D. Binder, E. C. Smith, and A. B. Holman, Satellite Anomalies from Galactic Cosmic Rays, IEEE Transactions on Nuclear Science, vol.22, issue.6, pp.2675-2680, 1975.
DOI : 10.1109/TNS.1975.4328188

T. C. May and M. H. Woods, Alpha-particle-induced soft errors in dynamic memories, IEEE Transactions on Electron Devices, vol.26, issue.1, pp.2-9, 1979.
DOI : 10.1109/T-ED.1979.19370

D. Habing, The Use of Lasers to Simulate Radiation-Induced Transients in Semiconductor Devices and Circuits, IEEE Transactions on Nuclear Science, 1965.

S. P. Skorobogatov and R. J. Anderson, Optical Fault Induction Attacks, 4th International Workshop on Cryptographic Hardware and Embedded Systems, ser. CHES '02, pp.2-12, 2002.
DOI : 10.1007/3-540-36400-5_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.5680

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and Countermeasures, Proceedings of the IEEE, vol.100, issue.11, pp.3056-3076, 2012.
DOI : 10.1109/JPROC.2012.2188769

URL : https://hal.archives-ouvertes.fr/hal-01110932

E. H. Neto, Using Bulk Built-in Current Sensors to Detect Soft Errors, 18th Symposium on Integrated Circuits and Systems Design, pp.10-18, 2006.
DOI : 10.1109/MM.2006.103

S. P. Buchner, F. Miller, V. Pouget, D. P. Mcmorrow, and S. Member, Pulsed-Laser Testing for Single-Event Effects Investigations, IEEE Transactions on Nuclear Science, vol.60, issue.3, pp.1852-1875, 2013.
DOI : 10.1109/TNS.2013.2255312

A. Sarafianos, O. Gagliano, V. Serradeil, M. Lisart, J. Dutertre et al., Building the electrical model of the pulsed photoelectric laser stimulation of an NMOS transistor in 90nm technology, 2013 IEEE International Reliability Physics Symposium (IRPS), p.2013
DOI : 10.1109/IRPS.2013.6532028

URL : https://hal.archives-ouvertes.fr/emse-01130636

H. Momose, T. Wada, I. Kamohara, and M. Isobe, A P-type buried layer for protection against soft errors in high density CMOS static RAMs, 1984 International Electron Devices Meeting, pp.706-709, 1984.
DOI : 10.1109/IEDM.1984.190821

M. Minami, Y. Wakui, H. Matsuki, and T. Nagano, A new soft-error-immune static memory cell having a vertical driver MOSFET with a buried source for the ground potential, IEEE Transactions on Electron Devices, vol.36, issue.9, pp.1657-1662, 1989.
DOI : 10.1109/16.34228

S. Fu, M. Mohsen, and T. C. May, Alpha-Particle-Induced Charge Collection Measurements 'and the Effectiveness of a Novel p-Well Protection Barrier on VLSI Memories, IEEE Trans. Electron Devices, vol.32, issue.1, pp.49-54, 1985.

D. Burnett, C. Lage, and A. Bormann, Soft-error-rate improvement in advanced BiCMOS SRAMs, 31st Annual Proceedings Reliability Physics 1993, pp.156-160, 1993.
DOI : 10.1109/RELPHY.1993.283330

K. Noda, K. Takeda, K. Matsui, and S. Ito, An ultrahigh-density high-speed loadless four-transistor SRAM macro with twisted bitline architecture and triple-well shield, IEEE Journal of Solid-State Circuits, vol.36, issue.3, pp.510-515, 2001.
DOI : 10.1109/4.910490

P. Roche and G. Gasiot, Impacts of front-end and middle-end process modifications on terrestrial soft error rate, IEEE Transactions on Device and Materials Reliability, vol.5, issue.3, pp.382-396, 2005.
DOI : 10.1109/TDMR.2005.853451

E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj, SRAM SER in 90,130 and 180 nm Bulk and SOI Technologies, Proc. Int. Reliab. Phys. Symp. ? IRPS, pp.300-304, 2004.

