Laser Fault Injection into SRAM cells: Picosecond versus Nanosecond pulses

Marc Lacruche* , Nicolas Borrel† , Clement Champeix*† , Cyril Roscian* , Alexandre Sarafianos† , Jean-Baptiste Rigaud* , Jean-Max Dutertre* , Edith Kussener‡

* École Nationale Supérieure des Mines de Saint-Étienne,

† ST Microelectronics,

‡IM2NP

Outline

- Context
- Laser fault injection
- Previous works: 50ns pulses
- 30ps pulses
- Simulation model upgrade
- Commercially available product validation
- Conclusion

Context

- Security point of view: ns or µs pulses are generally used
 - Are ps pulses used in radiative works valid for security testing?
- Fault Attacks
 - Disturb a circuit during computations
 - Exploit resulting computation errors
 - Retrieve encryption keys
 - Differential Fault Analysis (DFA)
 - "On the importance of checking cryptographic protocols for faults", D. Boneh, R. A. DeMillo, and R. J. Lipton, EUROCRYPT'97

Laser Fault Injection

• Photoelectric Effect:

Laser Fault Injection

• Gate Level

06/07/2015

Marc Lacruche - IOLTS 2015

Saint-Étienne

Previous Works: 50ns Pulses

- *"Fault model analysis of laser-induced faults in sram memory cells",* C. Roscian, A. Sarafianos, J.-M. Dutertre, and A. Tria FDTC 2013
- Test Setup:
 - Test Chip: 5 Transistor SRAM Cell
 - Technology: 0.25 µm
 - Cell size: 4µm x 9µm
 - Few metal layers to allow front side injection
 - Laser Setup
 - Wavelength: 1064nm
 - Spot size: 1µm
 - Laser Power: 0.42W
 - Pulse Duration: 50ns
 - Frontside Injection

Previous Works: 50ns Pulses

Experimental Results: Single SRAM Cell

- No fault induced in the MP2 drain area
- No Bit-Flips at the limit between MN1 and MN3

Marc Lacruche - IOLTS 2015

Previous Works: 50ns Pulses

• Simulation Results: Single SRAM Cell

 "Electrical modeling of the photoelectric effect induced by a pulsed laser applied to an sram cell", A. Sarafianos, C. Roscian, J.-M. Dutertre, M. Lisart, and A. Tria, Microelectronics Reliability 2013.

- Electrical simulation model takes the cell layout into account
- Area masking caused by a counter-balancing effect in the shared drain of MN3 and MN2

30ps Pulses

- Laser Setup
 - Wavelength: 1064nm
 - Spot size 1µm
 - Laser energy: 3.2nJ
 - Pulse duration: 30ps
- Same 5 Transistor SRAM Chip as the 50ns tests
- Is the Bit-Set/Bit-Reset model still valid over the Bit-Flip one?
- Is the area-masking still in effect?

30ps Pulses

Experimental Results: Single SRAM Cell

06/07/2015

Simulation Model Adaptation

- "Building the electrical model of the pulsed photoelectric laser stimulation of an nmos transistor in 90nm
- technology", A. Sarafianos, O. Gagliano, V. Serradeil, M. Lisart, J.-M. Dutertre, and A. Tria, IRPS 2013

$I_{ph}(t) = [a(E).V_r + b(E)].A.\alpha_{topology}.\Omega_{shape}(t)$

- a(E) and b(E): Experimental coefficients depending on laser energy E
- *V_r*: Junction reverse voltage
- A: Junction area
- $\alpha_{topology}$: Laser beam spatial intensity profile
- $\Omega_{shape}(t)$: Laser pulse temporal shape

Simulation Model Adaptation

- Hypothesis:
 - 30ps pulses have a reduced effect area
 - Adjusted $\alpha_{topology}$ coefficient:

06/07/2015

Simulation Model Adaptation

 Simulation Results: SRAM Cell (30ps Pulses)

- 4 Sensitive Areas
- No bit-flip
- Metal layers not taken into account
 - Areas shapes differ

Commercially Available Product Validation

 Microcontroller RAM: Previous 50ns results

- 0.35µm technology
- Same Laser Settings
- 6 Transistor Cells
- Backside Injection
- Still no bit-flip
- 2 Masked Areas per Cell

Commercially Available Product Validation

• Microcontroller RAM: 30ps results

- Same Laser Settings
- Same Microcontroller as
 - the 50ns tests
- Still no bit-flip
- 4 areas per cell

Conclusion

- Limiting testing to nanosecond range pulses may hide vulnerabilities
 - Test using varying pulse lengths as consequence
- Bit-set/bit-reset model still valid over Bit-flip model
- Simulation model extended for 30ps pulses
- Next Steps:
 - Finer 30ps simulation model tuning (Experimental)
 - Reproduce experimentations on more recent

06/07/2015 technologies

Marc Lacruche - IOLTS 2015

18/19

Thank you for your attention.

Simulation Model Details

06/07/2015