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In this paper, different texture descriptors are proposed for the automatic classification of skin lesions from dermoscopic images. They are based on color texture analysis obtained from (1) color mathematical morphology (MM) and Kohonen Self-Organizing Maps (SOM) or (2) Local Binary Patterns (LBPs), computed with the use of local adaptive neighborhoods of the image. Neither of these two approaches need a previous segmentation process. In the first proposed descriptor, the adaptive neighborhoods are used as structuring elements to carry out adaptive mathematical morphology operations which are further combined by using Kohonen SOM, and it has been compared with a non-adaptive version. In the second one, the adaptive neighborhoods enable geometrical feature maps to be defined, from which Local Binary Patterns (LBP) histograms are computed. Also, it has been compared with a classical LBP approach. A ROC analysis of the experimental results shows that the adaptive neighborhood-based LBP approach yields the best results. It outperforms the non-adaptive versions of the proposed descriptors and the dermatologists' visual predictions.

Introduction

In 2012 there were more than 11150 new cases of skin cancer in France (3.1% of all detected cancers), 15% of which were mortal. Late diagnosis of skin cancer makes treatments much less efficient (i.e. a melanoma may become very aggressive in just a few months). Therefore, its early detection becomes essential to improve the chances of curing the skin cancer and, thus, the patient's chances of survival. 1 This is not an easy task for a non-experienced observer, as it is shown in figure 1. To carry out the detection of melanoma, dermatologists use several state-of-the-art methods, often called rules, such as the ABCD rule [START_REF] Nachbar | The ABCD rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions[END_REF] (Asymmetry, Border irregularity, Color irregularity and Differential structure, i.e. the size and number of structural features) or the Menzies scoring namely the 7-point checklist, [START_REF] Johr | Dermoscopy: alternative melanocytic algorithms-the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist[END_REF] which are based on the presence of certain texture patterns. However, although dermatologists could use such kind of analytical pattern recognition rules to predict malignancy, they appear to use more a non-analytical reasoning, derived through experience of prior examples to identify skin lesions. [START_REF] Aldridge | Novice identification of melanoma: Not quite as straightforward as the abcds[END_REF] Some studies suggest that experienced clinicians make a diagnosis intuitively and then they alter their analytical assessment to fit in with their preconceptions about the relationship between these features (e.g., the ABCD) and the diagnosis (e.g., melanoma). [START_REF] Mclaughlin | Is analytic information processing a feature of expertise in medicine?[END_REF][START_REF] Norman | Building on experience the development of clinical reasoning[END_REF] An automation of individual analyses of nevi would be very helpful not only for dermatologists, as they would make more accurate diagnoses and thus make better decisions about the need of surgery, but also for general practitioners, who could make better decisions about sending patients to the specialist more appropriately. Therefore, it would save economic and time resources to the Social Security system. Automatic melanoma detection, based on the analysis of dermoscopy images, has been re-ceiving an increasing attention in the literature. [START_REF] Korotkov | Computerized analysis of pigmented skin lesions: A review[END_REF] Most works reproduce the classic rules used by dermatologists, extracting features linked to them. [START_REF] Tanaka | A study on the image diagnosis of melanoma[END_REF][START_REF] Tenenhaus | Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions[END_REF][START_REF] Isasi | Melanomas non-invasive diagnosis application based on the ABCD rule and pattern recognition image processing algorithms[END_REF][START_REF] Amelard | High-level intuitive features (HLIFs) for intuitive skin lesion description[END_REF] Others go beyond and combine them with other types of characteristics. For example, Rastgoo et al. combine them with bag of words (BoW) descriptors. [START_REF] Rastgoo | Automatic differentiation of melanoma from dysplastic nevi[END_REF] However, such kind of feature extraction methods need a previous segmentation of the lesion, which is often a very tricky step for computers, as it may not be clear, even for specialists, where the boundaries of the lesion are. Indeed, even trained dermatologists differ significantly when delineating the same lesion in separate incidents. [START_REF] Zortea | Automatic segmentation of dermoscopic images by iterative classification[END_REF] There are numerous papers devoted to automatic boundary detection of skin lesions. [START_REF] Glaister | Segmentation of skin lesions from digital images using joint statistical texture distinctiveness[END_REF][START_REF] Celebi | Lesion border detection in dermoscopy images[END_REF][START_REF] Erkol | Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes[END_REF] Other methods have been investigated in the literature where dermoscopic images do not need any segmentation process as proposed in, [START_REF] Wazaefi | Contribution of a classifier of skin lesions to the dermatologist's decision[END_REF] where a texture descriptor computed by means of the Local Binary Patterns [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF][START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF][START_REF] Pietikäinen | Computer Vision Using Local Binary Patterns[END_REF] (LBPs) is used. Nevertheless, only intensity information of the color components are taken into consideration.

