
HAL Id: emse-01226873
https://hal-emse.ccsd.cnrs.fr/emse-01226873v1

Submitted on 10 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic classification of skin lesions using geometrical
measurements of adaptive neighborhoods and local

binary patterns
Victor González-Castro, Johan Debayle, Yanal Wazaefi, Mehdi Rahim,

Caroline Gaudy, Jean-Jacques Grob, Bernard Fertil

To cite this version:
Victor González-Castro, Johan Debayle, Yanal Wazaefi, Mehdi Rahim, Caroline Gaudy, et al.. Au-
tomatic classification of skin lesions using geometrical measurements of adaptive neighborhoods and
local binary patterns. ICIP 2015 IEEE International Conference on Image Processing, IEEE Signal
Processing Society, Sep 2015, Québec City, Canada. pp.1722 à 1726, �10.1109/ICIP.2015.7351095�.
�emse-01226873�

https://hal-emse.ccsd.cnrs.fr/emse-01226873v1
https://hal.archives-ouvertes.fr


AUTOMATIC CLASSIFICATION OF SKIN LESIONS USING GEOMETRICAL
MEASUREMENTS OF ADAPTIVE NEIGHBORHOODS AND LOCAL BINARY PATTERNS
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ABSTRACT

This paper introduces a method for characterizing and
classifying skin lesions in dermoscopic color images with
the goal of detecting which ones are melanoma (cancerous
lesions). The images are described by means of the Local
Binary Patterns (LBPs) computed on geometrical feature
maps of each color component of the image. These maps
are extracted from geometrical measurements of the General
Adaptive Neighborhoods (GAN) of the pixels. The GAN of
a pixel is a region surrounding it and fitting its local image
spatial structure. The performance of the proposed texture
descriptor has been evaluated by means of an Artificial Neu-
ral Network, and it has been compared with the classical
LBPs. Experimental results using ROC curves show that the
GAN-based method outperforms the classical one and the
dermatologists’ predictions.

Index Terms— Melanoma, Texture description, General
adaptive neighborhoods, Local binary patterns

1. INTRODUCTION

In 2012 there were more than 11150 new cases of skin cancer
in France (3.1% of all detected cancers), 15% of which were
mortal. Late diagnosis of skin cancer makes treatments much
less efficient (i.e. a melanoma may become very aggressive
in just a few months). Therefore, its early detection becomes
essential to improve the chances of curing the skin cancer and,
thus, the survival chances of the patient.

This is not an easy task for a non-experienced observer,
as it is evidenced by the example shown in figure 1. To
carry out the detection of melanoma, dermatologists use sev-
eral state-of-the-art methods, often called rules, such as the
ABCD rule [1] (Asymmetry, Border irregularity, Color irreg-
ularity and Differential structure, i.e. the size and number of
structural features), the Menzies scoring or the 7-point check-
list [2], which are based on the presence of certain texture
patterns. Dermatologists detect malignancy features based
on these rules and then combine this information to predict

(a) benign lesion (b) melanoma

Fig. 1. Example of an image of a benign lesion (a) and a
melanoma (b).

malignancy of the tumor. An automation of such individual
analysis of nevi would be very helpful not only for dermatol-
ogists, as they would make more accurate diagnosis and, thus,
make better decisions about the need of surgery, but also for
general practitioners, sending patients to the specialist more
appropriately. Therefore, it would save economic and time
resources to the Social Security system.

Automatic melanoma detection – based on the analysis
of dermoscopy images – has been receiving an increasing at-
tention in the literature [3]. Most works reproduce the clas-
sic rules used by dermatologists, extracting features linked to
them (see for instance [4]). However, the extraction of such
kind of features needs a previous segmentation of the lesion,
which is often considered a very tricky step, as it may not
be clear, even for specialists, where the boundaries of the le-
sion are. Other methods have been investigated in the liter-
ature where dermoscopic images do not need any segmenta-
tion process as proposed in [5]. Such a method uses a texture
descriptor computed with the Local Binary Patterns [6, 7, 8]
(LBPs). Nethertheless, only intensity information of the color
components are taken into consideration.

