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Abstract:  Mortars are traditionally made from a mixture of sand, a binder and water. However, modern 
factory-made mortars are currently, very complex materials. Indeed, to exhibit various properties from the 
fresh paste to the hardened material, mortar formulations are composed of many mineral and organic 
admixtures. Among organic admixtures, polysaccharides are widely used in mortar formulation to improve 
water retention capacity of the freshly-mixed materials. The water retention capacity is an essential 
property of mortars to enhance cement hydration and its adhesion to a substrate. Moreover, many 
polysaccharide admixtures, acting as viscosity-enhancing agents, prevent segregation and improve the 
homogeneity and workability of cement-based system. Indeed, the viscosity of the system strongly 
increases using polysaccharides. Nevertheless, polysaccharides, as sugars, act on cement hydration. The 
main drawback is the retarding effect in hydration mechanism and setting-time of the cement.  
The aim of this study is to focus on the effect of guar gum derivatives on fresh state properties of Portland 
cement-based mortars, such as water retention, rheological behavior and the hydration delay. This work 
focuses on the guar gum derivatives since their manufacturing process is low pollutant and they provide 
very good properties to cement-based mortars. The results highlight that the chemical composition of guar 
gum derivatives (MS, DS, additional alkyl chain) are the key levers to improve water retention of mortars 
and to adapt the rheological behavior of the cementitious paste to a specific application. 
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1. Introduction  

Modern factory-made mortars are complex materials, in which several kinds of admixtures are added in 
order to obtain specific properties, from the fresh state to the hardened material. Indeed, since many 
years, concretes, mortars or cement grouts with high fluidity have been developed, since their use implies 
many economical and technical advantages. However, the use of highly flowable mixtures may lead to 
segregation or excessive bleeding and subsequently, durability issues. In order to overcome this problem 
by enhancing the segregation resistance while maintaining high fluidity, viscosity-enhancing admixtures 
(VEA) are frequently introduced within the formulation (1,2,3,4). Among these admixtures, natural 
polysaccharides or their derivatives (such as welan gum, starch derivatives or cellulose ethers) are the 
most widely used. Moreover, the incorporation of these VEAs in shotcrete or render mortar is useful to 
ensure sagging resistance for thick application on vertical support, and to allow sufficient fluidity for normal 
pumpability by supplying shear thinning rheological behavior (5). Indeed, these admixtures provide, 
generally, high yield stress and apparent viscosity at low shear rate but low resistance to flow at high 
shear rate (6). However, their mode of action is not fully understood, since results are sometimes 
contradictory. Water retention (WR) is another essential property of monolayer render at fresh state. 
Indeed, high water retention improves the cement hydration and limits the absorption of the mixing water 
by a substrate and thus provides good mechanical and adhesive properties to the mortar (7). Among 
admixtures enhancing water retention capacity of the freshly-mixed mortars, cellulose ethers (CE) are the 
most widely used. Nevertheless, hydroxypropyl guar (HPG) are now also well-established in the 
construction industry as water retention agent for mortars (8,9,10,11). Since HPGs improve two main 
properties of mortar, they appear as suitable admixtures to be used in render formulation. 

The aim of this study is to provide an understanding of the effect of chemical composition and structure of 
HPGs and its dosage on macroscopic properties of mortars. For this purpose, an original guar gum and 
five HPGs with specific chemical modifications, such as increase in MSHP or substitutions by hydrophobic 



units, were selected. The impact of admixtures on the water retention capacity, on cement hydration and 
on the rheological behavior of mortars was investigated. 

 

2. Materials and methods 
 

2.1  Mineral products 

Mineral products used in this study consist in blend Portland cement (Holcim), lime (Holcim), calcium 
carbonate (Calcitec V60, Mineraria Sacilese S.p.A.) and dolomite (Bombardieri and Leidi 0.1-0.4mm). The 
mineral compositions of the commercial Portland cement, CEM II/B-LL 32.5 R according to the European 
standard EN 197-1 (12), used are given in Table 1.   

 

Table 1.  Mineral composition (%, weight) of the investigated cement determined by XRF and XRD-

Rietveld refinement. 

