. While stopping criterion not met:

(a) Generate new population sampled from multivariate normal distri-
bution:
x
(g+1)
i = N

(
m(g),

(
σ(g)

)2
C(g)

)
= m(g) + σ(g)N

(
0,C(g)

)
, i =

1, ..., λ.

(b) Update the mean value m(g+1), the step size σ(g+1) and the covari-
ance matrix C(g+1).

3 Comparing EGO and CMA-ES

3.1 Test functions and experimental setup

We have employed four analytical test functions: Sphere, Ackley, Rastrigin,
and Michalewicz. These functions are defined in Table 1. The Sphere function
is unimodel, separable and differentiable. This function is used to observe the
pure convergence speed of the algorithms. The Ackley function has many local
minima with a large hole at the center which is the location of the global
minimum. The Rastrigin function is highly multimodal, but locations of the
minima are regularly distributed. The Michalewicz function is a multimodal
function with d! local minima. The parameter a exists in the Michalewicz
function defines the steepness of the valleys and ridges; a larger a leads to a
more difficult search.

The search space of the functions have been rescaled to [−5, 5]d. d = 2, 5, 10
is the search space dimensionalities. The global optimum of the functions,
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Table 1: Test functions

Name Function Defined region

Sphere f(x) =
d∑
i=1

(xi)
2 [-5.12, 5.12]

Ackley f(x) = −a exp

(
−b

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (cxi)

)
[-32.768, 32.768]

+ a− exp(1), a = 20, b = 0.2, c = 2π

Rastrigin f(x) = 10d+
d∑
i=1

[
x2i − 10 cos(2πxi)

]
[-5.12, 5.12]

Michalewicz f(x) = −
d∑
i=1

sin(xi) sin2a
(
ix2i
π

)
, a = 10 [0, π]

except Michalewicz, are located at (2.5, ..., 2.5)1×d. The total number of calls
to the objective function or budget is 70× d.

The initial design points of EGO are determined by Latin Hypercube Sample
(LHS). The number of these points is three times the problem dimension. We
repeat EGO three times on each function defined in Rd. However, the number
of repetition for CMA-ES is 10 to reduce randomness of the algorithm.

For running EGO and CMA-ES, the R packages DiceOptim and cmaes have
been used, respectively. Figure 1 illustrates one run of EGO and CMA-ES on
Sphere function in dimension 5. The solid line represents the function value of
the points obtained by the optimization algorithm and the dashed-dotted line
shows the best observed function value thus far. In the figure, EGO has an
early improvement (Figure 1a) while CMA-ES converges to the minimum as
the number of calls to the objective function increases (Figure 1b).

3.2 The analysis of EGO and CMA-ES

To compare EGO and CMA-ES the median of the best function values obtained
by each algorithm is calculated. In addition, we consider three different starting
points for CMA-ES. The results of this comparison in dimension 5 are illustrated
in Figure 2. For the sake of brevity, the performance of EGO and CMA-ES in
dimensions 2 and 10 is not shown here. But the results are close to Figure 2.

The analysis of the figures reveals that EGO algorithm is quick at the begin-
ning and then slow down after some iterations. Moreover, it dos not converge
to the global optimum. On the other side, CMA-ES shows a monotone im-
provement and tends to converge the global minimum if it does not stall in
local minima.

To shed more light on the search principles of EGO and CMA-ES a visual
example is used here. Figure 3 depicts the search points obtained during the
optimization of Ackley function by each algorithm. What is clear from the figure
is that EGO is an space-filling algorithm. It tries to find the global minimum
by filling the holes in the search space, Figure 3a. However, the search points
in CMA-ES algorithm tend to converge the optimum, Figure 3b.

To investigate the characteristics of the two algorithms in higher dimensions,
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(b) CMA-ES

Figure 1: The performance of EGO and CMA-ES on the Sphere function in
dimension 5. The x-axis is the number of calls to the objective function and the
y-axis is the logarithmic value of the function. The solid line shows the history
of the function values observed during optimization and the dash-dotted line
represents the best ever observed function value.

we use a criterion called discrepancy. This criterion measures how far a given
distribution of points deviates from a perfectly uniform one [5]. Let |S| denotes
the number of points in a set S. The discrepancy of the design matrix X is
defined by [4]:

D(X) =

∥∥∥∥ |X ∩ cd|n
− V ol

(
cd
)∥∥∥∥ , (11)

where ‖.‖ represents an appropriate norm over all d dimensional rectangular
subsets cd of the unit hypercube [0, 1]d. A small value of D(X) means that the
design point X is close to a uniform design.

