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Abstract In this paper we study differences between con-
tiguous and non-contiguous parallel task schedules. Parallel
tasks can be executed on more than one processor simultane-
ously. In the contiguous schedules, indices of the processors
assigned to a task must be a sequence of consecutive num-
bers. In the non-contiguous schedules, processor indices may
be arbitrary. Optimum non-preemptive schedules are consid-
ered. Given a parallel task instance, the optimum contiguous
and non-contiguous schedules can be of different lengths.
We analyze minimal instances where such a difference may
arise, provide bounds on the difference of the two schedules
lengths, and prove that deciding whether the difference in
schedule length exists is NP-complete.

Keywords Parallel tasks · Contiguous scheduling ·
Non-contiguous scheduling

1 Introduction

Parallel tasks may require more than one processor simul-
taneously. The processors are granted either contiguously
or non-contiguously. In the contiguous case, indices of the
processors are a range of consecutive integers. In the opposite
case the indices may be arbitrarily scattered in the processor
pool. In this paper we analyze the cases when for a paral-
lel task instance, the lengths of the optimum non-preemptive
contiguous and non-contiguous schedules are different. Non-
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contiguous schedules may be shorter because a contiguous
schedule is also a feasible non-contiguous schedule, but not
vice versa. We will call such a situation a c/nc-difference. An
example of the c/nc-difference is shown in Fig. 1.

More formally our problem can be formulated as fol-
lows: We are given set P = {P1, . . . , Pm} of m parallel
identical processors, and set T = {T1, . . . , Tn} of n par-
allel tasks. Each task Tj ∈ T is defined by its processing
time p j and the number of required processors si ze j , where
si ze j ∈ {1, . . . , m}. For conciseness, we will be calling p j
task Tj length and si ze j task Tj size, or width. Both process-
ing times and task sizes are positive integers. We study two
versions of the problem: either tasks are scheduled contigu-
ously, or non-contiguously. In the former case the indices
of the processors assigned to a task must be consecutive.
In the latter case, processor indices can be arbitrary in the
range [1, m]. Scheduling is non-preemptive and migration is
disallowed. It means that task Tj started at time s j must be
executed continuously until time s j + p j on the same set of
processors. Schedule length (i.e., makespan) is the optimality
criterion. Unless stated to be otherwise throughout the paper
we refer to the optimum schedule lengths. We will denote
by Cc

max contiguous and by Cnc
max non-contiguous optimum

schedules lengths for the given instance. In this paper we
study the cases when Cc

max > Cnc
max.

Since task widths si ze j are given and cannot be changed,
we consider here a subclass of parallel task scheduling model
called rigid tasks (Feitelson et al. 1997). Our scheduling prob-
lem has been denoted P|si ze j |Cmax in Veltman et al. (1990)
and Drozdowski (2009) without making distinction between
the contiguous and the non-contiguous case. This problem is
NP-hard in both variants, which follows from the complexity
of the classic problem P2||Cmax. Parallel task scheduling has
been studied already in the early 1980s Lloyd (1981) also as
a problem of packing rectangles on infinite strip (Coffman
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Fig. 1 Example of the c/nc-difference. a Instance data, b optimum
non-contiguous schedule, c optimum contiguous schedule

et al. 1980), but its origins can be traced back at least into
1960 (Codd 1960). The problem of scheduling various types
of parallel task systems and the strip-packing problem have
been tackled in hundreds of publications and reporting them
here is beyond the size and scope of this paper. Therefore, we
direct an interested reader to, e.g., Dutot et al. (2004), Droz-
dowski (2009), Ntene and Vuuren (2009), and Amoura et al.
(2002). A polynomial-time approximation scheme (PTAS)
has been proposed for non-contiguous version of the problem
and fixed number of processors m in Amoura et al. (2002).
To the best of our knowledge, for the contiguous version of
the problem, there is an asymptotic fully polynomial-time
approximation scheme (AFPTAS) by Kenyon and Rémila
(2000) and the problem is 5/3 + ε-approximable (Harren
et al. 2014). The difference between contiguous and non-
contiguous schedules has been first demonstrated in 1992
(Turek et al.) on an instance with n = 8 tasks, m = 23
processors, Cnc

max = 17, Cc
max = 18. Its existence has been

acknowledged in Dutot et al. (2004), and Baille et al. (2008).
However, to the best of our knowledge, the consequences
of applying contiguous and non-contiguous schedules to the
same instance have not been studied before.

