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Abstract. In this paper, different texture descriptors are proposed for the automatic classification of skin lesions from
dermoscopic images. They are based on color texture analysis obtained from (1) color mathematical morphology
(MM) and Kohonen Self-Organizing Maps (SOM) or (2) Local Binary Patterns (LBPs), computed with the use of
local adaptive neighborhoods of the image. Neither of these two approaches need a previous segmentation process.
In the first proposed descriptor, the adaptive neighborhoods are used as structuring elements to carry out adaptive
mathematical morphology operations which are further combined by using Kohonen SOM, and it has been compared
with a non-adaptive version. In the second one, the adaptive neighborhoods enable geometrical feature maps to be
defined, from which Local Binary Patterns (LBP) histograms are computed. Also, it has been compared with a classical
LBP approach. A ROC analysis of the experimental results shows that the adaptive neighborhood-based LBP approach
yields the best results. It outperforms the non-adaptive versions of the proposed descriptors and the dermatologists’
visual predictions.
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CNRS 5307, Street 158, Cours Fauriel, CS 62362, 42023 Saint-Étienne, France; Tel: +33 (0)4 77 42 02 19; E-mail:
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1 Introduction

In 2012 there were more than 11150 new cases of skin cancer in France (3.1% of all detected

cancers), 15% of which were mortal. Late diagnosis of skin cancer makes treatments much less

efficient (i.e. a melanoma may become very aggressive in just a few months). Therefore, its early

detection becomes essential to improve the chances of curing the skin cancer and, thus, the patient’s

chances of survival.
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This is not an easy task for a non-experienced observer, as it is shown in figure 1. To carry

out the detection of melanoma, dermatologists use several state-of-the-art methods, often called

rules, such as the ABCD rule1 (Asymmetry, Border irregularity, Color irregularity and Differen-

tial structure, i.e. the size and number of structural features) or the Menzies scoring namely the

7-point checklist,2 which are based on the presence of certain texture patterns. However, although

dermatologists could use such kind of analytical pattern recognition rules to predict malignancy,

they appear to use more a non-analytical reasoning, derived through experience of prior examples

to identify skin lesions.3 Some studies suggest that experienced clinicians make a diagnosis in-

tuitively and then they alter their analytical assessment to fit in with their preconceptions about

the relationship between these features (e.g., the ABCD) and the diagnosis (e.g., melanoma).4, 5

An automation of individual analyses of nevi would be very helpful not only for dermatologists,

as they would make more accurate diagnoses and thus make better decisions about the need of

surgery, but also for general practitioners, who could make better decisions about sending patients

to the specialist more appropriately. Therefore, it would save economic and time resources to the

Social Security system.

Fig 1 Example of an image of a benign lesion (a) and a melanoma (b).

Automatic melanoma detection, based on the analysis of dermoscopy images, has been re-
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ceiving an increasing attention in the literature.6 Most works reproduce the classic rules used by

dermatologists, extracting features linked to them.7–10 Others go beyond and combine them with

other types of characteristics. For example, Rastgoo et al. combine them with bag of words (BoW)

descriptors.11 However, such kind of feature extraction methods need a previous segmentation of

the lesion, which is often a very tricky step for computers, as it may not be clear, even for special-

ists, where the boundaries of the lesion are. Indeed, even trained dermatologists differ significantly

when delineating the same lesion in separate incidents.12 There are numerous papers devoted to

automatic boundary detection of skin lesions.13–15 Other methods have been investigated in the lit-

erature where dermoscopic images do not need any segmentation process as proposed in,16 where

a texture descriptor computed by means of the Local Binary Patterns17–19 (LBPs) is used. Never-

theless, only intensity information of the color components are taken into consideration.

