S. Anily and M. Tzur, Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach, Transportation Science, vol.39, issue.2, pp.233-248, 2005.
DOI : 10.1287/trsc.1030.0080

E. Arkin, D. Joneja, and R. Roundy, Computational complexity of uncapacitated multi-echelon production planning problems, Operations Research Letters, vol.8, issue.2, pp.61-68, 1989.
DOI : 10.1016/0167-6377(89)90001-1

A. Atamtürk and S. Kücükyavuz, An algorithm for lot sizing with inventory bounds and fixed costs, Operations Research Letters, vol.36, issue.3, pp.297-299, 2008.
DOI : 10.1016/j.orl.2007.08.004

M. Bazaraa and H. Sherali, On the choice of step size in subgradient optimization, European Journal of Operational Research, vol.7, issue.4, pp.380-388, 1981.
DOI : 10.1016/0377-2217(81)90096-5

N. Brahimi, S. Dauzère-pérès, N. Najid, and A. Nordli, Single item lot sizing problems, European Journal of Operational Research, vol.168, issue.1, pp.1-16, 2006.
DOI : 10.1016/j.ejor.2004.01.054

URL : https://hal.archives-ouvertes.fr/hal-00468355

N. Brahimi, S. Dauzère-pérès, and N. Najid, Capacitated Multi-Item Lot-Sizing Problems with Time Windows, Operations Research, vol.54, issue.5, pp.951-967, 2006.
DOI : 10.1287/opre.1060.0325

URL : https://hal.archives-ouvertes.fr/hal-00468364

L. Buschkühl, F. Sahling, S. Helber, and H. Tempelmeier, Dynamic capacitated lot-sizing problems: a classification and review of solution approaches, OR Spectrum, vol.13, issue.2, pp.231-261, 2010.
DOI : 10.1007/s00291-008-0150-7

A. Chan, A. Muriel, Z. Shen, D. Simchi-levi, and C. Teo, Effective Zero-Inventory-Ordering Policies for the Single-Warehouse Multiretailer Problem with Piecewise Linear Cost Structures, Management Science, vol.48, issue.11, pp.1446-1460, 2002.
DOI : 10.1287/mnsc.48.11.1446.267

W. Chen and J. Thizy, Analysis of relaxations for the multi-item capacitated lot-sizing problem, Annals of Operations Research, vol.15, issue.9, pp.29-72, 1990.
DOI : 10.1007/BF02248584

S. Chopra and P. Meindl, Supply chain management: strategy, planning, and operation Dynamic lot size models for multi-stage assembly systems, Manag Sci, vol.20, pp.14-21, 1973.

S. Dauzère-pérès, N. Najid, N. Brahimi, and A. Nordli, Uncapacitated lot-sizing problems with time windows, Research Report, vol.02, issue.4, 2002.

M. Denizel, O. Solyal?, and H. Süral, Tight formulations for the two and three level serial lot-sizing problems. International workshop on lot sizing, pp.40-42, 2010.

P. Dixon and C. Poh, Heuristic Procedures for Multi-Item Inventory Planning with Limited Storage, IIE Transactions, vol.34, issue.2, pp.112-123, 1990.
DOI : 10.1287/mnsc.24.4.451

A. Drexl and A. Kimms, Lot sizing and scheduling ??? Survey and extensions, European Journal of Operational Research, vol.99, issue.2, pp.221-235, 1997.
DOI : 10.1016/S0377-2217(97)00030-1

R. Eftekharzadeh, A Comprehensive Review of Production Lot???sizing, International Journal of Physical Distribution & Logistics Management, vol.23, issue.1, pp.30-44, 1993.
DOI : 10.1108/09600039310025606

A. Federgruen and M. Tzur, Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems, Naval Research Logistics, vol.15, issue.5, pp.463-486, 1999.
DOI : 10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S

M. Fisher, The Lagrangian Relaxation Method for Solving Integer Programming Problems, Management Science, vol.27, issue.1, pp.1-18, 1981.
DOI : 10.1287/mnsc.27.1.1

B. Fleischmann, The discrete lot-sizing and scheduling problem, European Journal of Operational Research, vol.44, issue.3, pp.337-348, 1990.
DOI : 10.1016/0377-2217(90)90245-7

J. Gutiérrez, A. Sedeno-noda, M. Colebrook, and J. Sicilia, A new characterization for the dynamic lot size problem with bounded inventory, Computers & Operations Research, vol.30, issue.3, pp.383-395, 2003.
DOI : 10.1016/S0305-0548(01)00105-8

M. Hariga and P. Jackson, The warehouse scheduling problem: formulation and algorithms, IIE Transactions, vol.17, issue.2, pp.115-127, 1996.
DOI : 10.1287/mnsc.24.4.451

M. Held and R. Karp, The traveling-salesman problem and minimum spanning trees: Part II, Mathematical Programming, vol.6, issue.1, pp.6-25, 1971.
DOI : 10.1007/BF01584070

M. Held, P. Wolfe, and H. Crowder, Validation of subgradient optimization, Mathematical Programming, vol.8, issue.1, pp.62-88, 1974.
DOI : 10.1007/BF01580223

Y. Jin and M. A. , Single-warehouse multi-retailer inventory systems with full truckload shipments, Naval Research Logistics, vol.174, issue.5, pp.450-464, 2009.
DOI : 10.1002/nav.20353