The difference between contiguous and non-contiguous
schedules has practical consequences in parallel process-
ing. Parallel applications are composed of many threads
running simultaneously and communicating frequently. It
is advantageous to assign the threads of a single applica-
tion to processors within a short network distance because
communication delays are shorter and there are fewer oppor-
tunities for network contention with other communications
(Bokhari and Nicol 1997, Bunde et al. 2004, Lo et al. 1997).
In certain network topologies, processor numbering schemes
have been proposed to aid allocation of processors which

are close to each other. In such network topologies ranges
of consecutive processor indices correspond to locally con-
nected processors. These can be various buddy processor
allocation systems for 1-, 2-dimensional meshes, hyper-
cubes, and k-ary n-cube interconnection networks (Chen and
Shin 1987; Li and Cheng 1991; Drozdowski 2009). Also
other, more sophisticated processor numbering schemes have
been proposed for this purpose (Leung et al. 2002). As a
result, contiguous schedules correspond to assigning tasks
to tightly connected processors. Thus, contiguous schedules
are favorable for the efficiency of parallel processing. How-
ever, contiguous schedules are less desirable when managing
many parallel tasks. It may be impossible to pack the tasks on
the processors in a schedule of a given makespan if the tasks
cannot be split between several groups of available proces-
sors. Consequently, resource utilization may be lower. Hence,
it is necessary to understand the difference between contigu-
ous and non-contiguous schedules: When such a difference
may arise and how much makespan may be gained by going
from a contiguous to a non-contiguous schedule.

In the domain of harbor logistics, the berth assignment
problem (BAP) is one of the most studied problems in con-
tainer terminal operations (Lim 1998; Bierwirth and Meisel
2010). In the discrete BAP, a quay is partitioned into berths. In
a common case one berth may serve one ship at a time and one
ship requires several contiguous berths. After relaxing some
other constraints, the BAP reduces to a contiguous schedul-
ing problem. A berth corresponds to a processor and a ship
corresponds to a job. Depending on its size, a ship requires a
given number of berths. A job processing time is given by the
corresponding ship handling duration. This duration may be
fixed or may depend on the berths. Since vessels cannot be
partitioned into several pieces, non-contiguous schedules are
not practically relevant. However, non-contiguous makespan
values provide lower bounds on contiguous schedules and
thus lower bounds for the relaxed versions of BAP.

Further organization of this paper is the following: In Sect.
2 minimal instances for which a c/nc-difference may exist are
analyzed. Section 3 contains a proof that deciding if a c/nc-
difference appears is NP-complete. In Sect. 4 it is shown that
the ratio of contiguous and non-contiguous schedule lengths
is bounded. In Sect. 5 we report on the simulations conducted
to verify whether c/nc-difference is a frequent phenomenon
on average. The last section is dedicated to conclusions.

2 Minimal instances

Here we study conditions under which a c/nc-difference can
arise. We start with a couple of observations. Obviously,
Cnc

max ≤ Cc
max because each contiguous schedule is also a

valid non-contiguous schedule, but not vice versa. In the fol-
lowing discussion we use “up”/“down” directions to refer to
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Fig. 2 C/nc-difference for three tasks with si ze j > 1. a Optimum
non-contiguous schedule, b optimum contiguous schedule

shifting tasks toward bigger/smaller processor indices. By
“renumbering” a pair of processors we mean swapping the
whole schedules on the two processors.

Observation 1 For c/nc-difference to arise, there must be at
least three tasks with si ze j > 1.