In this paper an automatic classification method of skin
lesions from dermoscopic images is proposed by combining
LBPs and local geometrical measurements. The lesions are
described by means of the LBPs from maps created by means
of geometrical features of the General Adaptive Neighbor-



hoods (GANs) [9] of pixels, as it is explained in detail in sec-
tion 2. The performance of this texture descriptor has been
assessed on a real dataset of skin lesions, as stated in section
3. Finally, conclusions and future perspectives are shown in
section 4.

2. THE PROPOSED TEXTURE DESCRIPTOR

2.1. General Adaptive Neighborhoods (GANs)

The GANIP approach [9, 10] provides a general frame-
work for multiscale, local and adaptive image processing and
analysis of gray-level images. It is based on extracting spa-
tial neighborhoods called General Adaptive Neighborhoods
(GANs) from the points of the image, whose size and shape
are adapted to the local features of the image. Specifically, a
GAN is a subset of the spatial support D ⊆ R2 constituted
by connected points whose values in relation to a selected
criterion (luminance, contrast, etc.) fit within a homogeneity
tolerance. As a result, GANs are adaptive with the spatial
structures and self-defined from the image.

Let f be an image defined in D with range in R, and let
h be a criterion mapping, also defined in D and valued in
R, based on local measurements such as luminance, contrast,
etc. For each point x ∈ D, the GANs (denoted V h

m(x)) are
subsets in D built upon h in relation to a homogeneity toler-
ance m ∈ R+. More precisely, V h

m(x) fulfills two conditions:
1) its points are close to x in relation to the criterion mapping
and 2) the GAN is a path-connected set.

Thus, the GANs are formally defined as:

V h
m(x) = C{y∈D: |h(y)−h(x)|≤m}(x) (1)

where CX(x) denotes the path connected component of X ⊆
D containing x ∈ D. Therefore, it is ensured that ∀x ∈
D x ∈ V h

m(x).
Figure 2 shows the GAN computed for one pixel of a der-

moscopic color image using the luminance criterion of the red
color component and the homogeneity tolerance m = 20.

(a) original image with one se-
lected pixel x

(b) GAN of the pixel x

Fig. 2. The GAN (b) of one pixel (a) of a dermoscopic image
computed on the red color component, using the luminance
criterion with the homogeneity tolerance value m = 20.

The reader interested in further theoretical aspects on
GANs is referred to [9].

2.2. GAN-based Minkowski functionals

Integral geometry provides a suitable family of geometrical
and topological descriptors of 2-D and 3-D spatial patterns,
known as Minkowski functionals [11]. In 2-D, there are three
Minkowski functionals: area, perimeter and Euler number,
denoted respectively A, P and χ.
These functionals are defined on the class of nonempty com-
pact convex sets in R2. They have been extended to the con-
vex ring [12], i.e. the set of all finite unions of convex bodies,
which may be considered as a realistic Euclidean model for
digital images.

The GAN-based Minkowski maps [13] are defined by as-
signing to each point x ∈ D the Minkowski density func-
tional of its GAN V h

m(x). More explicitly, the GAN-based
Minkowski map of a gray-level image, denoted by µh

m, is de-
fined by:

µh
m(x) = µ(V h

m(x)) (2)

where µ denotes a Minkowski density functional (i.e. µ ≡ A,
µ ≡ P or µ ≡ χ).

Figure 3 shows an example of GAN-based Minkowski
map of an image using the area as functional. The GANs
are homogeneous with respect to the luminance of the blue
color component using the tolerance m = 20. Therefore, the
value at each point x of the Minkowski map is the area of the
GAN V h

20(x).

(a) blue component of an original
image

(b) GAN-based area map

Fig. 3. The GAN-based area map (b) of the blue component
(a) of a dermoscopic image computed with the luminance cri-
terion and the homogeneity tolerance value m = 20.