In this paper some methods for discriminating automatically between melanoma and benign skin lesions from dermoscopic images with no need of segmentation are proposed. They are based on the General Adaptive Neighborhood Image Processing (GANIP) framework. [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF][START_REF] Pinoli | General adaptive neighborhood mathematical morphology[END_REF] The first one is based on a texture descriptor using color mathematical morphology (MM) [START_REF] González-Castro | Color Adaptive Neighborhood Mathematical Morphology and its application to pixel-level classification[END_REF] and Kohonen selforganizing maps. [START_REF] Kohonen | Self-Organizing Maps[END_REF] The second one is based on a combination of LBPs and local geometrical measurements. Specifically, the lesions are described by means of the LBPs calculated from maps created by means of geometrical features of the General Adaptive Neighborhoods (GANs) [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF] of pixels.

The rest of the paper is organized as follows: First of all, a detailed explanation of the required methods and tools, and how these are used to create the descriptors is given in sections 2 and 3, respectively. Afterwards, the performance of these descriptors is assessed on a real dataset of skin lesions, as stated in section 4. Finally, conclusions and future perspectives are shown in section 5.

The required methods and tools

General Adaptive Neighborhoods (GANs)

The GANIP approach [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF][START_REF] Pinoli | General adaptive neighborhood mathematical morphology[END_REF] provides a general framework for multiscale, local and adaptive image processing and analysis of gray-level images. It is based on extracting spatial neighborhoods called General Adaptive Neighborhoods (GANs) from the points of the image, whose size and shape are adapted to the local features of the image. Specifically, a GAN is a subset of the spatial support D ⊆ R 2 constituted by connected points whose values in relation to a selected criterion (luminance, contrast, etc.) fit within a homogeneity tolerance. As a result, GANs are adaptive with the spatial structures and self-defined from the image.

Let f be an image defined in D with range in R, and let h be a criterion mapping, also defined in D and valued in R, based on local measurements such as luminance, contrast, etc. For each point x ∈ D, the GANs (denoted V h m (x)) are subsets in D built upon h in relation to a homogeneity tolerance m ∈ R + . More precisely, V h m (x) fulfills two conditions: (i) its points are close to x in relation to the criterion mapping and (ii) the GAN is a path-connected set.

Thus, the GANs are formally defined as:

V h m (x) = C {y∈D: |h(y)-h(x)|≤m} (x), (1) 
where However, these GANs do not satisfy the symmetry property -which is relevant for visual, topological, morphological and practical reasons [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF] -, defined as:

C X (x) denotes the path connected component of X ⊆ D containing x ∈ D. Therefore, it is ensured that ∀x ∈ D x ∈ V h m (x).
∀ x, y ∈ D y ∈ A(x) ⇐⇒ x ∈ A(y), (2) 
where {A(x)} x∈D is a collection of subsets A(x) ⊆ D. For this reason, GANs defined in equation

(1) are called Weak General Adaptive Neighborhoods (W-GANs).

In order to get this property satisfied, a new set of GANs, called Strong General Adaptive Neighborhoods (S-GANs) is defined as:

N h m (x) = z∈D {V h m (z) : x ∈ V h m (z)}. (3) 
The reader interested in further theoretical aspects on GANs is referred to. [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF] 

Color Mathematical Morphology

Morphological operators 24 need the sets of the intensities to be processed to hold a total order relationship. However, in the case of color images this is not straightforward due to the vectorial nature of their points.