In this paper some methods for discriminating automatically between melanoma and benign

skin lesions from dermoscopic images with no need of segmentation are proposed. They are based

on the General Adaptive Neighborhood Image Processing (GANIP) framework.20, 21 The first one

is based on a texture descriptor using color mathematical morphology (MM)22 and Kohonen self-

organizing maps.23 The second one is based on a combination of LBPs and local geometrical

measurements. Specifically, the lesions are described by means of the LBPs calculated from maps

created by means of geometrical features of the General Adaptive Neighborhoods (GANs)20 of

pixels.

The rest of the paper is organized as follows: First of all, a detailed explanation of the required

methods and tools, and how these are used to create the descriptors is given in sections 2 and 3,

respectively. Afterwards, the performance of these descriptors is assessed on a real dataset of skin

lesions, as stated in section 4. Finally, conclusions and future perspectives are shown in section 5.
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2 The required methods and tools

2.1 General Adaptive Neighborhoods (GANs)

The GANIP approach20, 21 provides a general framework for multiscale, local and adaptive image

processing and analysis of gray-level images. It is based on extracting spatial neighborhoods called

General Adaptive Neighborhoods (GANs) from the points of the image, whose size and shape

are adapted to the local features of the image. Specifically, a GAN is a subset of the spatial

support D ⊆ R2 constituted by connected points whose values in relation to a selected criterion

(luminance, contrast, etc.) fit within a homogeneity tolerance. As a result, GANs are adaptive with

the spatial structures and self-defined from the image.

Let f be an image defined inD with range in R, and let h be a criterion mapping, also defined in

D and valued in R, based on local measurements such as luminance, contrast, etc. For each point

x ∈ D, the GANs (denoted V h
m(x)) are subsets in D built upon h in relation to a homogeneity

tolerance m ∈ R+. More precisely, V h
m(x) fulfills two conditions: (i) its points are close to x in

relation to the criterion mapping and (ii) the GAN is a path-connected set.

Thus, the GANs are formally defined as:

V h
m(x) = C{y∈D: |h(y)−h(x)|≤m}(x), (1)

where CX(x) denotes the path connected component of X ⊆ D containing x ∈ D. Therefore, it

is ensured that ∀x ∈ D x ∈ V h
m(x).

Figure 2 shows the GAN computed for one pixel of a dermoscopic color image using the

luminance criterion of the red color component and the homogeneity tolerance m = 20.
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Fig 2 The GAN (b) of one pixel (a) of a dermoscopic image computed on the red color component, using the luminance
criterion with the homogeneity tolerance value m = 20.

However, these GANs do not satisfy the symmetry property – which is relevant for visual,

topological, morphological and practical reasons20 –, defined as:

∀ x, y ∈ D y ∈ A(x) ⇐⇒ x ∈ A(y), (2)

where {A(x)}x∈D is a collection of subsets A(x) ⊆ D. For this reason, GANs defined in equation

(1) are called Weak General Adaptive Neighborhoods (W-GANs).

In order to get this property satisfied, a new set of GANs, called Strong General Adaptive

Neighborhoods (S-GANs) is defined as:

Nh
m(x) =

⋃
z∈D

{V h
m(z) : x ∈ V h

m(z)}. (3)

The reader interested in further theoretical aspects on GANs is referred to.20

2.2 Color Mathematical Morphology

Morphological operators24 need the sets of the intensities to be processed to hold a total order

relationship. However, in the case of color images this is not straightforward due to the vectorial
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nature of their points.

In the literature several order relationships have been proposed (i.e., marginal, lexicographical,

partial or reduced ordering). In this work the so-called Ω-ordering – denoted as≺Ω –, proposed by

Angulo,25 has been used:

c1 ≺Ω c2 =



dRGB(c1, c0) > dRGB(c2, c0) or

dRGB(c1, c0) = dRGB(c2, c0) and
cR1 < cR2 or

cR1 = cR2 and cG1 < cG2 or

cR1 = cR2 and cG1 = cG2 and cB1 < cB2

(4)

where dRGB(c1, c2) represents the distance between two points c1 = (cR1 , c
G
1 , c

