T. Belin and F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science and Engineering: B, vol.119, issue.2, pp.105-118, 2005.
DOI : 10.1016/j.mseb.2005.02.046

URL : https://hal.archives-ouvertes.fr/hal-00288405

L. Belyanskaya, P. Manser, P. Spohn, A. Bruinink, and P. Wick, The reliability and limits of the MTT reduction assay for carbon nanotubes???cell interaction, Carbon, vol.45, issue.13, 2007.
DOI : 10.1016/j.carbon.2007.08.010

D. M. Brown, I. A. Kinloch, U. Bangert, A. H. Windle, D. M. Walter et al., An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis, Carbon, vol.45, issue.9, pp.1743-1756, 2007.
DOI : 10.1016/j.carbon.2007.05.011

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne et al., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity, Carbon, vol.45, issue.7, pp.1425-1432, 2007.
DOI : 10.1016/j.carbon.2007.03.033

D. Giorgio, M. L. Bucchianico, S. D. Ragnelli, A. M. Aimola, P. Santucci et al., Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.722, issue.1, pp.20-31, 2011.
DOI : 10.1016/j.mrgentox.2011.02.008

K. Donaldson, F. A. Murphy, R. Duffin, and C. A. Poland, Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma, Particle and Fibre Toxicology, vol.7, issue.1, pp.10-1186, 2010.
DOI : 10.1186/1743-8977-7-5

P. Dong, B. Wan, and L. Guo, toxicity of acid-functionalized single-walled carbon nanotubes: Effects on murine macrophages and gene expression profiling, Nanotoxicology, vol.6, issue.3, pp.288-303, 2011.
DOI : 10.1021/nl073300o

M. C. Duch, S. Budinger, G. R. Liang, Y. T. Soberanes, S. Urich et al., Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung, Nano Letters, vol.11, issue.12, pp.5201-5207, 2011.
DOI : 10.1021/nl202515a

M. Dusinska, S. Boland, M. Saunders, L. Juillerat-jeanneret, L. Tran et al., Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST, Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST, pp.118-132, 2015.
DOI : 10.1021/nn200112u

I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca et al., Reactivity of carbon nanotubes: Free radical generation or scavenging activity?, Free Radical Biology and Medicine, vol.40, issue.7, pp.1227-1233, 2006.
DOI : 10.1016/j.freeradbiomed.2005.11.010

A. Figarol, J. Pourchez, D. Boudard, V. Forest, J. Tulliani et al., Biological response to purification and acid functionalization of carbon nanotubes, Journal of Nanoparticle Research, vol.219, issue.220, pp.1-12, 2014.
DOI : 10.1007/s11051-014-2507-y

URL : https://hal.archives-ouvertes.fr/emse-01109440

V. Forest, A. Figarol, D. Boudard, M. Cottier, P. Grosseau et al., Adsorption of Lactate Dehydrogenase Enzyme on Carbon Nanotubes: How to Get Accurate Results for the Cytotoxicity of These Nanomaterials, Langmuir, vol.31, issue.12, pp.3635-3643, 2015.
DOI : 10.1021/acs.langmuir.5b00631

A. Fraczek-szczypta, E. Menaszek, T. Syeda, A. Misra, M. Alavijeh et al., Effect of MWCNT surface and chemical modification on in vitro cellular response, Journal of Nanoparticle Research, vol.40, issue.10, pp.1-14, 2012.
DOI : 10.1007/s11051-012-1181-1

B. Fubini, G. Zanetti, S. Altilia, R. Tiozzo, D. Lison et al., Relationship between Surface Properties and Cellular Responses to Crystalline Silica:?? Studies with Heat-Treated Cristobalite, Chemical Research in Toxicology, vol.12, issue.8, pp.737-74510, 1021.
DOI : 10.1021/tx980261a

A. Galano, M. Francisco-marquez, and A. Martinez, Influence of Point Defects on the Free-Radical Scavenging Capability of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, issue.18, 2010.
DOI : 10.1021/jp101544u

C. Ge, Y. Li, J. Yin, Y. Liu, L. Wang et al., The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials, NPG Asia Materials, vol.4, issue.12, 2012.
DOI : 10.1002/jcp.10056

R. Guadagnini, B. Halamoda-kenzaoui, L. Walker, G. Pojana, Z. Magdolenova et al., tests, Nanotoxicology, vol.17, issue.1, 2015.
DOI : 10.1021/la904758j

R. F. Hamilton, Z. Wu, S. Mitra, P. K. Shaw, and A. Holian, Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology, Particle and Fibre Toxicology, vol.10, issue.1, pp.57-67, 2013.
DOI : 10.1186/1743-8977-10-57

H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, Nitric Acid Purification of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.107, issue.50, pp.13838-13842, 2003.
DOI : 10.1021/jp035719i

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Carbon Black, Titanium Dioxide, and Talc, pp.1339-1339, 1958.
DOI : 10.1021/ja01539a017

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, 1991.
DOI : 10.1038/354056a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

J. Kim, S. Kang, Y. Moon, J. Chae, A. Y. Lee et al., Physicochemical determinants of multi-walled carbon nanotubes on cellular toxicity: influence of synthetic method and post-treatment, 2014.

W. Leshuai and L. Z. Zhang, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes, Int. J. Toxicol, vol.26, pp.103-116, 2007.