2.3. Local Binary Patterns

Local Binary Patterns were first introduced by Ojala et al. [6].
This original version worked in a 3× 3 pixel block of an im-
age, and were later generalized [7]. This generalization does
not limit the size of the neighbor nor the number of sampling
points.

Consider an image I , and let gc denote the gray level of a
pixel c in the coordinates (x, y), i.e. gc = I(x, y). Let gp be
the intensity value of a sampling point in a circular neighbor-
hood of P sampling points and radius R around c:

gp = I(xp, yp), p ∈ {0, 1, · · ·P − 1}, (3)



where xp = x+R cos(2πp/P ) and yp = y−R sin(2πp/P ).
Assuming that the local texture T of c is characterized

by the joint distribution of intensity values of P + 1 (where
P > 0) pixels of I (i.e. T = t(gc, g0, · · · gP−1)), gc can be
subtracted from gp:

T = t(gc, g0 − gc, · · · gP−1 − gc) (4)

Assuming that the central pixel is statistically independent
of the differences the distribution can be factorized as T ≈
t(gc)t(g0 − gc, · · · gP−1 − gc).

Since t(gc) describes the overall intensity over the image,
it contains no useful information from the point of view of
analyzing local texture patterns, so the local texture can be
modelled by t(g0 − gc, · · · gP−1 − gc).

Although these differences are invariant to mean grey
level shifts, they are not invariant to other changes, so just the
signs of the differences are considered:

T = t(s(g0 − gc), · · · s(gP−1 − gc)), (5)

where s(z) is the step function, defined as:

s(z) =

{
1, z ≥ 0
0, z < 0

(6)

Finally, the local binary pattern operator is derived from
this joint distribution by summing the thresholded differences
weighted by powers of two. Therefore, the LBPP,R operator
is defined as:

LBPP,R(xc, yc) =

P−1∑
p=0

s(gp − gc)2p (7)

2.4. Final image descriptor

The proposed texture descriptor is built on two steps.
First of all, the GAN-based Minkowski map µh

m of the dif-
ferent color components R, G and B of the original color im-
age is computed. Thereafter, the LBPP,R operator (eq. 7) of
each of these maps is computed, and the three histograms are
concatenated. A graphic description of this process is shown
in figure 4.

3. EXPERIMENTS AND RESULTS

3.1. Experiments

3.1.1. Image database

The image dataset that have been used in this experiment
was composed of 1097 dermoscopic images of pigmented
skin lesions, 88 of them being histopathologically confirmed
melanomas. Thus, two classes were considered in this experi-
ment: on the one hand confirmed melanomas and on the other
hand the remaining benign lesions.

Fig. 4. Image description process.

All images were acquired by several dermatologists
equipped by a digital camera (SONY W120) combined with a
Heine Delta 20 dermoscope. After the acquisition was carried
out, the images were normalized so that they have the same
pixel size.

3.1.2. Image descriptor

As it was explained in section 2.4, each of the color com-
ponents R, G and B of the color images of skin lesions has
been considered as a grey-level image. First of all, the GAN-
based Minkowski map area with tolerance 20 was computed
from each of them (i.e. AR

20, AG
20 and AB

20). Several values
for m were assessed, but the best results were obtained with
m = 20. The other two Minkowski functionals P and χ, as
well as different tolerances were assessed, but they yielded
worse results. After that, the LBPP,R was computed from
each of these three area maps. The number of samples P was
fixed to 8, but different possible values for the radius R were
assessed (specifically, they varied from 1 to 6). Thus, the LBP
histogram of each component has a length of 256. The final
descriptor is a concatenation of the three LBP histograms (i.e.
the final descriptor has 768 features).

For the sake of comparison, other descriptor where the
LBPP,R operator was computed directly on the intensities of
the color components R, G and B has been assessed.