In the literature several order relationships have been proposed (i.e., marginal, lexicographical, partial or reduced ordering). In this work the so-called Ω-ordering -denoted as ≺ Ω -, proposed by Angulo, [START_REF] Angulo | Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis[END_REF] has been used:

c 1 ≺ Ω c 2 =                                d RGB (c 1 , c 0 ) > d RGB (c 2 , c 0 ) or d RGB (c 1 , c 0 ) = d RGB (c 2 , c 0 ) and                c R 1 < c R 2 or c R 1 = c R 2 and c G 1 < c G 2 or c R 1 = c R 2 and c G 1 = c G 2 and c B 1 < c B 2 (4) 
where

d RGB (c 1 , c 2 ) represents the distance between two points c 1 = (c R 1 , c G 1 , c B 1 ) and c 2 = (c R 2 , c G 2 , c B 2 )
in the color space RGB (see equation ( 5)) and c 0 stands for the reference color, which in this work has been set to c 0 = (255, 255, 255). Regarding the definition in equation ( 4), the reference color is an upper bound for the colors and, in the RGB color space, the intuitive "biggest color" is the white, i.e., (255, 255, 255). That is the reason why that choice for c 0 has been made. It is easy to prove that ≺ Ω is a total order relationship. This order can be used with any color space. More details about color ordering can be found in. 22

d RGB (c 1 , c 2 ) = (c R 1 -c R 2 ) 2 + (c G 1 -c G 2 ) 2 + (c B 1 -c B 2 ) 2 (5) 
Let x be a point of the spatial support D ⊆ R 2 , the resulting classical color erosion and dilation of an image f : D → R 3 at point x by means of a disk B r of radius r as structuring element (SE)

is given respectively by:

E r (f )(x) = inf Ω {f (w) : w ∈ B r (x)} (6) D r (f )(x) = sup Ω {f (w) : w ∈ Br (x)}, (7) 
where sup Ω and inf Ω stand for the supremum and infimum according to the total order relationship ≺ Ω . It is possible to define more advanced operators by combining dilations and erosions such as openings, closings, alternate filters, toggle contrast, top hat, etc.

Color Adaptive Neighborhoods (CANs) and Mathematical Morphology

The idea behind adaptive mathematical morphology is to replace the classical spatially invariant (i.e. with fixed shape and size) SE by spatially variant (i.e. adaptive) SEs. In this way, the Color Adaptive Neighborhoods (CANs) -an extension to color of the General Adaptive Neighborhoods (GANs) [START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part I: Introduction and Theoretical Aspects[END_REF][START_REF] Debayle | General Adaptive Neighborhood Image Processing: Part II: Practical Application Examples[END_REF] -, defined in, [START_REF] González-Castro | Color Adaptive Neighborhood Mathematical Morphology and its application to pixel-level classification[END_REF] can be used as adaptive structuring elements for color morphological operators. The Color Adaptive Neighborhood (CAN) of a point x, denoted V f m (x), is defined as a spatial region included in D built upon the color image f in relation with a homogeneity tolerance value m ∈ R + . More precisely, V f m (x) must fulfill the same conditions as the GANs (section 2.1), i.e., (i) its points must have a color value close to the one of x, and (ii) the set has to be path-connected, considering the usual Euclidean topology on D ⊆ R 2 .

Therefore, CANs are formally defined as:

V f m (x) = C {y∈D; d RGB (f (y),f (x))≤m} (x), (8) 
where C X (x) denotes the path-connected component of X which contains x ∈ D, and d RGB (f (y), f (x))

stands for the distance between the color points f (y) and f (x) in the color space RGB.

However, if they were used directly as Adaptive Structuring Elements (ASEs), the symmetry property, i.e. x ∈ V f m (y) ⇐⇒ y ∈ V f m (x) may not be satisfied. Therefore, the so-called Strong

Color Adaptive Neighborhoods (S-CANs) are used as ASEs:

N f m (x) = z∈D {V f m (z)| x ∈ V f m (z)} (9) 
Thus, the elementary adaptive morphological operators of erosion and dilation are defined respectively as:

E m (f )(x) = inf Ω {f (w) : w ∈ N f m (x)} (10) 
D m (f )(x) = sup Ω {f (w) : w ∈ N f m (x))} (11) 

GAN-based Minkowski functionals

Integral geometry provides a suitable family of geometrical and topological descriptors of 2-D and 3-D spatial patterns, known as Minkowski functionals. [START_REF] Michielsen | Integral-geometry morphological image analysis[END_REF] In 2-D, there are three Minkowski functionals: area, perimeter and Euler number, denoted respectively A, P and χ.