If there is only one task Tj with si ze j > 1, then it
is possible to renumber processors in an optimum non-
contiguous schedule such that Tj is executed contiguously.
If there are exactly two tasks Ti , Tj : si zei , si ze j > 1,
then in the optimum non-contiguous schedule Ti , Tj either
share some processors or they do not. In the latter case it
is again possible to renumber processors such that Ti , Tj
are scheduled contiguously. If Ti , Tj share processors, then
they are executed sequentially. Therefore, it is also possible
to renumber processors such that the processors used only
by Ti are assigned contiguously above the shared proces-
sors, the shared processors are assigned contiguously, while
the processors used only by Tj are assigned contiguously
below the shared processors. Thus, a contiguous schedule of
the same length would be obtained. An instance with c/nc-
difference and exactly three non-unit size tasks is shown in
Fig. 2.

Observation 2 For c/nc-difference to arise, there must be at
least three tasks with p j > 1.

If ∀ Tj , p j = 1, then it is always possible to rearrange
tasks in the optimum non-contiguous schedule into contigu-
ous allocations by sorting task indices in each time unit of a
schedule. Similar procedure can be applied if there is exactly
one task Tj with p j > 1 and all other tasks have unit exe-
cution time. Task Tj should be moved, e.g., to the lowest
processor indices in the interval in which it is scheduled, then
the indices of the unit execution time tasks should be sorted
in their time intervals. Suppose there are exactly two tasks
Ti , Tj : pi , p j > 1 and all other tasks have unit process-
ing time. If Ti , Tj are executed in different time intervals,
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Fig. 3 C/nc-difference for three tasks with p j > 1. a Optimum non-
contiguous schedule, b optimum contiguous schedule
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Fig. 4 Example of converting a non-contiguous schedule of length
Cnc

max = 3 to a contiguous schedule. a Initial schedule. b Shifting tasks
with p j = 3. c Shifting tasks with p j = 2. d Rearranging tasks into
contiguous allocations

then each of them can be treated as in the case of one task
with non-unit processing time. If the intervals of processing
Ti , Tj overlap, then Ti can be moved to the bottom and Tj up
to the ceiling of the schedule and unit processing time tasks
should be reassigned by sorting in their respective unit time
intervals (cf. Fig. 4c). An instance with c/nc-difference and
exactly three non-unit length tasks is shown in Fig. 3.

Theorem 3 For c/nc-difference to arise, the non-contiguous
schedule length must be at least Cnc

max = 4.

Proof First we will show that all non-contiguous schedules
of length Cnc

max ≤ 3 can be rearranged to contiguous sched-
ules of the same length. Then, we show that there is an
instance which non-contiguous schedule has Cnc

max = 4 and
the contiguous schedule has Cc

max = 5.
For Cnc

max = 1 rearrangement into a contiguous schedule
is always possible by Observation 2. If Cnc

max = 2, then tasks
must have lengths p j ∈ {1, 2}. The tasks with p j = 2 can
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Fig. 5 C/nc-difference with the shortest possible Cnc
max. a Optimum

non-contiguous schedule, b optimum contiguous schedule

be reassigned contiguously on the lowest processor num-
bers, and the remaining tasks with p j = 1 are handled
as in Observation 2. For Cnc

max = 3 processing times are
p j ∈ {1, 2, 3}. The tasks with p j = 3 can be moved down
to the lowest processor numbers (cf. Fig. 4a, b). The tasks
with p j = 2 can be shifted down or up by swapping whole
intervals of the schedule on the processors. The tasks exe-
cuted in time units 1, 2 are moved down (just above any
tasks with p j = 3), and the tasks executed in time units 2,3
are shifted up to the biggest processor numbers (Fig. 4c).
After these transformations we obtained a schedule in which
tasks that run in the same interval are stacked one on another
without being interleaved by the tasks from other intervals.
Consequently, it is possible to rearrange the tasks in their
time intervals to be executed contiguously (Fig. 4d). Hence,
we have Cc

max = Cnc
max = 3.