 

Chemical composition (% wt)  Phase composition (% wt) 

Oxides XRF Oxides XRF  Phases XRD 
(Rietveld) 

Phases XRD 
(Rietveld) 

CaO 57.87 SO3 3.95  C3S 54.3 Calcite 28.9 

SiO2 12.31 Na2O 0.99  C2S 3.5 Gypsum 3.0 

Al2O3 5.25 K2O 1.66  C3A 4.7 Quartz 0.9 

MgO 1.19 TiO2 0.16  C4AF 4.6 Free CaO 0.8 

Fe2O3 4.05 LOI 13.7      

 

The phase composition was determined by Rietveld refinement method (Siroquant V2.5 software) after 

XRD analysis (D5000, Siemens) and the oxide composition was quantified by means of X-ray 

fluorescence spectroscopy. The median particle diameters by volume (d50%) determined by means of 

laser diffractometry with dry powder disperser (Mastersizer 2000 and Scirocco dispersing unit, Malvern) 

was 5, 15, 20, 300 and 600µm for lime, cement, calcite and both dolomite fine aggregates, respectively.  

 

2.2  Organic admixtures 

Guar gum is a natural polysaccharide extracted from the seed endosperm of Cyamopsis tetragonolobus. 

This polymer consists in a β(1-4)-linked D-mannopyranose backbone with random branchpoints of 

galactose via an α(1–6) linkage (Fig. 1(a)). Hydroxypropyl guars (HPGs) are obtained from the original 

guar gum via an irreversible nucleophilic substitution, using propylene oxide in the presence of an alkaline 

catalyst (Fig. 1(b)).  

(a) (b)  

Figure 1. Molecular structure of original guar gum (a) and HydroxyPropyl Guar (b) 

 

The manufacture of HPGs has the advantage of having a more reduced impact on the environment than 

cellulose derivatives. Indeed, guar gum is extracted by simple thermo-mechanical process, exhibits a 

higher chemical reactivity and is soluble in cold water thanks to its branched-chain structure with a lot of 

hydroxyl groups. Thus, the chemical modification of the original guar gum requires normal reaction 

conditions of temperature and pressure, does not generate large quantity of by-products, and requires 

minimal purification procedure (8). In this paper, five HPGs and an original guar gum provided by Lamberti 

S.p.A were studied. They exhibit roughly the same molecular weight, around 2.10
6 
g.mol
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all from the same original guar gum (noted HPG 6 in the paper) (13). Table 2 provides a qualitative 

description of the polymers used. The qualitative substitution degrees are provided by the manufacturers. 

The molar substitution ratio (MSHP) represents the number of hydroxypropyl units per anhydroglucose unit 

and is less than 3 for the investigated HPGs. The degree of substitution (DSAC) represents the amount of 

alkyl chain per anhydroglucose unit. The only difference between HPGs 1 and 3 is the molar substitution 

ratio, which increases, while HPG 4 exhibits an additional substitution (short alkyl chains). 

 

Table 2. Qualitative description of the HPG used. 

 

 MSHP DSAC Additional substitution 

HPG 1 Low -  

HPG 3 High -  

HPG 4 High Low Short alkyl chain 

HPG 6 - - - 

 

2.3  Methodology 

Mortars were prepared according to the following mixture proportions: 12% of cement, 3% of lime, 18% of 

calcium carbonate, 43% of dolomite Bombardieri and 24% of dolomite Leidi (by weight). The admixtures 

were in addition to the total dry mixture (i.e. cement, lime, calcium carbonate and dolomite) and are 

expressed in weight percent by weight of binder (% bwob). Dry mixture was blended in a shaker (Wab, 

Turbula, Germany) for 10 min. Deionised water was added in order to obtained a liquid-to-solid ratio L/S = 

0.22. The mixing procedure was in accordance with EN 196-1 (14). All tests were carried out, at least, in 

triplicate and at a controlled temperature. A control test was also performed with a mortar without 

admixture. 