B
1 ) and c2 = (cR2 , c

G
2 , c

B
2 )

in the color space RGB (see equation (5)) and c0 stands for the reference color, which in this work

has been set to c0 = (255, 255, 255). Regarding the definition in equation (4), the reference color

is an upper bound for the colors and, in the RGB color space, the intuitive “biggest color” is the

white, i.e., (255, 255, 255). That is the reason why that choice for c0 has been made. It is easy

to prove that ≺Ω is a total order relationship. This order can be used with any color space. More

details about color ordering can be found in.22

dRGB(c1, c2) =
√

(cR1 − cR2 )2 + (cG1 − cG2 )2 + (cB1 − cB2 )2 (5)

Let x be a point of the spatial supportD ⊆ R2, the resulting classical color erosion and dilation

of an image f : D → R3 at point x by means of a disk Br of radius r as structuring element (SE)

is given respectively by:
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Er(f)(x) = inf
Ω
{f(w) : w ∈ Br(x)} (6)

Dr(f)(x) = sup
Ω
{f(w) : w ∈ B̌r(x)}, (7)

where supΩ and infΩ stand for the supremum and infimum according to the total order relationship

≺Ω. It is possible to define more advanced operators by combining dilations and erosions such as

openings, closings, alternate filters, toggle contrast, top hat, etc.

2.3 Color Adaptive Neighborhoods (CANs) and Mathematical Morphology

The idea behind adaptive mathematical morphology is to replace the classical spatially invariant

(i.e. with fixed shape and size) SE by spatially variant (i.e. adaptive) SEs. In this way, the Color

Adaptive Neighborhoods (CANs) – an extension to color of the General Adaptive Neighborhoods

(GANs)20, 26 –, defined in,22 can be used as adaptive structuring elements for color morphological

operators. The Color Adaptive Neighborhood (CAN) of a point x, denoted V f
m(x), is defined as a

spatial region included in D built upon the color image f in relation with a homogeneity tolerance

value m ∈ R+. More precisely, V f
m(x) must fulfill the same conditions as the GANs (section

2.1), i.e., (i) its points must have a color value close to the one of x, and (ii) the set has to be

path-connected, considering the usual Euclidean topology on D ⊆ R2.

Therefore, CANs are formally defined as:

V f
m(x) = C{y∈D; dRGB(f(y),f(x))≤m}(x), (8)

whereCX(x) denotes the path-connected component ofX which contains x ∈ D, and dRGB(f(y), f(x))

stands for the distance between the color points f(y) and f(x) in the color space RGB.
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However, if they were used directly as Adaptive Structuring Elements (ASEs), the symmetry

property, i.e. x ∈ V f
m(y) ⇐⇒ y ∈ V f

m(x) may not be satisfied. Therefore, the so-called Strong

Color Adaptive Neighborhoods (S-CANs) are used as ASEs:

N f
m(x) =

⋃
z∈D

{V f
m(z)| x ∈ V f

m(z)} (9)

Thus, the elementary adaptive morphological operators of erosion and dilation are defined

respectively as:

Em(f)(x) = inf
Ω
{f(w) : w ∈ N f

m(x)} (10)

Dm(f)(x) = sup
Ω
{f(w) : w ∈ N f

m(x))} (11)

2.4 GAN-based Minkowski functionals

Integral geometry provides a suitable family of geometrical and topological descriptors of 2-D

and 3-D spatial patterns, known as Minkowski functionals.27 In 2-D, there are three Minkowski

functionals: area, perimeter and Euler number, denoted respectively A, P and χ.

These functionals are defined on the class of nonempty compact convex sets in R2. They have

been extended to the convex ring,28 i.e. the set of all finite unions of convex bodies, which may be

considered as a realistic Euclidean model for digital images. In this paper, the densities of these

functionals are used (i.e. the functionals are normalized by the area of the spatial support D). The

densities of the area, perimeter and Euler number are denoted AA, PA and χA, respectively.
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The GAN-based Minkowski maps29 are defined by assigning to each point x ∈ D the Minkowski

density functional of its GAN V h
m(x). More explicitly, the GAN-based Minkowski map of a gray-

level image, denoted by µh
m, is defined by:

µh
m(x) = µ(V h

m(x)), (12)

where µ denotes a Minkowski density functional (i.e. µ ≡ AA, µ ≡ PA or µ ≡ χA).