In Fig. 5 a schedule of length Cnc
max = 4 is shown. It can

be verified that there is no contiguous schedule shorter than
Cnc

max = 5 as, e.g., presented in Fig. 5b. ⊓%

A practical consequence of Theorem 3 is that if it is pos-
sible to build schedules in pieces of short length (at most 3
units of time), then rearrangement into a contiguous schedule
of the same length is always possible.

Theorem 4 For c/nc-difference to arise, at least m = 4
processors are required.

Proof For m = 2 processors no task can be scheduled non-
contiguously. For m = 3 a non-contiguous schedule can
be converted to a contiguous schedule of the same length.
The converting procedure scans a non-contiguous schedule
from the beginning to the end for tasks scheduled on P1, P3
and then reschedules them such that they are executed on
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Fig. 6 Transforming a non-contiguous schedule on m = 3 to a con-
tiguous schedule

P1, P2 or P2, P3. Suppose Tj is the first task executed on
P1, P3 (cf. Fig. 6). We search for the latest task Ti preced-
ing Tj and executed on two processors (or for the beginning
of the schedule if such a task does not exist). Task Ti is
scheduled contiguously (because Tj is the first task sched-
uled non-contiguously). We search for the earliest task Tk
succeeding Tj and executed on the same processors as Ti
(or for the end of the schedule if such a task does not exist).
Then, we swap the intervals between Ti , Tk (Fig. 6b). Con-
sequently, all tasks until Tj are scheduled contiguously. The
procedure proceeds until the last task executed on P1, P3.

In Fig. 1 an instance with c/nc-difference on m = 4
processors is given. ⊓%

We finish this section with a conjecture motivated by the
instance in Fig. 1 with the c/nc-difference for as few tasks as
n = 7. No smaller instance have been found in our simula-
tions (cf. Sect. 5).

Conjecture 1 For c/nc-difference to arise, at least n = 7
tasks are required.

3 Complexity of c/nc-difference

In this section we demonstrate that determining if a c/nc-
difference exists is NP-complete. Informally speaking, given
an instance of our scheduling problem checking if loos-
ening or tightening processor-assignment rule results in a
shorter/longer schedule, is computationally hard. More for-
mally, the c/nc-difference problem may be defined as follows:
c/nc- difference
Instance: Processor set P , set T of parallel tasks, non-
contiguous schedule σ nc for P , T .
Question: Does there exist a contiguous schedule σ c for P
and T at most as long as σ nc?

Theorem 5 C/nc-difference is NP-complete.

Proof C/nc-difference is in NP because NDTM may guess
the contiguous schedule σ c and compare its length with the
length of σ nc. Without loss of generality we can restrict our
considerations to active schedules. In active schedules each
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Table 1 Task set for the proof
of Theorem 5

Task T1 T2 T3 T4 T5 T6 T7 T7+ j , j = 1, . . . , k

si ze j 2 2B − 1 B − 1 B B − 2 1 B a j

p j 12 4 4 9 4 7 1 2

T1

T2

T3

B A1

A2BT4

0 4 8 12 13 15

T7

T8,...,T n

T6 1

2

T5

time

processors

Fig. 7 Schedule for the proof of Theorem 5

task starts either at time zero, or at the end of some other task.
In a non-contiguous schedule a task may be assigned to arbi-
trary processors available at its start time. Hence, a string
of length O(n) encoding a task permutation is sufficient
to determine a non-contiguous schedule. For a contiguous
schedule it is enough to determine a task permutation and
the lowest processor index used by each task. Then a string
encoding a contiguous schedule has length O(n log m). Thus,
a non-contiguous schedule can be encoded in a string of poly-
nomial size in the size of the input. We will use polynomial
transformation from the partition problem defined as follows:
Partition
Instance: Set A = {a1, . . . , ak} of integers, such that∑k

j=1 a j = 2B.
Question: Is it possible to partition A into disjoint subsets
A1, A2 such that

∑
i∈A1

ai = ∑
i∈A2

ai = B?
For the simplicity of exposition we assume that ∀ i,

ai > 2. The transformation from partition to c/nc-difference
is defined as follows: m = 2B + 1, n = 7 + k. The tasks are
defined in Table 1 and schedule σ nc of length Cnc

max = 15 is
shown in Fig. 7.