I. Chatterjee, B. Narasimham, N. N. Mahatme, and B. L. Bhuva, Single-Event Charge Collection and Upset in 40-nm Dual- and Triple-Well Bulk CMOS SRAMs, IEEE Transactions on Nuclear Science, vol.58, issue.6, pp.2761-2767, 2011.
DOI : 10.1109/TNS.2011.2172817

]. I. Chatterjee, B. L. Bhuva, R. D. Schrimpf, and B. Narasimham, Effects of charge confinement and angular strikes in 40 nm dual- and triple-well bulk CMOS SRAMs, 2012 IEEE International Reliability Physics Symposium (IRPS), pp.5-8, 2012.
DOI : 10.1109/IRPS.2012.6241845

G. Gasiot, D. Giot, and P. Roche, Multiple Cell Upsets as the Key Contribution to the Total SER of 65 nm CMOS SRAMs and Its Dependence on Well Engineering, IEEE Transactions on Nuclear Science, vol.54, issue.6, pp.2468-2473, 2007.
DOI : 10.1109/TNS.2007.908147

B. Gill, M. Nicolaidis, F. Wolff, C. Papachristou, and S. Garverick, An Efficient BICS Design for SEUs Detection and Correction in Semiconductor Memories, Europe Conference and Exhibition (DATE), 2005.
URL : https://hal.archives-ouvertes.fr/hal-00181657

F. Vargas and M. Nicolaidis, SEU-tolerant SRAM design based on current monitoring, Proceedings of IEEE 24th International Symposium on Fault- Tolerant Computing, pp.106-115, 1994.
DOI : 10.1109/FTCS.1994.315652

URL : https://hal.archives-ouvertes.fr/hal-00013937

E. H. Neto, F. L. Kastensmidt, and G. I. Wirth, Tbulk-BICS: A built-in current sensor robust to process and temperature variations for SET detection, 2007 9th European Conference on Radiation and Its Effects on Components and Systems, 2007.
DOI : 10.1109/RADECS.2007.5205469

Z. Zhang, T. Wang, L. Chen, and J. Yang, A new Bulk Built-In Current Sensing circuit for single-event transient detection, CCECE 2010, pp.4-7, 2010.
DOI : 10.1109/CCECE.2010.5575124

C. Champeix, N. Borrel, J. M. Dutertre, B. Robisson, M. Lisart et al., Experimental validation of a Bulk Built-In Current Sensor for detecting laser-induced currents, 2015 IEEE 21st International On-Line Testing Symposium (IOLTS), 2015.
DOI : 10.1109/IOLTS.2015.7229849

URL : https://hal.archives-ouvertes.fr/emse-01227307

J. M. Dutertre, R. P. Bastos, O. Potin, M. L. Flottes, B. Rouzeyre et al., Sensitivity tuning of a bulk built-in current sensor for optimal transient-fault detection, Microelectronics Reliability, vol.53, issue.9-11, pp.1320-1324, 2013.
DOI : 10.1016/j.microrel.2013.07.069

URL : https://hal.archives-ouvertes.fr/emse-01100723

A. Simionovski, G. Wirth, and S. Member, Simulation Evaluation of an Implemented Set of Complementary Bulk Built-In Current Sensors With Dynamic Storage Cell, IEEE Transactions on Device and Materials Reliability, vol.14, issue.1, pp.255-261, 2014.
DOI : 10.1109/TDMR.2013.2252176

J. M. Dutertre, R. P. Bastos, O. Potin, M. L. Flottes, B. Rouzeyre et al., Improving the ability of Bulk Built-In Current Sensors to detect Single Event Effects by using triple-well CMOS, European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF), 2014.
DOI : 10.1016/j.microrel.2014.07.151

URL : https://hal.archives-ouvertes.fr/emse-01094805

D. Liu and C. Svensson, Trading speed for low power by choice of supply and threshold voltages, IEEE Journal of Solid-State Circuits, vol.28, issue.1, 1993.
DOI : 10.1109/4.179198

A. Keshavarzi, S. Narendra, S. Borkar, C. Hawkind, K. Roy et al., Technology scaling behavior of optimum reverse body bias for standby leakage power reduction in CMOS IC's, Proceedings of the 1999 international symposium on Low power electronics and design , ISLPED '99, p.252, 1999.
DOI : 10.1145/313817.313937

N. Borrel, C. Champeix, E. Kussener, W. Rahajandraibe, M. Lisart et al., Characterization and simulation of a body biased structure in triple-well technology under pulsed photoelectric laser
URL : https://hal.archives-ouvertes.fr/emse-01099035

N. Borrel, C. Champeix, E. Kussener, W. Rahajandraibe, M. Lisart et al., Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation, 2015 IEEE International Reliability Physics Symposium, 2015.
DOI : 10.1109/IRPS.2015.7112799

URL : https://hal.archives-ouvertes.fr/emse-01230163

N. Borrel, C. Champeix, E. Kussener, W. Rahajandraibe, M. Lisart et al., Electrical model of a PMOS body biased structure in triple-well technology under pulsed photoelectric laser stimulation, 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2015.
DOI : 10.1109/IPFA.2015.7224351