B. Karimi, S. Ghomi, and J. Wilson, The capacitated lot sizing problem: a review of models and algorithms, Omega, vol.31, issue.5, pp.365-378, 2003.
DOI : 10.1016/S0305-0483(03)00059-8

M. Khouja and S. Goyal, A review of the joint replenishment problem literature: 1989???2005, European Journal of Operational Research, vol.186, issue.1, pp.1-16, 1989.
DOI : 10.1016/j.ejor.2007.03.007

H. Kim, D. Lee, and P. Xirouchakis, Disassembly scheduling: literature review and future research directions, International Journal of Production Research, vol.6, issue.18-19, pp.4465-4484, 2007.
DOI : 10.1002/nav.20089

C. Lemaréchal, Lagrangian relaxation Computational combinatorial optimization, pp.115-160, 2001.

R. Levi, R. Roundy, D. Shmoys, and M. Sviridenko, A Constant Approximation Algorithm for the One-Warehouse Multiretailer Problem, Management Science, vol.54, issue.4, pp.763-776, 2008.
DOI : 10.1287/mnsc.1070.0781

T. Liu, Economic lot sizing problem with inventory bounds, European Journal of Operational Research, vol.185, issue.1, pp.204-215, 2008.
DOI : 10.1016/j.ejor.2006.12.032

S. Love, Bounded Production and Inventory Models with Piecewise Concave Costs, Management Science, vol.20, issue.3, pp.313-318, 1973.
DOI : 10.1287/mnsc.20.3.313

R. Melo and L. Wolsey, Uncapacitated two-level lot-sizing, Operations Research Letters, vol.38, issue.4, pp.241-245, 2010.
DOI : 10.1016/j.orl.2010.04.001

R. Melo and L. Wolsey, MIP formulations and heuristics for two-level production-transportation problems, Computers & Operations Research, vol.39, issue.11, pp.2776-2786, 2012.
DOI : 10.1016/j.cor.2012.02.011

S. Minner, A comparison of simple heuristics for multi-product dynamic demand lot-sizing with limited warehouse capacity, International Journal of Production Economics, vol.118, issue.1, pp.305-310, 2009.
DOI : 10.1016/j.ijpe.2008.08.034

S. Minner and E. Silver, Replenishment policies for multiple products with compound-Poisson demand that share a common warehouse, International Journal of Production Economics, vol.108, issue.1-2, pp.388-398, 2007.
DOI : 10.1016/j.ijpe.2006.12.028

M. Önal, W. Van-den-heuvel, and T. Liu, A note on ???The economic lot sizing problem with inventory bounds???, European Journal of Operational Research, vol.223, issue.1, pp.290-294, 2012.
DOI : 10.1016/j.ejor.2012.05.019

P. Robinson, A. Narayanan, and F. Sahin, Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms???, Omega, vol.37, issue.1, pp.3-15, 2009.
DOI : 10.1016/j.omega.2006.11.004

F. Seeanner and H. Meyr, Multi-stage simultaneous lot-sizing and scheduling for flow line production, OR Spectrum, vol.38, issue.11, pp.33-73, 2013.
DOI : 10.1007/s00291-012-0296-1

O. Solyal? and H. Süral, The one-warehouse multi-retailer problem: reformulation, classification, and computational results, Annals of Operations Research, vol.15, issue.1, pp.517-541, 2012.
DOI : 10.1007/s10479-011-1022-0

H. Tempelmeier and L. Buschkühl, A heuristic for the dynamic multi-level capacitated lotsizing problem with linked lotsizes for general product structures, OR Spectrum, vol.5, issue.1, pp.385-404, 2009.
DOI : 10.1007/s00291-008-0130-y

H. Tempelmeier and M. Derstroff, A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times, Management Science, vol.42, issue.5, pp.738-757, 1996.
DOI : 10.1287/mnsc.42.5.738

W. Trigeiro, L. Thomas, and J. Mcclain, Capacitated Lot Sizing with Setup Times, Management Science, vol.35, issue.3, pp.353-366, 1989.
DOI : 10.1287/mnsc.35.3.353

M. Van-vyve, L. Wolsey, and H. Yaman, Relaxations for two-level multi-item lot-sizing problems, Mathematical Programming, vol.60, issue.1, pp.495-523, 2014.
DOI : 10.1007/s10107-013-0702-8

A. Wagelmans, V. Hoesel, C. Kolen, and A. , Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case, Operations Research, vol.40, issue.1-supplement-1, pp.145-156, 1992.
DOI : 10.1287/opre.40.1.S145

L. Wolsey, Lot-sizing with production and delivery time windows, Mathematical Programming, vol.107, issue.3, pp.471-489, 2006.
DOI : 10.1007/s10107-005-0675-3

URL : http://hdl.handle.net/2078.1/4639

R. Zamani and S. Lau, Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem, European Journal of Operational Research, vol.201, issue.1, pp.82-88, 2010.
DOI : 10.1016/j.ejor.2009.02.008

M. Zhang, S. Kücükyavuz, and H. Yaman, A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands, Operations Research, vol.60, issue.4, pp.918-935, 2012.
DOI : 10.1287/opre.1120.1058