If the answer to the partition problem is positive, then an
optimum contiguous schedule of length Cc

max = 15 as shown
in Fig. 7 can be constructed. Note that tasks T8, . . . , Tn can be
scheduled contiguously in interval [13,15] either on proces-
sors P1, . . . , PB or PB+1, . . . , P2B+1 because the answer to
partition problem is positive. Schedules σ c, σ nc are optimum
because they have no idle time. Hence, Cc

max = Cnc
max and the

answer to c/nc-difference is also positive.
Suppose now that the answer to c/nc-difference is positive,

i.e., Cnc
max = Cc

max. We will show that the answer to partition
problem must be also positive. In the following sequence

of observations we will ascertain that the pattern of tasks
depicted in Fig. 7 is necessary for Cc

max = 15. The position
of task T6 is crucial for the proof because T6 divides the range
of available processors into two equal parts. We will argue
that tasks T2, T3, T6 must be executed sequentially.

• T1 cannot be scheduled sequentially (i.e., one after
another) with any of tasks T2, . . . , T6, otherwise Cc

max >

15 = Cnc
max. Hence, T1 and T2, . . . , T6 must be executed

at least partially in parallel.
• T2 must be executed sequentially with T3, T4, T5, T7, oth-

erwise more than m processors would run in parallel.
Since T1 and T2 must run in parallel and T6 cannot be
run sequentially with T1 then also T6 with T2 must be
executed sequentially.

• Considering sequential execution of T2, T4, task T4 can-
not be scheduled sequentially with any of tasks T3, T5, T6
(otherwise Cc

max > 15 = Cnc
max). Hence, T4 must be

executed at least partially in parallel with each of tasks
T3, T5, T6.

• Since T1 must run in parallel with T3, . . . , T6 and T4 in
parallel with T3, T5, T6, then T3 and pair T5, T6 must be
executed sequentially (otherwise more than m processors
would run in parallel).

• Consequently, T2, T3, T6 are executed sequentially and
T2 cannot be the second in the sequence because T4 would
have to be preempted or Cc

max > 15 = Cnc
max.

• Since the non-contiguous schedule has no idle time, then
also the contiguous schedule of length Cc

max = Cnc
max has

no idle time.
• T1 must be scheduled sequentially with T7 and on the

same set of processors because p1 = 12, Cc
max = 15

and all p j except p4, p6, p7 are even (otherwise there
is an idle time on the processors running T1). Moreover,
T1, T4, T6 must run in parallel.

• Since T1, T7 are scheduled sequentially, task T6 cannot be
the second in the sequence of T2, T3, T6. For example, in
sequence (T2, T6, T3) task T7 would have to be scheduled
in parallel with T2 or with pair T3, T4 and more than m
processors would be used in the interval of executing T7.
Similar reasoning applies to sequence (T3, T6, T2).

• Thus, only two sequences are feasible: either (T2, T3, T6),
or (T6, T3, T2).

• Assuming sequence (T2, T3, T6), task T7 must be exe-
cuted after T1. Consequently, T7 runs in parallel with T6.
As T6 runs in parallel also with T4, task T6 must be exe-
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cuted on processor PB+1, otherwise some tasks would be
scheduled non-contiguously.

• This creates a box of 11 time units and B-processor wide
for T4 after T2. There must be some subset of tasks from
T8, . . . , Tn in this box (otherwise there is an idle time on
the processors running T4).

• Since the schedule is non-preemptive, contiguous, with-
out migration and idle time, the tasks selected from
T8, . . . , Tn , executed in the box require simultaneously
exactly B processors. Thus, the answer to partition prob-
lem must be also positive.