Figure 3 shows an example of GAN-based Minkowski map of an image using the area as

functional. The GANs are homogeneous with respect to the luminance of the blue color component

using the tolerance m = 20. Therefore, the value at each point x of the Minkowski map is the area

of the GAN V h
20(x).

Fig 3 The GAN-based area map (b) of the green component (a) of a dermoscopic image computed with the luminance
criterion and the homogeneity tolerance value m = 20.

2.5 Local Binary Patterns

Local Binary Patterns (LBP) were introduced by Ojala et al.17 This original version worked in a

3× 3 pixel block of an image, and was later generalized18 to remove any limitations on size of the

neighbor or the number of sampling points. LBP is a grey level texture descriptor that extracts the
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local spatial structure of an image. Given a pixel, a pattern code is computed by comparing it with

the value of its neighbors, as stated in equation (13).

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2p, (13)

where gc is the value of the central pixel (xc, yc), gp is the value of its pth neighbor, P is the number

of neighbors and R is the radius of the neighborhood. The functions(z) is defined as:

s(z) =


1, z ≥ 0

0, z < 0

(14)

Finally, the whole image is described by means of a histogram of LBP values of all pixels.

3 The proposed descriptors

In this work we propose two texture descriptors of the color images: the first one is based on color

mathematical morphology and Self-Organising Maps, and the other one is based on Local Binary

Patterns computed on the GAN-Minkowski maps of the R, G and B components of the images.

3.1 CANMM-based descriptor

The first Color Adaptive Neighborhood Mathematical Morphology (CANMM)-based descriptor

is computed in two steps. First of all, the images are described locally, based on the chromatic

information of each point in several successive dilations and erosions. Afterwards, these local

descriptors are used to describe the image globally by means of a Self-Organizing Map.23
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3.1.1 Pixel-level description

The descriptors of each pixel consist on a concatenation of (i) its color components in the original

image and (ii) the color components of the same point in multiscale dilations and erosions (i.e.,

using structuring elements of different sizes pi). For classical (resp. adaptive) mathematical mor-

phology, pi denotes the radius (resp. homogeneity tolerance) of the SE (resp. adaptive structuring

element).

Therefore, the general expression (i.e. for either classical or adaptive mathematical morphol-

ogy) of the descriptor of each pixel x ∈ D is:

Xn(x) = [Epn(f)(x), ..., Ep1(f)(x), f(x), Dp1(f)(x), ..., Dpn(f)(x)] (15)

where n stands for the number of erosions and dilations which are carried out, f(x) represents the

values of the color components of the image f at x and Epi(f)(x) (resp. Dpi(f)(x)) represents the

values of the color components at x of the erosions (resp. dilations) of f with a structuring element

with size or tolerance pi. Figure 4 shows an illustration of such concatenation.

Fig 4 Illustration of the concatenation of color components to form the pixel descriptor using color adaptive mathe-
matical morphology.
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3.1.2 Global image descriptor

Once the pixels of an image are described, a global descriptor of that image is built. This is done

by means of a Kohonen Self-Organising Map.23 This map has been generated by means of 20

images selected by experts (i.e., 10 representative images of each class), from which the lesions

were roughly segmented manually. Thereafter, the map was generated in a training step using the

pixels of the lesions and 5% of the other pixels (randomly selected). Note that this segmentation is

only used for these 20 training images.

Afterwards, the pixels of the image are projected onto the neurons of the map in order to cluster

them. Finally, the final image descriptor is the histogram of the hits of the neurons, i.e. the number

of pixels that have been projected on each neuron of the map.