These functionals are defined on the class of nonempty compact convex sets in R 2 . They have been extended to the convex ring, [START_REF] Mecke | Statistical Physics and Spatial Statistics[END_REF] i.e. the set of all finite unions of convex bodies, which may be considered as a realistic Euclidean model for digital images. In this paper, the densities of these functionals are used (i.e. the functionals are normalized by the area of the spatial support D). The densities of the area, perimeter and Euler number are denoted A A , P A and χ A , respectively.

The GAN-based Minkowski maps [START_REF] Rivollier | Integral geometry and general adaptive neighborhood for multiscale image analysis[END_REF] are defined by assigning to each point x ∈ D the Minkowski density functional of its GAN V h m (x). More explicitly, the GAN-based Minkowski map of a graylevel image, denoted by µ h m , is defined by:

µ h m (x) = µ(V h m (x)), (12) 
where µ denotes a Minkowski density functional (i.e. µ ≡ A A , µ ≡ P A or µ ≡ χ A ). 

Local Binary Patterns

Local Binary Patterns (LBP) were introduced by Ojala et al. [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF] This original version worked in a 3 × 3 pixel block of an image, and was later generalized [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] to remove any limitations on size of the neighbor or the number of sampling points. LBP is a grey level texture descriptor that extracts the local spatial structure of an image. Given a pixel, a pattern code is computed by comparing it with the value of its neighbors, as stated in equation (13).

LBP P,R (x c , y c ) = P -1 p=0 s(g p -g c )2 p , (13) 
where g c is the value of the central pixel (x c , y c ), g p is the value of its p th neighbor, P is the number of neighbors and R is the radius of the neighborhood. The functions(z) is defined as:

s(z) =        1, z ≥ 0 0, z < 0 (14) 
Finally, the whole image is described by means of a histogram of LBP values of all pixels.

The proposed descriptors

In this work we propose two texture descriptors of the color images: the first one is based on color mathematical morphology and Self-Organising Maps, and the other one is based on Local Binary Patterns computed on the GAN-Minkowski maps of the R, G and B components of the images.

CANMM-based descriptor

The first Color Adaptive Neighborhood Mathematical Morphology (CANMM)-based descriptor is computed in two steps. First of all, the images are described locally, based on the chromatic information of each point in several successive dilations and erosions. Afterwards, these local descriptors are used to describe the image globally by means of a Self-Organizing Map. [START_REF] Kohonen | Self-Organizing Maps[END_REF] 

Pixel-level description

The descriptors of each pixel consist on a concatenation of (i) its color components in the original image and (ii) the color components of the same point in multiscale dilations and erosions (i.e., using structuring elements of different sizes p i ). For classical (resp. adaptive) mathematical morphology, p i denotes the radius (resp. homogeneity tolerance) of the SE (resp. adaptive structuring element).

Therefore, the general expression (i.e. for either classical or adaptive mathematical morphology) of the descriptor of each pixel x ∈ D is:

X n (x) = [E pn (f )(x), ..., E p 1 (f )(x), f (x), D p 1 (f )(x), ..., D pn (f )(x)] (15) 
where n stands for the number of erosions and dilations which are carried out, f (x) represents the values of the color components of the image f at x and E p i (f )(x) (resp. D p i (f )(x)) represents the values of the color components at x of the erosions (resp. dilations) of f with a structuring element with size or tolerance p i . Figure 4 shows an illustration of such concatenation. 

Global image descriptor

Once the pixels of an image are described, a global descriptor of that image is built. This is done by means of a Kohonen Self-Organising Map. [START_REF] Kohonen | Self-Organizing Maps[END_REF] This map has been generated by means of 20 images selected by experts (i.e., 10 representative images of each class), from which the lesions were roughly segmented manually. Thereafter, the map was generated in a training step using the pixels of the lesions and 5% of the other pixels (randomly selected). Note that this segmentation is only used for these 20 training images.

Afterwards, the pixels of the image are projected onto the neurons of the map in order to cluster them. Finally, the final image descriptor is the histogram of the hits of the neurons, i.e. the number of pixels that have been projected on each neuron of the map.