 

2.4  Water retention measurements 

The water retention capacity of freshly-mixed mortar was assessed using ASTM C1506-09 standard 

method (15). It had to be performed 15 min after mixing to measure the water loss of a mortar under 

partial vacuum. The standardized apparatus was submitted to a vacuum of 50 mm of mercury (6.6 10
3
 Pa) 

for 15 min. Then, the water retention capacity, WR, was calculated using the following equation:  

100
W

WW
WR(%)

0

10 


                (1) 

where W0 represents the initial mass of mixing water; W1 is the loss of water mass after aspiration. 

All the experiments were carried out at 23 °C. Three classes of water retention can be specified according 

to the DTU 26.1 (16). The first class (low WR category) contains mortars that exhibit WR lower than 86%. 

The second class (medium) corresponds to WR ranging from 86% to 94%. The last one (high) is defined 

by WR higher than 94%, corresponding to the required values in the field of rendering application.  

 

2.5  Rheological behavior 

The rheological measurements were performed with Rheometer MCR 302 (Anton-Paar), thermostated at 

20 °C. The rheological properties of fresh mortars were investigated with vane-cylinder geometry (17,18). 

The mortar was introduced into the measurement system at the end of the mixing cycle. At 10 min, the 

mortar was pre-sheared for 30 s at 100 s
-1

 in order to re-homogenize the sample and to eliminate its shear 

history (19,20). After a period of rest of 5 min, the rheological measurements were started (total time = 15 

min). The imposed shear rate was decreased by step from 300 to 0.06 s
-1

. At each shear rate, the 

measuring time was adjusted in order to obtain a steady state whatever the formulation. The samples 

were systematically submitted to high shear rate (100 s
-1

) for 30 s before each imposed shear rate in order 

to resuspend particles of mortar within the mortar mixtures. The results were expressed as shear stress  

according to shear rate   and the Herschel-Bulkley (HB) model was applied to fit the experimental data 

and used to describe mortars rheological behavior (21):  



 
nK  0
              (2) 

where 0 correspond to the yield stress, K the consistency coefficient and n the fluidity index which 

characterizes shear-thinning behavior of  mortar.  

2.6  Adsorption curves of HPGs on binder 

The adsorption isotherms were determined using the depletion method. The non-adsorbed polymer 

remaining within the pore solution was quantified by means of Total Organic Carbon (TOC) 

measurements. Prior to analysis, the pore solution was extracted from admixed or non-admixed mortar. 

The extraction was performed by means of two centrifuging steps. The first step consisted in the 

centrifugation of around 150 g of mortar at 5000 rpm for 5 min. The supernatant was, afterward, 

centrifuged again at 14500 rpm for 10 min in order to avoid the presence of mineral particles within the 

solution. The supernatant was diluted with hydrochloric acid solution at 0.1 mol.L
-1

. The total organic 

carbon was determined by combustion at 850 °C with a Vario-TOC Cube (Elementar). The adsorbed 

amount of polysaccharides was calculated from the difference of TOC content of the HPG reference 

solution and the TOC content of the supernatant. 

 

2.7  Conductimetric measurement 

Characterization of the delay induced by the studied admixtures on the cement hydration was performed 

by conductivity measurements. Conductivity measurements were carried out in lime suspension in order 

to obtain hydration kinetics close to that observed in cement pastes, in spite of a high liquid-to-solid weight 

ratio (L/S). Conductivity curves were interpreted according to explanations proposed by Comparet et al. 

(22). As soon as cement came in contact with liquid, the electrical conductivity increased as a 

consequence of the dissolution of the anhydrous phases. Then, nucleation of hydrates on the grain 

surface leads to a period where the conductivity evolves weakly. Conductivity then accelerated more 

quickly. The conductimetric slope is related to the growth rate of the hydration products. Meanwhile, 

cement dissolution still continued. The conductivity increases to the supersaturation with respect to 

portlandite and decreases rapidly due to its precipitation. Thus, an electrical conductivity drop is caused 

by the portlandite precipitation. The portlandite precipitation time was used as a benchmark to classify and 

to quantify the relative retardation ability of admixtures on cement hydration. 

