ISVLSI 2015 Montpellier

Figure of merits of 28nm Si technologies for implementing laser attack resistant security dedicated circuit

Stéphan de Castro

J-M. Dutertre, G. Di Natale, M.L. Flottes, B. Rouzeyre

Secure devices

- Development of the use of secure devices
- Need of security for critical applications
- Cryptographic algorithms implantation
- Development of attacks to retrieve the secret information

Use of a secure devices

Fault injection in cryptographic devices

- Security bypass
- Differential fault analysis
 - Ciphering of a plaintext
 - Disruption of the circuit during the ciphering (same plaintext)
 - Comparison between Ciphertext and faulty ciphertext (attack)
 - Information about the secret key

Laser injection

- Mean of fault injection
- ■High spatial accuracy (1µm spot size)
- •High timing accuracy (from s to ps illumination time)
- •Allows to perform powerful fault attacks
- (Very) expensive
- Preparation of the circuit

	Transistor	SRAM Cell	
350nm			
130nm	•		
90nm	•	#	
65nm	•		

Transistor technology nodes compared to a ø1µm laser spot size

Laser beam ø1µm and its area of effect

28nm PMOS structure: Bulk and FDSOI

Outline

- Introduction
- FD-SOI/Bulk sensitivity to laser injection
- Conclusion

Introduction

LIESSE project

Aim of the project:

- Tool development for safety assessment against laser injection on integrated circuit
 - Certifications
 - Countermeasures

Photoelectric effect

9

Laser fault injection mechanism

- ■Inverter sensitive area: drain of the blocked MOS
- Transient change of logic state Fault

Charge's generated volume depending on the structure

PMOS FDSOI structure

PMOS bulk structure

	PMOS FDSOI	PMOS Bulk	
Effective volume charge	Channel	Channel + Substrate + Nwell	
Induced current	From drain to source + Nwell to substrate	From drain to source + Drain to substrate +Nwell to substrate	

FD-SOI/Bulk sensitivity to laser injection

Measurement circuit

- Measurement of the maximum induced current flowing through the transistor
- ■For FDSOI, drain and source currents are equivalent

Laser injection measurement

FD-SOI vs Bulk (28nm)

 I_{max} =1a.u

 I_{max} =80a.u

■NMOS (W,L): 1µm*3µm

Spot size: 1µm*1µm

>Amplitude of induced current: x80 between bulk and FD-SOI

FD-SOI vs Bulk (28nm): box effect

A=5μm*4μm

A=13μm*12μm

>Less transistors are affected by the laser with FDSOI technology

Capacitance charge

- Worst case injection
 - Only drain current considered
 - No compensation with other currents
- ➤ Logic state more difficult to change with FDSOI

	FDSOI	Bulk
Laser induced current amplitude	1a.u	80a.u
Capacitance charge current	0,2a.u	9a.u

Conclusion

Conclusion

- ➤ FDSOI advantages:
 - Charge generated volume small due to insulation between channel and substrate
 - ■Reduction of the long distance effect of the laser due to the insulator box
- >FDSOI seems to be a good solution for secure circuit implementation

Questions?