Automatic classification of skin lesions using geometrical measurements of adaptive neighborhoods and local binary patterns

Victor González-Castro, Johan Debayle, Yanal Wazaefi, Mehdi Rahim, Caroline Gaudy, Jean-Jacques Grob, Bernard Fertil

To cite this version:

HAL Id: emse-01228085
https://hal-emse.ccsd.cnrs.fr/emse-01228085
Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AUTOMATIC CLASSIFICATION OF SKIN LESIONS USING GEOMETRICAL MEASUREMENTS OF ADAPTIVE NEIGHBORHOODS AND LOCAL BINARY PATTERNS

V. González-Castro¹, J. Debayle¹, Y. Wazaeif², M. Rahim², C. Gaudy-Marqueste³, J-J. Grob³ and B. Fertil³
¹ École Nationale Supérieure des Mines, LGF UMR CNRS 5307, Saint-Étienne (FRANCE)
² Laboratoire Des Sciences de l’Information et des Systèmes, UMR CNRS 7296, Marseille (FRANCE)
³ Service de Dermatologie, Hôpital de la Timone, Marseille (FRANCE)

Context

Computer-Aided Diagnosis

Description

Classification

Benign

Melanoma

Methods

General Adaptive Neighborhoods (GANs)
The GAN of a point \(x \) is a spatial neighborhood whose size and shape is adapted to the local features of the image.

Definition:
- The intensities of its points are close to that of the seed point according to a selected criterion (e.g., luminance, contrast...).
- The GAN is a path connected set.

\[
V^2_D(x) = C_{(D+1)}(x) \cup (D(x) \cup N(x))
\]

where:
- \(D \): Spatial support (\(D \subseteq \mathbb{R}^2 \))
- \(A \): Criterion mapping (\(A : \mathbb{R} \to \mathbb{R} \))
- \(m \): Tolerance homogeneity
- \(C_1(x) \): Path connected component of \(X \) containing \(x \)

GAN-based Minkowski Map (Local Characterization)

Definition
\[
\mu^m_D(x) = \mu(V^m_D(x))
\]

where \(\mu \) is a Minkowski functional:
- Area (\(A \))
- Parameter (\(P \))
- Euler Number (\(\mu \))

Image Description (Skin Lesion Features)
The final image descriptor is built in two steps:
- The GAN-based Minkowski map (with \(m = 20 \)) of the color components R, G and B of the original image is computed.
- The Local Binary Pattern (LBP\(_{P,R} \)) operator of each of these maps is computed, and the three histograms are concatenated.

\[
\sum\frac{R}{P} = A \quad \mu = 0 \quad \text{Area under ROC curve}
\]

Descriptor parameters
- GAN-based Minkowski maps
 - \(m = 20 \)
 - \(\mu = A \) (area)
 - \(\text{Sigmoid transfer function} \)
- LBP\(_{P,R} \)
 - \(P \) fixed to 8
 - \(R \) varying from 1 to 6

Dataset
1097 dermoscopic images of pigmented skin lesions: 88 of them histopathology confirmed melanomas.

Classification
- Feed-forward neural network
- One hidden layer
- 10-fold cross validation

Results

Conclusion and Perspectives

Conclusion
- Classification of color images of naevi as benign lesions or melanoma.
- Descriptor built upon LBP and local geometrical features.
- Performance evaluated and compared with the classical LBP and the dermatologists’ predictions.
- AUC: 0.762 (Dermatologists); 0.8948 (Classical LBP); 0.9115 (Proposed method).

Perspectives
- Assess other GAN-based geometrical and/or morphometrical features.
- Automatic selection of relevant features.

This work has been supported by the project with reference ANR-12-EMMA-0046 from the French National Research Agency (ANR)