Experiments were performed in lime solution (20 mM), thermostated at 25 °C and continuously stirred. 

The liquid-to-solid weight ratio (L/S) used was equal to 10. Polymer-to-binder weight ratio (P/B) was fixed 

to 0.5%. Binder GUM 01 and admixture powders were blended in a shaker (Turbula, Wab) for 10 min 

before contact with the liquid phase. The control corresponds to the neat binder. 

 

3. Experimental results 
 

3.1  Impact of HPGs on the water retention property of fresh mortars 

Fig. 2 represents the evolution of the water retention capacity of fresh admixed mortars, according to the 

polymer dosage. The non-admixed mortar exhibits a low water retention capacity of about 72% ± 0.3%. 

Then, as expected, the water retention increases with the use of HPGs and with increasing polymer 

dosage, until reaching a plateau with very high WR values (>97%). In the range of polymer dosage 

studied, the WR values reached for HPGs 3 and 4 are greater than 94% and therefore belong to the high 

WR class. The original guar gum and, to a lesser extent HPG 1, highlight a very limited impact, regardless 

of dosage until 0.2%. These results suggest that the substitution of hydroxyl units from original guar gum 

by hydroxypropyl units increases the WR of mortars. Furthermore, the increase in the MSHP (from HPG 1 

to 3) improves the WR capacity of mortar, since HPG 3 provides the higher WR despite lower dosage.  

The results highlight moreover the positive impact of additional alkyl chain on WR. Indeed, the highest WR 

are obtained with HPG 4 for the lowest polymer dosages. Moreover, concerning the shape of WR curves, 

an abrupt change in slope can be noticed for mortars admixed with HPGs 3 and 4, and with HPG1 but 

only above 0.15%. This occurs for a decreasing polymer dosage from HPG 3 to HPG 4. 



 
Figure 2. Impact of polymer dosage on water retention capacity of fresh admixed mortars 

 

3.2 Modification of cement hydration by HPGs  

The conductimetric data highlights the impact of HPGs on the kinetics of hydration (Fig. 3(a)). By focusing 

on the portlandite precipitation time, it appears a wide range of delays induced by the admixtures. Among 

HPGs, HPG 4 exhibits the weaker delay (4.5 h) (Fig. 3(b)). The most important delay is observed for HPG 

1 (17.8 h). The native guar gum induces the lowest delay in the portlandite precipitation. The increase in 

MSHP (from HPG 1 to 3) leads to a decrease in the portlandite precipitation time. The comparison between 

HPG 3 and HPG 4 suggests the low impact of the alkyl chain on the delay of the portlandite precipitation. 

 

Figure 3. Influence of HPGs on conductimetric curves (a) and on portlandite precipitation time (b), 
[Ca(OH)2]=20 mM, L/S=10, P/B=0.5% 

 

The conductimetric curves reveal a very low extension of the duration of the “period of low increase in 

conductivity” (Fig. 3(a)). This result highlights the weak influence of admixtures on the nucleation of the 

first cement hydrates. The same results were obtained by Poinot et al. (9). The delay of portlandite 

precipitation is mainly due to the slope decrease. The slope of the conductimetric curve, being linked to 

the growth rate of the hydrated cement phases, suggests that HPGs act preferentially on the growth of 

hydrates, rather than on their nucleation. 

 

3.3  Adsorption curves of HPGs on binder 

Fig. 4(a) shows the adsorption isotherms of the admixtures on Portland based-mortars. The results 

confirm the adsorption of original guar gum and HPGs on cementitious materials. It has been shown that 

the adsorption mechanism of galactomannose polysaccharides at solid–liquid interfaces involves strong 

hydrogen bonding (23). In the range of polymer dosage used in the study, no plateau was reached, and 

this, whatever the admixture. For the original guar gum (HPG 6), the adsorption is the highest of all the 

tested polymers and corresponds to a total adsorption higher than 98.5% of the introduced polymer. The 

presence of hydroxypropyl substitutions on the guar leads to a decrease in the affinity of the polymer with 

the binder since the adsorption of HPG 1 is lower by 35% than the original guar gum. Moreover, the 
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adsorption is further reduced by increasing values of MSHP (64% for HPG 3 compared to HPG 6). This 

tendency is consistent with previous studies on HPGs and cellulose ethers (9, 24). Fig. 3(a) highlights also 

the effect of the additional alkyl chain on the adsorption. It appears that the hydrophobic side chains 

slightly intensify the adsorption of the hydrophobically modified HPG on surface of grains with respect to 

HPG 3.  