A diagram showing the description process is shown in figure 5.

Fig 5 Diagram of the image description process.

3.2 GAN-Minkowski LBP descriptor

The proposed texture descriptor based on LBP is built in two steps.

First of all, the GAN-based Minkowski map µh
m of the different color components R, G and

B of the original color image is computed. Thereafter, the LBPP,R operator (eq. 7) of each of

these maps is computed, and the three histograms are concatenated. A graphic description of this

process is shown in figure 6.
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Fig 6 Image description process.

4 Experiments and results

4.1 Experiments

4.1.1 Image database

The image dataset that has been used in this experiment was composed of 1097 dermoscopic

images of pigmented skin lesions, 88 of them being histopathologically confirmed melanomas.

Thus, two classes were considered in this experiment: on the one hand confirmed melanomas and

on the other hand the remaining benign lesions.

All images were acquired by several dermatologists equipped with a digital camera (SONY

W120) combined with a Heine Delta 20 dermoscope. After the acquisition was carried out, the

images were normalized so that they have the same pixel size.

13



4.1.2 Image descriptors

Three different experiments have been done in this work, using either the CANMM-based descrip-

tor (section 3.1), the GAN-Minkowski LBP descriptor (section 3.2) or a combination of both.

First of all, concerning the descriptor based on color mathematical morphology, the local pixel

descriptor described in section 3.1.1 has been computed using (i) the adaptive CAN-based erosions

and dilations and (ii) classical (i.e. non adaptive) erosions and dilations, for the sake of comparison.

In this case, a square-shaped structuring element has been used, with width sizes varying between

5 and 50 in steps of 5. In the case of the adaptive CAN-based erosions and dilations, the values for

the tolerance m varied from 5 to 50 in steps of 5. Therefore, in both cases 10 different erosions

and dilations were carried out, so each pixel was described by means of 63 features (i.e. the RGB

components of the pixel in the original image and its components after the erosions and dilations).

Afterwards, a Kohonen map of size 20 × 20 was used as explained in section 3.1.2. Therefore,

each image has been described by means of a feature vector of 400 elements.

Considering the descriptor based on the LBP of the CAN-based Minkowski maps, as it was

explained in section 3.2, each of the color components R, G and B of the images of skin lesions

has been considered as a grey-level image. First of all, the GAN-based Minkowski map Area with

tolerance 20 was computed from each of them (i.e. AR
20, AG

20 and AB
20). The other two Minkowski

functionals P and χ, as well as different tolerancesmwere assessed, but they yielded worse results.

After that, the LBPP,R was computed from each of these three Area maps. The number of samples

P was fixed to 8, but different possible values for the radius R were assessed (specifically, they

varied from 1 to 6). Thus, the LBP histogram of each component has a length of 256. The final

descriptor is a concatenation of the three LBP histograms (i.e. the final descriptor has 768 features).
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For the sake of comparison, other descriptor where the LBPP,R operator was computed directly on

the intensities of the color components R, G and B has been assessed.

Finally, a concatenation of these two proposed descriptors has been considered, both the adap-

tive (i.e., the CANMM-based concatenated with the GAN-Minkowski LBP descriptors) and the

classic versions (i.e., the first descriptor computed with non-adaptive mathematical morphology

concatenated with the LBPP,R of the intensities of the color components R, G and B). Therefore,

this combined descriptor has 1168 features per image.

4.1.3 Classification

Images were subsequently classified by means of a feed-forward Artificial Neural Network (ANN)

working on their feature vectors. The data were normalized before classification, so that they had

mean zero and standard deviation one. In this experiment a network with one hidden layer and

a logistic sigmoid activation function for the hidden and output layers have been employed. The

learning of the network was carried out with the momentum and adaptive learning rate algorithm.

Different combinations of training cycles and neurons in the hidden layer have been used, in order

to assess the impact of this configuration on the results.