I. Lynch and K. A. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, issue.1-2, pp.40-47, 2008.
DOI : 10.1016/S1748-0132(08)70014-8

L. Ma-hock, V. Strauss, S. Treumann, K. Kuettler, W. Wohlleben et al., Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black, Particle and Fibre Toxicology, vol.10, issue.1, pp.23-33, 2013.
DOI : 10.2307/2528490

A. Martinez, M. Francisco-marquez, and A. Galano, Effect of Different Functional Groups on the Free Radical Scavenging Capability of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, issue.35, pp.14734-14739, 2010.
DOI : 10.1021/jp1033382

N. A. Monteiro-riviere, A. O. Inman, and L. W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line, Toxicology and Applied Pharmacology, vol.234, issue.2, 2009.
DOI : 10.1016/j.taap.2008.09.030

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

G. Oberdörster, J. Ferin, R. Gelein, S. C. Soderholm, and J. Finkelstein, Role of the alveolar macrophage in lung injury: studies with ultrafine particles, Environmental Health Perspectives, vol.97, pp.193-199, 1992.
DOI : 10.1289/ehp.9297193

M. Pailleux, D. Boudard, J. Pourchez, V. Forest, P. Grosseau et al., New insight into artifactual phenomena during in vitro toxicity assessment of engineered nanoparticles: Study of TNF-?? adsorption on alumina oxide nanoparticle, Toxicology in Vitro, vol.27, issue.3, pp.1049-1056, 2013.
DOI : 10.1016/j.tiv.2013.01.022

URL : https://hal.archives-ouvertes.fr/hal-00799129

T. N. Perkins, A. Shukla, P. M. Peeters, J. L. Steinbacher, C. C. Landry et al., Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells, Particle and Fibre Toxicology, vol.9, issue.1, pp.1743-8977, 2012.
DOI : 10.1016/S0002-9440(10)61212-6

K. Pulskamp, S. Diabaté, and H. F. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicology Letters, vol.168, issue.1, 2007.
DOI : 10.1016/j.toxlet.2006.11.001

R. Rakotomalala, TANAGRA : un logiciel gratuit pour l'enseignement et la recherche, in: RNTI-E-3. Presented at the EGC, pp.697-702, 2005.

W. J. Sandberg, M. Låg, J. A. Holme, B. Friede, M. Gualtieri et al., Comparison of non-crystalline silica nanoparticles in IL-1?? release from macrophages, Particle and Fibre Toxicology, vol.9, issue.1, pp.32-42, 2012.
DOI : 10.1186/1743-8977-3-10

A. Sasidharan, L. S. Panchakarla, P. Chandran, D. Menon, S. Nair et al., Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene, Nanoscale, vol.5, issue.6, pp.2461-246410, 1039.
DOI : 10.1039/c1nr10172b

A. Sasidharan, L. S. Panchakarla, A. R. Sadanandan, A. Ashokan, P. Chandran et al., Hemocompatibility and Macrophage Response of Pristine and Functionalized Graphene, Small, vol.3, issue.8, pp.1251-1263, 2012.
DOI : 10.1002/smll.201102393

A. Schinwald, F. A. Murphy, A. Jones, W. Macnee, and K. Donaldson, Graphene-Based Nanoplatelets: A New Risk to the Respiratory System as a Consequence of Their Unusual Aerodynamic Properties, ACS Nano, vol.6, issue.1, pp.736-74610, 1021.
DOI : 10.1021/nn204229f

H. Tong, J. K. Mcgee, R. K. Saxena, U. P. Kodavanti, R. B. Devlin et al., Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice, Toxicology and Applied Pharmacology, vol.239, issue.3, pp.224-232, 2009.
DOI : 10.1016/j.taap.2009.05.019

C. Tran, R. Tantra, K. Donaldson, V. Stone, S. Hankin et al., A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN), Journal of Nanoparticle Research, vol.39, issue.1, pp.6683-6698, 2011.
DOI : 10.1007/s11051-011-0575-9

G. Vietti, S. Ibouraadaten, M. Palmai-pallag, Y. Yakoub, C. Bailly et al., Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay, Particle and Fibre Toxicology, vol.10, issue.1, pp.52-52, 2013.
DOI : 10.1093/chromsci/35.11.509

S. Wang, F. Tristan, D. Minami, T. Fujimori, R. Cruz-silva et al., Activation routes for high surface area graphene monoliths from graphene oxide colloids, Carbon, vol.76, pp.220-231, 2014.
DOI : 10.1016/j.carbon.2014.04.071

X. Wang, J. Guo, T. Chen, H. Nie, H. Wang et al., Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor, Toxicology in Vitro, vol.26, issue.6, 2012.
DOI : 10.1016/j.tiv.2012.05.010

X. Wang, T. Xia, S. A. Ntim, Z. Ji, S. George et al., Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells, ACS Nano, vol.4, issue.12, pp.7241-725210, 1021.
DOI : 10.1021/nn102112b

J. M. Wörle-knirsch, K. Pulskamp, and H. F. Krug, Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays, Nano Letters, vol.6, issue.6, pp.1261-1268, 2006.
DOI : 10.1021/nl060177c

J. Yuan, H. Gao, and C. B. Ching, Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC???MS/MS proteome analysis, Toxicology Letters, vol.207, issue.3, pp.213-221, 2011.
DOI : 10.1016/j.toxlet.2011.09.014

T. Zhang, M. Tang, L. Kong, H. Li, T. Zhang et al., Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages, Journal of Hazardous Materials, vol.219, issue.220, pp.219-220, 2012.
DOI : 10.1016/j.jhazmat.2012.03.079

Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li et al., Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells, ACS Nano, vol.4, issue.6, pp.3181-3186, 2010.
DOI : 10.1021/nn1007176