If EGO and CMA-ES are compared based on the discrepancy criterion,
the discrepancy of search points in EGO is less than CMA-ES. The reason is
that while EGO tends to fill the search space, CMA-ES tries to converge to
the minimum. As an example, the discrepancy of the two algorithm has been
calculated on Ackley function in dimensions 5 which is 0.002 for EGO and 0.12
for CMA-ES.

4 EGO-CMA algorithm

EGO-CMA algorithm makes benefit of both EGO and CMA-ES. The logic
which is used in this algorithm is that the search space is first explored by EGO
and then CMA-ES is used to converge the optimum. So in the EGO-CMA a
switch take place from EGO to CMA-ES.
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(c) Rastrigin function
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Figure 2: The performance of EGO and CMA-ES on four test functions in
dimension 5.

(a) (b)

Figure 3: A 2D illustration of the difference between EGO (3a) and CMA-ES
(3b). The test function is Ackley. The bullets are the points generated by the
optimization algorithms. The diamonds in the leftmost picture are the initial
DoE for EGO. The asterisk in the rightmost picture shows the starting point
of CMA-ES.
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We recall that EGO shows a quick improvement at the beginning but slows
down after some budget. One reasonable stopping criterion could be the oc-
currence of a long plateau, with respect to the total budget, in the diagram of
EGO performance. Then the best point obtained by EGO, xbest, is selected
and CMA-ES starts from this point. In our implementation, EGO stopped if
there is no improvement after 0.15× budget calls to the objective function.

At each iteration of EGO algorithm a kriging model is fitted to the design
points. In EGO-CMA we try to make use of the fitted kriging model as an ap-
proximation of the true function. In fact, EGO-CMA is started from xbest with
a “good” covariance matrix and a “good” step size calculated from the points
already sampled and the fitted kriging model. What is a “good” covariance
matrix and step size is discussed below.

Assume that we are given a convex-quadratic objective function fH(x) =
1
2x
>Hx, where the Hessian matrix is positive definite. The optimal covariance

matrix in Evolution Strategies (ESs) is a covariance matrix whose lines of the
equiprobable mutation steps are aligned with the level sets of the objective
function [21]. And this is the case when the covariance matrix of a search
distribution is proportional to the inverse of H.

The Hessian matrix H can be decomposed into:

H = BD2B>, (12)

where B is an orthogonal matrix, B>B = BB> = I. Columns of B are
orthonormal basis of eigenvectors. D is a diagonal matrix with square roots
of eigenvalues of H as diagonal elements. Substituting the Hessian matrix by
BD2B> and defining variable t as t = DB>x, the objective function becomes
fH(t) = 1

2t
>t.

According to Equation (6), any search point has normal distribution. In the
space of variable t, search points have the following normal distribution

t
(g+1)
i = DB>N

(
m(g), σ2C(g)

)
= (13)

DB>m(g) + σ(g)N
(
0,DB>C(g)BD

)
, i = 1, ..., λ .

The covariance matrix of the above distribution is the identity matrix times the
step size σ(g) if and only if C(g) = BD−2B> which is the inverse of H. In other
words, when the covariance matrix is proportional to the inverse of Hessian
matrix, CMA-ES can be seen as locally optimizing a Spherical function.

In CMA-ES, the parameter step size σ aims at achieving fast convergence
to the global optimum. If R =

∥∥x∗ −m(g)
∥∥ denotes the distance between the

global minimum x∗ and the mean vector m(g), then the most expected value of
σ achieving this goal can be calculated from

x
(g+1)
i −m(g) = σ(g)N

(
0,C(g)

)
⇒ σ∗(g) =

R∥∥∥N (0,C(g)
)∥∥∥ . (14)

The initial mean vector and covariance matrix of CMA-ES in the EGO-
CMA algorithm are m(0) = xbest and C0 = H−1. To ease the calculation of
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σ∗(g) in Equation (14), we prefer to work in the space of the variable t. In this
space, the initial mean vector is DB>xbest and the distance R is equivalent to