A diagram showing the description process is shown in figure 5. 

GAN-Minkowski LBP descriptor

The proposed texture descriptor based on LBP is built in two steps.

First of all, the GAN-based Minkowski map µ h m of the different color components R, G and B of the original color image is computed. Thereafter, the LBP P,R operator (eq. 7) of each of these maps is computed, and the three histograms are concatenated. A graphic description of this process is shown in figure 6. 4 Experiments and results

Experiments

Image database

The image dataset that has been used in this experiment was composed of 1097 dermoscopic images of pigmented skin lesions, 88 of them being histopathologically confirmed melanomas.

Thus, two classes were considered in this experiment: on the one hand confirmed melanomas and on the other hand the remaining benign lesions.

All images were acquired by several dermatologists equipped with a digital camera (SONY W120) combined with a Heine Delta 20 dermoscope. After the acquisition was carried out, the images were normalized so that they have the same pixel size.

Image descriptors

Three different experiments have been done in this work, using either the CANMM-based descriptor (section 3.1), the GAN-Minkowski LBP descriptor (section 3.2) or a combination of both.

First of all, concerning the descriptor based on color mathematical morphology, the local pixel descriptor described in section 3.1.1 has been computed using (i) the adaptive CAN-based erosions and dilations and (ii) classical (i.e. non adaptive) erosions and dilations, for the sake of comparison.

In this case, a square-shaped structuring element has been used, with width sizes varying between 5 and 50 in steps of 5. In the case of the adaptive CAN-based erosions and dilations, the values for the tolerance m varied from 5 to 50 in steps of 5. Therefore, in both cases 10 different erosions and dilations were carried out, so each pixel was described by means of 63 features (i.e. the RGB components of the pixel in the original image and its components after the erosions and dilations). After that, the LBP P,R was computed from each of these three Area maps. The number of samples P was fixed to 8, but different possible values for the radius R were assessed (specifically, they varied from 1 to 6). Thus, the LBP histogram of each component has a length of 256. The final descriptor is a concatenation of the three LBP histograms (i.e. the final descriptor has 768 features).

For the sake of comparison, other descriptor where the LBP P,R operator was computed directly on the intensities of the color components R, G and B has been assessed.

Finally, a concatenation of these two proposed descriptors has been considered, both the adaptive (i.e., the CANMM-based concatenated with the GAN-Minkowski LBP descriptors) and the classic versions (i.e., the first descriptor computed with non-adaptive mathematical morphology concatenated with the LBP P,R of the intensities of the color components R, G and B). Therefore, this combined descriptor has 1168 features per image.

Classification

Images were subsequently classified by means of a feed-forward Artificial Neural Network (ANN)

working on their feature vectors. The data were normalized before classification, so that they had mean zero and standard deviation one. In this experiment a network with one hidden layer and a logistic sigmoid activation function for the hidden and output layers have been employed. The learning of the network was carried out with the momentum and adaptive learning rate algorithm.

Different combinations of training cycles and neurons in the hidden layer have been used, in order to assess the impact of this configuration on the results.

The classification was carried out using stratified 10-fold cross validation, and the process was repeated 10 times, in order to avoid possible random effects (e.g. due to the random initialization of the network) and over-fitting. The presented results are an average of these 10 runs.