From the TOC measurements, the real polymer concentration within the extracted pore solution was 

determined. Fig. 4(b) shows the evolution of this concentration versus the introduced polymer dosage. 

Excepted HPG 6, the amount of non-adsorbed polymer increases with increasing polymer dosage. 

According to the HPG, the concentration rises following this order: HPG 6 < HPG 1 < HPG 4 < HPG 3. 

 
Figure 4. Adsorption isotherms of HPGs 1, 3, 4 and original guar gum (HPG 6) (a) and 

concentration of HPGs in extracted mortar pore solution (b) 
 

3.4 Impact of HPGs on the rheological properties of fresh mortars 

Fig. 5(a) shows the evolution of the yield stress, extracted from Herschel-Bulkley model, for all the studied 

mortars with and without admixture. The mortar without admixture exhibits a yield stress value of around 

45 Pa. From the presented results, three different classes of HPG, inducing different evolution of the yield 

stress with the polymer dosage, can be highlighted for admixed mortars. The first category is only 

composed of the original guar gum (HPG 6), which induces a low and quasi linear decrease in the yield 

stress of mortar when HPG dosage increases. On the contrary, HPGs 1 and 3 lead to a continuous rise of 

the yield stress of mortars from 50-60 Pa to around 120 Pa with the increase in the HPG dosage from 

0.05% to 0.15%. Finally, HPG 4 constitutes the third class of admixture. The use of this admixture leads 

an improvement of the yield stress compared to the non-admixed mortar, whatever the dosages tested in 

the study. However, the increase is not proportional to the admixture dosage. Indeed, our first dosage 

(0.05% bwob) leads to an increase in the yield stress. Beyond this dosage, increasing the dosage 

provides a slow and low decrease, before reaching a plateau. The value of the yield stress reached on the 

plateau is still higher than that of the mortar without admixture. 

The evolution of the consistency coefficient (K from Herschel-Bulkley equation) during the increase of 

polymer dosage is presented Fig. 5(b). As in the case of the yield stress, the results can be divided into 

three classes of polymer. The first class is only composed of the original guar gum which provides a very 

low or negligible modification of the consistency coefficient with increasing polymer dosage compared to 

non-admixed mortar. HPGs 1 and 3, constituting the second group, induce first an increase followed by a 

plateau in the consistency coefficient. Finally, HPG 4 leads to a continuous increase in the consistency 

coefficient of admixed mortars. 

Fig. 5(c) shows the evolution of the fluidity index (n) versus the polymer dosage for all the studied mortars. 

It is worth to note that whatever the mortars, the values of the fluidity index are lower than 1, meaning that 

they are all shear thinning. Due to the high standard deviation, the value of the fluidity index of mortars 

admixed with HPGs 1 and 3 and 6 seem to be unchanged as the dosage of HPGs increase. However, 

HPG 4 leads to a low increase followed by a continuous decrease in the fluidity index until reaching values 

around 0.5. This means that the shear thinning behavior of mortars becomes more and more pronounced. 
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Figure 5. Impact of polymer dosage on yield stress (a), consistency coefficient (b) and fluidity  

index (c) of fresh admixed mortars (HPGs 1, 3, 4 and original guar gum (HPG 6)) 
 

4 Discussion 

The effect of the original guar gum (HPG 6) is negligible from the WR point of view. Since the adsorption 

is higher than 98.5% of the initial amount of polymer, very few molecules are still in the pore solution. The 

composition of pore solution is thus close to that of the non-admixed mortar, leading to similar WR.  