The classification was carried out using stratified 10-fold cross validation, and the process was

repeated 10 times, in order to avoid possible random effects (e.g. due to the random initialization

of the network) and over-fitting. The presented results are an average of these 10 runs.

4.2 Results

It is necessary to remark that no pre-processing of the data was done in order to prevent the bias of

the classifier towards the majority class. However, as the dataset is highly imbalanced towards the
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Table 1 AUC of the best combination cycles-neurons in the ANN for the descriptors based on the “classical” LBP.
R Num. neurons Num. cycles AUC
1 10 300 0.8726
2 7 300 0.8948
3 7 400 0.8934
4 5 500 0.8946
5 7 400 0.8895
6 10 400 0.8898

benign lesion class, the receiver operating characteristics (ROC) curve is more suitable to illustrate

the performance of a classifier than the accuracy of the classification.30 It is also widely used in

visualizing and analyzing the behavior of diagnostic systems. It summarizes the classifier perfor-

mance over a range of tradeoffs (i.e., decision thresholds) between benefits (i.e., true positives or

sensitivity) and costs (i.e., false positives or 1-specificity).31 More details about ROC curves can

be found in.30

A measure that summarizes how good this curve is is the area under the ROC curve (AUC). In

the case of the descriptors based on mathematical morphology, the neural network configurations

(i.e. neurons in the hidden layer and training cycles) that achieved the best results were 300 cycles

and 7 neurons, and 400 cycles and 9 neurons for the classical and adaptive approaches with AUCs

of 0.859 and 0.854, respectively. In addition, tables 1 and 2 show the AUC in the best classification

scenario (i.e. the best configuration of the neural network) achieved by the descriptors based on the

LBP computed directly on the intensities of the color components and computed on the GAN-Area

maps, respectively, depending on the different assessed values of R. The highest AUC is shown in

bold.

Figure 7 depicts the ROC curves of these classifiers along with a mean ROC curve estimated

in16 from the predictions carried out by nine dermatologists with this same image dataset. The

AUC of of this curve is 0.792.
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Table 2 AUC of the best combination cycles-neurons in the ANN for the descriptors based on the GAN-Area-based
LBP.

R Num. neurons Num. cycles AUC
1 10 500 0.8547
2 10 500 0.8780
3 10 500 0.8934
4 7 300 0.8976
5 10 500 0.9052
6 10 500 0.9115

Fig 7 ROC Curves of the classifiers generated by means of the Classic Mathematical Morphology, CAN-based Math-
ematical Morphology, “classical” and GAN-Area-based LBP, together with the mean ROC curve observed for the
dermatologists.

Overall, both classifiers based on mathematical morphology (classical and adaptive) are com-

parable. The classifier generated by means of the descriptor based on classic mathematical mor-

phology slightly outperforms the CAN-based one, obtaining areas under the curve (AUC) of 0.859

and 0.854, respectively. The descriptors based on LBP outperform them, with AUCs of 0.8948

and 0.9115 for the classical and GAN-Area-based ones, respectively. According to the latter, the

sensitivity and specificity of the classifier were 98.41% and 38.64%, respectively. Anyway, any of

the descriptors proposed in this paper generated, without any segmentation step, classifiers which

outperformed the actual predictions of the dermatologists. In particular, the classifiers were found

particularly efficient in the distal part of the ROC curves, where the detection of the remaining
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melanoma is difficult.

Other works that deal with the problem of melanoma detection in the literature report similar

sensitivities and higher specificities than the ones achieved in this work. For example, Tenenhaus

et al.8 reported a sensitivity of 95% and a specificity of 60%, although the overall AUC that their

classifier achieved was 0.84. Amelard et al.10 obtained a sensitivity and a specificity of 92.52% and

73.45%, respectively and Rastgoo et al.11 98% and 70% of sensitivity and specificity. However,

let us remember that in this case previous segmentation of the lesions is not carried out and, what

is more important, the dataset is highly imbalanced – only 8% of the images are melanoma –,

while in the case of these works the datasets are either balanced or the proportion of melanoma is

30%. By the way, Wazaefi et al.16 did use the same dataset that was used in this paper, and their

classifier achieved an AUC of 0.885. Anyway, as Koratov and Garcı́a pointed out,6 the absence

of benchmark datasets for standardized algorithm evaluation makes difficult to compared different

works.