3.1.3. Classification

Images were subsequently classified by means of a feed-
forward Artificial Neural Network (ANN) working on their
feature vectors. The data were normalized before classifica-
tion, so that they had mean zero and standard deviation one.
In this experiment a network with one hidden layer and a
logistic sigmoid activation function for the hidden and output
layers have been employed. The learning of the network was
carried out with the momentum and adaptive learning rate
algorithm. Different combinations of training cycles and neu-
rons in the hidden layer have been used, in order to assess the
impact of this configuration on the results. Results presented



Table 1. AUC of the best combination cycles-neurons in the
ANN for the descriptors based on the “classical” LBP.

R Num. neurons Num. cycles AUC
1 10 300 0.8726
2 7 300 0.8948
3 7 400 0.8934
4 5 500 0.8946
5 7 400 0.8895
6 10 400 0.8898

Table 2. AUC of the best combination cycles-neurons in the
ANN for the descriptors based on the GAN-Area-based LBP.

R Num. neurons Num. cycles AUC
1 10 500 0.8547
2 10 500 0.8780
3 10 500 0.8934
4 7 300 0.8976
5 10 500 0.9052
6 10 500 0.9115

in the next section correspond to the best configuration for
each approach (classical and adaptive).

The classification was carried out using 10-fold cross val-
idation, and the process was repeated 10 times, in order to
avoid possible random effects (e.g. due to the random initial-
ization of the network) and over-fitting. The presented results
are an average of these 10 runs.

3.2. Results

The receiver operating characteristics (ROC) curve is more
suitable to illustrate the performance of a classifier than the
accuracy of the classification [14]. It is also widely used in
visualizing and analyzing the behavior of diagnostic systems.
It depicts relative tradeoffs between benefits (true positives, or
sensitivity) and costs (false positives, or 1-specificity). More
details about ROC curves can be found in [14].

Tables 1 and 2 show the area under the ROC curve (as a
measure of how good this curve is) achieved by the descrip-
tors based on the LBP computed directly on the intensities of
the color components and computed on the GAN-Area maps,
respectively, depending on the different assessed values of R.
The tables depict the configuration of cycles-neurons of the
network that yielded the best AUC for each value of R.

The descriptor based on the LBPs of the GAN-Area maps
outperform the classical LBPs with an AUC of 0.9115 when
R = 6 against 0.8948 when R = 2, respectively. The ROC
curves [14] of the classifications corresponding to these con-
figurations are shown in figure 5. In addition, a mean ROC
curve, estimated in [5] from the predictions carried out by
nine dermatologists with this same image dataset, is also de-
picted in this figure.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−specificity (fpr)

s
e

n
s
it
iv

it
y
 (

tp
r)

	

 

 

Classic LBP
GAN−Area LBP
Dermatologists

Fig. 5. ROC Curves of the classifiers generated by means of
the classical LBPs and the CAN-area-based LBPs, together
with the mean ROC curve observed for the dermatologists.

Both the two LBPs descriptors (classical and GAN-based)
generated classifiers which outperformed the actual predic-
tions of the dermatologists. In particular, they were found par-
ticularly efficient in the distal part of the ROC curves, where
the detection of the remaining melanoma is difficult.

4. CONCLUSIONS AND PERSPECTIVES

In this work, a texture descriptor has been introduced and ap-
plied to the description and classification of color images of
nevi as benign lesions or melanoma. The texture descriptor
is built from LBPs and local geometrical features.The per-
formance of the proposed descriptor has been evaluated and
compared with the classical LBPs and the dermatologists’
predictions.

The best results were achieved by the GAN-Minkowski-
based LBPs, using the area and a tolerance for the GANs
equals to 20. The number of samples of the LBPs was fixed
to 8, and the radius was varied, being the best results achieved
for a radius of 6. This GAN-based approach achieved an AUC
of 0.9115, while the classical approach achieved an AUC of
0.8948 in the best configuration of neurons-cycles of the neu-
ral network classifier. Both the classic and the adaptive ap-
proaches outperformed the dermatologists’ predictions on the
same image dataset, which obtained mean ROC curve with an
AUC of 0.792 [5].

For future work, other GAN-based geometrical and/or
morphometrical features [15] could be investigated.
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