Results

It is necessary to remark that no pre-processing of the data was done in order to prevent the bias of the classifier towards the majority class. However, as the dataset is highly imbalanced towards the the performance of a classifier than the accuracy of the classification. [START_REF] Fawcett | An introduction to ROC analysis[END_REF] It is also widely used in visualizing and analyzing the behavior of diagnostic systems. It summarizes the classifier performance over a range of tradeoffs (i.e., decision thresholds) between benefits (i.e., true positives or sensitivity) and costs (i.e., false positives or 1-specificity). [START_REF] Chawla | Data mining for imbalanced datasets: An overview[END_REF] More details about ROC curves can be found in. [START_REF] Fawcett | An introduction to ROC analysis[END_REF] A measure that summarizes how good this curve is is the area under the ROC curve (AUC). In the case of the descriptors based on mathematical morphology, the neural network configurations (i.e. neurons in the hidden layer and training cycles) that achieved the best results were 300 cycles and 7 neurons, and 400 cycles and 9 neurons for the classical and adaptive approaches with AUCs of 0.859 and 0.854, respectively. In addition, tables 1 Figure 7 depicts the ROC curves of these classifiers along with a mean ROC curve estimated in [START_REF] Wazaefi | Contribution of a classifier of skin lesions to the dermatologist's decision[END_REF] from the predictions carried out by nine dermatologists with this same image dataset. The AUC of of this curve is 0.792. Other works that deal with the problem of melanoma detection in the literature report similar sensitivities and higher specificities than the ones achieved in this work. For example, Tenenhaus et al. [START_REF] Tenenhaus | Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions[END_REF] reported a sensitivity of 95% and a specificity of 60%, although the overall AUC that their classifier achieved was 0.84. Amelard et al. [START_REF] Amelard | High-level intuitive features (HLIFs) for intuitive skin lesion description[END_REF] is more important, the dataset is highly imbalanced -only 8% of the images are melanoma -, while in the case of these works the datasets are either balanced or the proportion of melanoma is 30%. By the way, Wazaefi et al. [START_REF] Wazaefi | Contribution of a classifier of skin lesions to the dermatologist's decision[END_REF] did use the same dataset that was used in this paper, and their classifier achieved an AUC of 0.885. Anyway, as Koratov and García pointed out, [START_REF] Korotkov | Computerized analysis of pigmented skin lesions: A review[END_REF] the absence of benchmark datasets for standardized algorithm evaluation makes difficult to compared different works.

Results with combined descriptors

The concatenation of both the "adaptive" and "classical" (i.e. non adaptive) descriptors were classified following the same experimental configuration as the proposed ones.

As done in previous section, tables 4 and 3 show the AUC in the best classification scenario achieved by the concatenated descriptors in their adaptive and non adaptive versions, respectively, depending on the different assessed values of R. Once again, the highest AUC is shown in bold.

It is remarkable than the non adaptive version of these concatenated descriptors performs better than the adaptive one. A possible explanation is that, although the adaptive version of LBP shows better performance than the "classic" one (AUCs 0.9115 against 0.8948), the non-adaptive MM- Processing high dimensional data is computationally expensive and, due to possible correlations in the data (e.g. the colors of some dilations and erosions might be similar), it is also inefficient. Therefore, a dimensionality reduction using Principal Component Analysis 32 (PCA) has been carried out, with a number of principal components up to 20 (more than 10 were enough in all cases to explain more than 99% of the variance of the dataset. However, the results using these "reduced" data were worse than the "non reduced" version. and the radius R varied, being the best results achieved for R = 6. This GAN approach achieved an AUC of 0.912, while the classical approach achieved an AUC of 0.895. The descriptors based on mathematical morphology achieved similar performances, getting AUCs of 0.859 and 0.854 in the case of the non-adaptive and adaptive approaches, respectively. Any of these descriptors outperformed the dermatologists' predictions on the same image dataset, which obtained an average ROC curve with an AUC of 0.792. [START_REF] Wazaefi | Contribution of a classifier of skin lesions to the dermatologist's decision[END_REF] For future work, other GAN-based geometrical and/or morphometrical features [START_REF] Rivollier | Adaptive shape diagrams for multiscale morphometrical image analysis[END_REF] applied to this problem will be investigated.
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 1 Fig 1 Example of an image of a benign lesion (a) and a melanoma (b).

Figure 2

 2 Figure2shows the GAN computed for one pixel of a dermoscopic color image using the

Fig 2

 2 Fig 2 The GAN (b) of one pixel (a) of a dermoscopic image computed on the red color component, using the luminance criterion with the homogeneity tolerance value m = 20.

Figure 3

 3 Figure 3 shows an example of GAN-based Minkowski map of an image using the area as

Fig 3

 3 Fig 3 The GAN-based area map (b) of the green component (a) of a dermoscopic image computed with the luminance criterion and the homogeneity tolerance value m = 20.

Fig 4

 4 Fig 4 Illustration of the concatenation of color components to form the pixel descriptor using color adaptive mathematical morphology.