• Sequence (T6, T3, T2) results in a (vertical) mirror sym-
metry of the schedule. Also horizontal mirror symmetry
is possible. Both cases can be handled analogously to the
above described procedure. ⊓%

It follows from the above theorem that it is hard to decide
whether Cc

max/Cnc
max < 1 + 1/15 (Garey and Johnson 1979).

However, stronger bounds on approximability of Cc
max/Cnc

max
can be given. On the one end, no polynomial algorithm can
give better approximation than 3/2Cc

max which follows from
partition (and hence verifying whether a schedule of length
Cc

max = 2 exists for problem P|si ze j , p j = 1|Cmax). On the
other end, a 5/3 + ε-approximation algorithm exists for the
contiguous version (Harren et al. 2014). Moreover, the non-
contiguous version admits a PTAS for fixed m (Amoura et al.
2002). Hence, for fixed m ratio Cc

max/Cnc
max can be approxi-

mated in range [3/2, 5/3+ε]. Let us note that approximating
Cc

max/Cnc
max for a particular instance is a different issue than

determining the range of possible values of this ratio for all
possible instances.

4 The ratio of c/nc schedule lengths

In this section we study bounds on the worst case ratio of
the non-contiguous and contiguous schedules for a given
instance. Let # denote our problem as the set of all pairs
(P, T ) and let I be an instance of #.

Theorem 6 5/4 ≤ supI∈#{Cc
max/Cnc

max} ≤ 2.

Proof The instance shown in Fig. 5 demonstrates that the
maximum ratio for c/nc-different schedule lengths is at least
5/4. To show that it is bounded from above by 2 a proof
has been given in Błądek et al. (2013) which constructs
a contiguous schedule at most twice as long as any given
non-contiguous schedule. A reader interested in converting
a non-contiguous schedule to a contiguous one may find an
algorithm in the above report. However, a simpler proof is
possible here. The contiguous parallel task scheduling prob-
lem is equivalent to the strip-packing problem. Our range
of m processors is equivalent to the fixed dimension of the
strip (say width) and our schedule length is equivalent to the

minimized strip length. For the strip-packing an algorithm
exists (Steinberg 1997) which strip length Cs

max, in terms of
our problem, can be bounded by

Cs
max ≤ 1

m

n∑

j=1

p j si ze j +max

⎧
⎨

⎩
1
m

n∑

j=1

p j si ze j ,
n

max
j=1

{
p j

}
⎫
⎬

⎭ .

Since Cs
max is an upper bound on the length of the opti-

mum contiguous schedule, and since
∑n

j=1(p j si ze j )/m
≤ Cnc

max, maxn
j=1{p j } ≤ Cnc

max we have: Cc
max ≤ Cs

max ≤
2Cnc

max. ⊓%

Theorem 6 has practical consequences. If one constructs
a schedule while disregarding possible non-contiguity of the
assignments, then to be sure that a conversion to a con-
tiguous schedule is always feasible a margin in time of
[25 %, 100 %] of non-contiguous schedule length should
be included. However, in the simulations described in the
next section, no difference exceeding 25 % of non-contiguous
schedule length was found. Hence, we finish this section with
a conjecture:

Conjecture 2 supI∈#

{
Cc

max/Cnc
max

}
= 5/4.

5 Simulations

In this section we study by simulation whether c/nc-
difference is a frequent phenomenon and how big is the differ-
ence between contiguous/non-contiguous schedule lengths.