Concerning the hydroxypropyl guars, the results from WR experiments are consistent with those of 

previous studies performed with HPGs or CEs and with the proposed mechanism. Indeed, the WR of 

admixed mortars is mainly governed by the ability of polysaccharidic admixtures to form an associated 

polymer molecules network and to induce overlapping of polymer coils within the pore solution (10,25,26). 

When the polymer concentration in solution increases, the isolated polymer coils, existing at low 

concentration, begin to come into contact between them. This concentration is defined as the coil-overlap 

concentration (noted C*). Above this critical concentration, the polysaccharide aggregates stop the water 

flow by plugging the porous network of a thin polysaccharide-enriched filter cake at the interface mortar-

substrate resulting in a sudden and sharp rise in WR curves (10). The abrupt change in slope is reached 

for a decreasing polymer dosage from HPG 1 to HPG 3. The only difference between these HPGs is the 

increasing substitution degree. According to literature, the increase in MSHP does not lead to a change in 

C* (27). However, the increasing substitution degree leads to a decrease in polymer adsorption on mortar 

components and hence an increase in polymer amount in pore solution (Fig. 4). Consequently, the coil 

overlapping occurs at lower dosage. The results highlight furthermore the positive impact of additional 

alkyl chain on WR. The presence of additional alkyl chains (HPG 4), despite slightly higher adsorption 

than HPG 3, leads to the formation of polymer associates at lower polymer dosage. Indeed, the 

interconnection between alkyl chains creates intramolecular and intermolecular interactions through 

specific hydrophobic interactions which cause a decrease in the coil-overlapping concentration (28,29). 

Consequently, the abrupt change in slope is reached for a lower polymer dosage of HPG 4 than HPG 3. 

It is generally admitted that cement hydration delay induced by admixtures is due to adsorption of these 

molecules onto surfaces of the hydrating cement particles and/or surfaces of hydration products (30,31). 

Polysaccharides are molecules which contain a lot of polar functional groups (-OH). Therefore, strong 

interactions, through electrostatic forces and hydrogen-bonding, can occur between polysaccharides and 

the highly polar hydrated phases (31). This interpretation is consistent with our results, especially for 
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HPGs 1 and 3. Indeed, the increase in the MSHP leads to a decrease in the amount of free hydroxyl 

groups on the backbone chain and in the polarity of the molecule. Therefore a drop in both adsorption 

onto the surfaces and delay of the portlandite precipitation, is observed. However, in the case of HPG 4, 

and more especially for HPG 6, the adsorption of the admixture is higher than that of HPG 3 but the delay 

in the portlandite precipitation is lower. Therefore, a competitive adsorption of admixture could occur 

between the constituents of the binder, promoting adsorption onto non-reactive phases (dolomites and/or 

calcite). To answer to this question, the conductimetric analysis should be carried out only with cement. 

The rheological results (Fig. 5) highlight that HPGs 1 and 3, HPG 4 and HPG 6 behave quite differently. 

Indeed, HPGs 1 and 3 lead to a continuous increase in the yield stress, while HPG 4 modifies mainly the 

consistency coefficient and the fluidity index. HPGs 1 and 3 affect the rheological behavior of the admixed 

mortars in the same way, i.e. an increase in the yield stress, a low increase followed by a plateau in the 

consistency coefficient and a negligible modification of the fluidity index when the polymer dosage rises. 

Fig. 4(a) shows that HPGs adsorb onto particles constituting the mortar. Prima facie, this adsorption could 

be responsible for the increase in the yield stress because of bridging flocculation (24). However, despite 

a strong drop of the adsorption (50%) with the increase in the MSHP (from HPG 1 to 3) the yield stress also 

increases. This suggests that the non-adsorbed polymer may be responsible for the yield stress increase. 

The potential loss of bridging can be compensated by an increase in the pore solution viscosity induced 

by the rise in the polymer concentration and/or by the depletion flocculation induced by the non-adsorbed 

coils (32). Moreover, the presence of HPG coils within the pore solution leads to an increase in the 

consistency coefficient (K) compared to non-admixed mortars. However, the expected increase in K due 

to the rise of pore solution viscosity with the polymer dosage can be compensated by steric hindrance, 

leading to a plateau for K.  