4.2.1 Results with combined descriptors

The concatenation of both the “adaptive” and “classical” (i.e. non adaptive) descriptors were clas-

sified following the same experimental configuration as the proposed ones.

As done in previous section, tables 4 and 3 show the AUC in the best classification scenario

achieved by the concatenated descriptors in their adaptive and non adaptive versions, respectively,

depending on the different assessed values of R. Once again, the highest AUC is shown in bold.

It is remarkable than the non adaptive version of these concatenated descriptors performs better

than the adaptive one. A possible explanation is that, although the adaptive version of LBP shows

better performance than the “classic” one (AUCs 0.9115 against 0.8948), the non-adaptive MM-
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Table 3 AUC of the best combination cycles-neurons in the ANN for the adaptive concatenated descriptors.
R Num. neurons Num. cycles AUC
1 7 300 0.8604
2 5 300 0.8660
3 5 300 0.8699
4 5 300 0.8729
5 5 400 0.8799
6 5 300 0.8771

Table 4 AUC of the best combination cycles-neurons in the ANN for the “classical” concatenated descriptors.
R Num. neurons Num. cycles AUC
1 5 300 0.8790
2 7 300 0.8928
3 10 300 0.8946
4 5 300 0.8968
5 5 300 0.8877
6 10 300 0.8865

based descriptors slightly outperformed the adaptive one (0.859 and 0.854, respectively). Conse-

quently, it seems that the MM-based descriptor has more weight for the classifier. Anyway, both

versions of the concatenated descriptors obtained better results than the dermatologists, the math-

ematical morphology based descriptors (both the adaptive and non adaptive) and the “classical”

LBP-based descriptors. Still they do not outperform the adaptive LBP-based descriptors

Processing high dimensional data is computationally expensive and, due to possible correla-

tions in the data (e.g. the colors of some dilations and erosions might be similar), it is also inef-

ficient. Therefore, a dimensionality reduction using Principal Component Analysis32 (PCA) has

been carried out, with a number of principal components up to 20 (more than 10 were enough in

all cases to explain more than 99% of the variance of the dataset. However, the results using these

“reduced” data were worse than the “non reduced” version.
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5 Conclusions and future perspectives

In this work, two texture descriptors has been introduced and applied to the description and clas-

sification of images of naevi as benign lesions or melanoma. The first one is built from the local

color data of each pixel, obtained from mathematical morphology operations. It is afterwards used

to describe the image globally, by means of Kohonen Self-Organizing Maps. Two approaches of

this descriptor has been assessed: (i) the local data has been obtained using the classic (i.e. non

adaptive) color mathematical morphology operations and (ii) getting this local data by means of

adaptive color mathematical morphology based on the CAN framework. The second descriptor is

computed from LBP and local geometrical features (the Minkowski functionals) computed from

the GANs of each color component of the image. Its performance has been compared with the

classical LBP computed from the intensities of each color component.

The best performance has been obtained by the GAN-Minkowski based LBPs, using the area

and a tolerance for the GANs equals to 20. The number of samples of the LBPs was fixed to 8

and the radius R varied, being the best results achieved for R = 6. This GAN approach achieved

an AUC of 0.912, while the classical approach achieved an AUC of 0.895. The descriptors based

on mathematical morphology achieved similar performances, getting AUCs of 0.859 and 0.854 in

the case of the non-adaptive and adaptive approaches, respectively. Any of these descriptors out-

performed the dermatologists’ predictions on the same image dataset, which obtained an average

ROC curve with an AUC of 0.792.16

For future work, other GAN-based geometrical and/or morphometrical features33 applied to

this problem will be investigated.
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