Two branch and bound algorithms were constructed to
solve contiguous and non-contiguous versions of the prob-
lem. Branching schemes of both algorithms assume that a
schedule consists of two parts: a part that is already con-
structed and a part still remaining to be built. The branching
schemes enumerate all possible completions of the existing
partial schedule with the yet unscheduled tasks. Both in the
contiguous and in the non-contiguous version, a branch with
a partial schedule not shorter than the best known schedule
was eliminated. Consider a partial non-contiguous schedule.
The set of optimum schedules comprises active schedules,
i.e., the schedules in which a task starts at time zero or at the
end of some other task. To schedule task Tj feasibly si ze j
arbitrary processors must be available. Hence, given some
partial schedule it is enough to know the earliest moment
s j when si ze j processors are available to determine starting
time of Tj . If scheduling of Tj creates an idle interval before
s j on some processor(s) which could have been exploited by
some other task Ti , then a schedule in which Ti is using this
interval is constructed by considering Ti before Tj . Thus, in
order to define a non-contiguous schedule, it is enough to
determine a permutation of the tasks.
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In the contiguous case the branching scheme must deter-
mine not only the sequence of the tasks but also the processors
executing a task, e.g., by defining the smallest index of a
processor used by each task Tj . Fortunately, enumeration of
the processors ranges may be limited. Consider, the area in
time×processor space that can be reached by the lower-left
corner of Tj in the optimum schedule. The border of this
area will be called an envelope for Tj . If si ze j contiguous
processors are free in front of Tj , then it is possible to shift
Tj to the earliest moment s j when these processors are free
contiguously without increasing schedule length. Hence, Tj
can be scheduled in contact with its envelope. Suppose that
more than si ze j processors are free contiguously at time s j .
Then it is possible to shift Tj to the set of processors with
the smallest, or the biggest indices without increasing sched-
ule length. Thus, the reference point of Tj is in a corner of
the envelope because it touches the envelope from the right
and either from above or from below. We will call such a
task assignment a corner-contact. Hence, it is not necessary
to enumerate all processor assignments one by one because
there are optimum contiguous schedules such that each task
is in corner-contact with its envelope. It remains to show that
there exists a permutation of the tasks such that assigning
each task in its turn in one of the possible corner-contacts with
the current partial schedule leads to the optimum schedule.
Existence of such a permutation and corner-contact positions
can be verified in a thought experiment in which we disman-
tle optimum corner-contact schedule. By taking away, one by
one, the rightmost and topmost task it is possible to dismantle
the optimum schedule such that at each intermediate step the
remaining tasks are in corner-contact. Thus, there is a permu-
tation which leads from an optimum corner-contact schedule
to an empty schedule via partial corner-contact schedules.
And vice versa there must be a task permutation and a set
of corner-contact locations which reassemble the optimum
schedule. The branching scheme enumerates all task permu-
tations, and for a given partial permutation, task assignments
in all feasible corner-contacts are verified.

The experiments were conducted on a cluster of 30 PCs
with Intel Core 2 Quad CPU Q9650 running at 3.00 GHz,
with 8 GB RAM memory, and OpenSuSE Linux. The algo-
rithms were implemented in GNU C++. Two series of
experiments were conducted. In the first series, task numbers
n were increasing from n = 5 to n = 11. The processor num-
bers were m ∈ {10, 20, 50, 100, 200, 500}. Processing times
of the tasks were chosen with discrete uniform distribution
U [1, 100]. Tasks widths were generated with discrete uni-
form distribution U [1, si zemax] with two ranges: si zemax ∈
{⌈m/2⌉, m − 1}. For each combination of n, m and si zemax
at least 1E4 instances were generated and solved.

The relative frequency of the c/nc-difference in the
instance population is shown in Fig. 8a versus task number n
and in Fig. 8b versus processor number m. In Fig. 8b, results
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Fig. 8 Frequency in % of c/nc-differences in simulation. a versus n b
versus m

for instances with n ≥ 7 are shown for better readability. It
can be verified in Fig. 8 that on average the emergence of c/nc-
difference depends on the sizes of the tasks. If task sizes are
dispersed (Fig. 8a, si zemax = m − 1) then fewer than 0.8 %
instances had c/nc-difference in our simulations. If task sizes
are more restricted (Fig. 8a, si zemax = ⌈m/2⌉) then c/nc-
difference is more frequent and nearly as many as 5 % of
instances had it. Our results support Conjecture 1 because no
c/nc-differences were observed for n ≤ 6. The frequency is
increasing with n and decreasing with m. It remains an open
question whether the frequency of c/nc-differences tends to
100 % with growing n (Fig. 8a).