R
′

=
∥∥DB>(x∗ − xbest)

∥∥. Moreover, the random variable
t
(g+1)
i −DB>xbest

σ(g) has
standard normal distribution. Since

‖N (0, I) ‖ ∼ N
(√

d− 0.5, 0.5
)
, (15)

a “good” initial step size is the one that fulfills

σ∗(0) =
R

′

√
d− 0.5

. (16)

To obtain σ∗(0) we need to calculate the distance R. We propose a creative
approach to approximate R using Taylor expansion. The second order Taylor
expansion of the objective function at point xbest is:

f(x) ' f(xbest) +5f(xbest)>(x− xbest) +
1

2
(x− xbest)H(xbest)(x− xbest).(17)

Minimization of Equation (17) gives an approximation of x∗ by which we can
calculate R as follows:

R =
∥∥∥x∗ − xbest

∥∥∥ =
∥∥∥−H−1(xbest)5 f(xbest)

∥∥∥ . (18)

If the last kriging model used for approximating true function is not convex,
the Hessian matrix is not positive semidefinite. When it happens, we force the
Hessian matrix to be positive semidefinite. Considering the eigenvalue decom-
position in (12), we substitute the negative eigenvalues by 10−6. However, this
might increase the condition number of the Hessian matrix which is the ratio
of the largest to the smallest eigenvalue. To improve the condition number, we
add a positive value, δ, to the elements on the main diagonal of the Hessian
matrix. δ which increases increases all the eigenvalues by δ can be calculated
from

δ =
CLλmin − λmax

1− CL
, (19)

where CL stands for condition number limit and λmin and λmax indicate the
smallest and largest eigenvalue of the Hessian matrix. Based on our experiments
we suggest to set the condition number limit CL equal to 103.

To sum up, a summary of EGO-CMA algorithm is provided below.

1. Start an EGO with the initial design of experiments determined by LHS.

2. When there is no further improvement after 0.15× budget objective func-
tion evaluations, stop EGO.

3. Select the point with the smallest function value and set it as xbest.

4. Compute the Hessian matrix H at xbest using the last kriging model of
the EGO algorithm.

5. Set m(0) = xbest, C(0) = H−1 and compute σ∗(0) from (16).

6. Start CMA-ES with the default values in the previous step. Stop when
the budget is exhausted.
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5 Simulation Results

The performance of EGO-CMA is tested here with the default parameter setting
explained in Section 4. Each run of EGO-CMA is repeated 5 times on each
function and then the results are compared with EGO and CMA-ES. We again
recall that each curve is the median of the repetitions. Also, we only consider
the CMA-ES with the starting point that leads to superior performance. The
results of this comparison in dimension 5 and 10 are illustrated in Figures 4
and 5, respectively.

The results show that EGO-CMA outperforms CMA-ES in all functions and
also EGO except the Rastrigin function in dimension 5. In this case, EGO-CMA
switches to CMA-ES before EGO detects the global minimum location. Note
that when budget is greater than 250, EGO improves the objective function
value.

In the case of the Sphere function, EGO can roughly detect the location
of global minimum quickly which allows EGO-CMA to further increase the
accuracy. The accuracy of EGO-CMA is about 10−8 and 10−5 for the Sphere
function in dimension 5 and 10, respectively.

6 Conclusions

This paper presents a new algorithm, called EGO-CMA, for unconstrained con-
tinuous black-box optimization. EGO-CMA combines the strengths of EGO
and CMA-ES: while EGO is a space-filling strategy, CMA-ES is a robust local
search.

In the proposed algorithm, search space is first explored by EGO and then
a switch to CMA-ES take place. CMA-ES is started from the point with the
smallest function value obtained by EGO. Moreover, the initial covariance ma-
trix and the step size of CMA-ES are calculated from the design points already
sampled and the kriging model of the EGO algorithm. Therefore, The coopera-
tion between the two algorithms goes beyond a plain succession as the Gaussian
process learned by EGO allows improving the initialization of key parameters
of CMA-ES. The results of our 2 to 10 dimensional experiments show that
EGO-CMA outperforms EGO and CMA-ES for the same budget.
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