Since the adsorption of original guar gum is higher than 98.5%, one expects to detect a very strong 

increase in the yield stress compared to non-admixed mortar. However, the rheological behavior of the 

admixed mortar with HPG 6 is very close to that of the non-admixed mortar. This result suggests that the 

entire molecule of HPG 6 could be mainly adsorbed onto the surface of only one particle, limiting therefore 

the bridging flocculation. Moreover, the adsorption of the guar molecule onto a single particle leads to an 

increase in both steric hindrance and dispersion effects, leading to a low but continuous decrease in the 

yield stress. For dosages higher than 0.1% bwob, the concentration in polymer coils into the pore solution 

begins to slightly increase, leading to the beginning of the increase in K and of the decrease in n. 

The additional alkyl chain also modifies the rheological properties of mortars. Contrary to HPG 3, HPG 4 

leads to a strong and continuous increase in the consistency coefficient and a decrease in the fluidity 

index. These results highlight that mortars become more and more shear-thinning since the fluidity index 

decreases from 0.8 to 0.5. This rheological behavior gets more pronounced as the HPG dosage 

increases. These results are consistent with the fact that the hydrophobically modified HPG leads to the 

formation of coil overlapping at lower HPG dosage (0.05% in this study) since the presence of additional 

alkyl chains enhances the entanglement. Above this dosage, entanglement occurs between polymer coils, 

inducing a shear thinning behavior to the solution. At low shear rate, the entanglement of polymer coils 

leads to a higher pore solution viscosity and thus higher mortar viscosity. When the shear rate increases, 

the polysaccharide chains align in the direction of the flow resulting in less and less effect on mortar 

fluidity. The shear thinning behavior of the solution, and thus of the mortars, amplify with the increasing 

polymer dosage. The yield stress is also impacted by the additional alkyl chain. Indeed, 0, of mortar 

admixed with HPG 4, increases for a dosage equal to 0.05% bwob then slowly decreases for dosages up 

to 0.075% bwob, before reaching a plateau for higher dosages. This result could be explained by a 

change in the HPG conformation due to the presence of additional alkyl chains. Indeed, as previously 

mentioned, alkyl chain creates intramolecular and intermolecular interactions through specific hydrophobic 

interactions. Intramolecular association of hydrophobic units tends to force the polymer chain into a more 

compact conformation (29,33). Moreover, the conformation of hydrophobically modified polymers in 

aqueous solution involves the presence of alkyl chains inside the coils in order to limit contacts between 

hydrophobic chains and water (29). Consequently, the hydrophilic groups, such as hydroxyl and 

hydroxypropyl, are preferentially on the outskirts of the coils, promoting the adsorption onto the surface of 

particles and therefore steric hindrance which implies a prevention of direct contacts between particles. 

Moreover, due to a more compact conformation and avoidance between water and hydrophobic units, the 

bridging ability of hydrophobically modified HPG should decrease. All these points should lead to a 

decrease in the yield stress. 



5. Conclusions 

In this paper, we studied the effect of several guar gum derivatives on water retention property and 

rheological behavior of mortars. Based upon the results, it was found that the original guar gum was totally 

adsorbed onto particle surface, leading to a negligible modification of WR and rheological behavior with 

respect to the non-admixed mortar. Depending of the chemical structure of HPGs, it is possible to promote 

the water retention according to two different ways. First, by increasing the MSHP of HPGs, the amount of 

adsorbed polymer drops, which leads to an increase in the HPG concentration within the pore solution 

and therefore to lower HPG dosage necessary to reach coil overlapping. Second, by enhancing 

overlapping, the hydrophobically modified HPGs improve the effectiveness of WR agent at low dosage. 

HPGs also modify the rheological behavior of the mortars. As in the case of WR, the hydrophobic 

characteristic of HPGs is the preponderant parameter. Indeed, it was shown that additional alkyl chain 

mainly leads to a more shear thinning behavior of the mortar and to a rise in the consistency coefficient, 

while classical HPGs strongly increases the yield stress. 
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