The magnitude of c/nc-differences, measured as the ratio
of contiguous to non-contiguous schedule lengths, is shown
versus n in Fig. 9a and versus m in Fig. 9b. In both figures the
boxplots show quartiles of values. Only instances with n ≥ 7
are depicted in Fig. 9b. It can be seen that the biggest ratio of
schedule lengths is ≈1.15 which is far below 1.25 observed in
Fig. 5. Thus, the results support Conjecture 2. On average the
difference between contiguous and non-contiguous schedule
lengths decreases with the number of tasks n from 2.1 %
difference median at n = 7 to 1 % at n = 11 (Fig. 9a).
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Fig. 9 Dispersion of c/nc-different schedule lengths. a versus n, b ver-
sus m

No apparent tendency can be observed in the ratios of the
c/nc-different schedule lengths versus m (Fig. 9b).

Intuitively, the tendencies in Figs. 8, 9 can be justified
in the following way: On the one hand, the number of
opportunities for creating c/nc-difference is growing with
the number of the tasks. Hence, the frequency of c/nc-
differences is growing (Fig. 8a). On the other hand, also
the flexibility of constructing contiguous schedules is grow-
ing with the number of the tasks. Therefore, the difference
in contiguous/non-contiguous schedule lengths is decreas-
ing with n (Fig. 9a). With growing number of processors m,
the relative differences between task sizes (e.g., si ze j/m −
si zei/m, for tasks Ti , Tj ) have more and more possible real-
izations in the stochastic process defining the instances. This
gives more flexibility and makes enforcing c/nc-difference
more difficult with growing m. Consequently, with growing
m, fewer c/nc-different instances were generated (Fig. 8b).
Yet, when a c/nc-difference arises then ratio Cc

max/Cnc
max is

ruled by the relative lengths of the tasks. It does not depend
on m and hence no tendency is visible in Fig. 9b.

In the second series of experiments we took a closer
look at the impact of si ze j and p j distributions on the fre-
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Fig. 10 Frequency in % of c/nc-differences in simulation versus range
of si ze j and range of p j

quency of c/nc-difference and ratios of the schedule lengths.
Here m = 100, while n was generated with uniform dis-
crete probability from U [7, 11]. Task widths were generated
from U [1, si zemax], where si zemax increased from 10 to 100
with progress of 10. Processing times were generated from
U [1, pmax], where pmax ∈ {25, 50, 100, 200, 400, 800}.
For each pair of si zemax, pmax at least 1E4 instances were
generated and solved. As it can be seen in Fig. 10 the
c/nc-difference becomes quite frequent for certain p j , si ze j
distributions. On the one hand, if si zemax is small then the
total number of required processors

∑n
j=1 si ze j hardly ever

exceeds m and all tasks are executed in parallel. On the other
hand, if si zemax is big then many tasks require si ze j > m/2
processors and must be executed sequentially. Consequently,
the greatest chance for c/nc-difference arises when task sizes
are moderate, i.e., around m/4 on average. The ratios of c/nc-
different schedule lengths (not shown here) revealed only that
for smaller pmax optimum schedules are shorter and hence
schedule length ratios are bigger on average.

6 Conclusions

In this paper we analyzed differences between optimum non-
preemptive contiguous and non-contiguous schedules for
parallel tasks. The requirements on the minimal instances
allowing the c/nc-difference were pointed out. Determining
whether a c/nc-difference emerges is computationally hard.
However, all non-contiguous schedules have a valid contigu-
ous counterpart at most twice as long as the original schedule.
Since the two variants of the problem are apparently differ-
ent, one should distinguish them in the α|β|γ notation. For
example, by adding c, nc to the si ze j phrase: P|si ze j−c|Cmax
versus P|si ze j −nc|Cmax. We leave a few open questions:
What is the minimum number of tasks necessary for c/nc-
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difference to arise (Conjecture 1)? Is it always possible to
build a contiguous schedule not longer than 125 % of the
non-contiguous schedule length for the same instance (Con-
jecture 2)? Does the frequency of c/nc-differences tends to
100 % with growing n (Fig. 8a)?
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