Fig 5

 5 Fig 5 Diagram of the image description process.

Fig 6

 6 Fig 6 Image description process.

Afterwards, a Kohonen map of size 20 ×

 20 20 was used as explained in section 3.1.2. Therefore, each image has been described by means of a feature vector of 400 elements. Considering the descriptor based on the LBP of the CAN-based Minkowski maps, as it was explained in section 3.2, each of the color components R, G and B of the images of skin lesions has been considered as a grey-level image. First of all, the GAN-based Minkowski map Area with tolerance 20 was computed from each of them (i.e. A R 20 , A G 20 and A B 20 ). The other two Minkowski functionals P and χ, as well as different tolerances m were assessed, but they yielded worse results.

  and 2 show the AUC in the best classification scenario (i.e. the best configuration of the neural network) achieved by the descriptors based on the LBP computed directly on the intensities of the color components and computed on the GAN-Area maps, respectively, depending on the different assessed values of R. The highest AUC is shown in bold.

Fig 7 ROC

 7 Fig 7 ROC Curves of the classifiers generated by means of the Classic Mathematical Morphology, CAN-based Mathematical Morphology, "classical" and GAN-Area-based LBP, together with the mean ROC curve observed for the dermatologists.

5

  Conclusions and future perspectives In this work, two texture descriptors has been introduced and applied to the description and classification of images of naevi as benign lesions or melanoma. The first one is built from the local color data of each pixel, obtained from mathematical morphology operations. It is afterwards used to describe the image globally, by means of Kohonen Self-Organizing Maps. Two approaches of this descriptor has been assessed: (i) the local data has been obtained using the classic (i.e. non adaptive) color mathematical morphology operations and (ii) getting this local data by means of adaptive color mathematical morphology based on the CAN framework. The second descriptor is computed from LBP and local geometrical features (the Minkowski functionals) computed from the GANs of each color component of the image. Its performance has been compared with the classical LBP computed from the intensities of each color component. The best performance has been obtained by the GAN-Minkowski based LBPs, using the area and a tolerance for the GANs equals to 20. The number of samples of the LBPs was fixed to 8

Table 1

 1 AUC of the best combination cycles-neurons in the ANN for the descriptors based on the "classical" LBP.

	R Num. neurons Num. cycles AUC
	1	10	300	0.8726
	2	7	300	0.8948
	3	7	400	0.8934
	4	5	500	0.8946
	5	7	400	0.8895
	6	10	400	0.8898
	benign lesion class, the receiver operating characteristics (ROC) curve is more suitable to illustrate

Table 2

 2 AUC of the best combination cycles-neurons in the ANN for the descriptors based on the GAN-Area-based LBP.

	R Num. neurons Num. cycles AUC
	1	10	500	0.8547
	2	10	500	0.8780
	3	10	500	0.8934
	4	7	300	0.8976
	5	10	500	0.9052
	6	10	500	0.9115

  obtained a sensitivity and a specificity of 92.52% and 73.45%, respectively and Rastgoo et al.[START_REF] Rastgoo | Automatic differentiation of melanoma from dysplastic nevi[END_REF] 98% and 70% of sensitivity and specificity. However, let us remember that in this case previous segmentation of the lesions is not carried out and, what

Table 3

 3 AUC of the best combination cycles-neurons in the ANN for the adaptive concatenated descriptors.

	R Num. neurons Num. cycles AUC
	1	7	300	0.8604
	2	5	300	0.8660
	3	5	300	0.8699
	4	5	300	0.8729
	5	5	400	0.8799
	6	5	300	0.8771

Table 4

 4 AUC of the best combination cycles-neurons in the ANN for the "classical" concatenated descriptors.

	R Num. neurons Num. cycles AUC
	1	5	300	0.8790
	2	7	300	0.8928
	3	10	300	0.8946
	4	5	300	0.8968
	5	5	300	0.8877
	6	10	300	0.8865
	based descriptors slightly outperformed the adaptive one (0.859 and 0.854, respectively). Conse-

quently, it seems that the MM-based descriptor has more weight for the classifier. Anyway, both versions of the concatenated descriptors obtained better results than the dermatologists, the mathematical morphology based descriptors (both the adaptive and non adaptive) and the "classical" LBP-based descriptors. Still they do not outperform the adaptive LBP-based descriptors
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