Compiler-based Countermeasure Against Fault Attacks
Thierno Barry, Damien Couroussé, Bruno Robisson

To cite this version:

HAL Id: emse-01232664
https://hal-emse.ccsd.cnrs.fr/emse-01232664
Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The goal is to implement the instruction duplication technique as a countermeasure against Fault Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the security overhead thanks to the flexibility and code transformations opportunities offered by compilers.

The user identifies the portions of the program to protect.

Workflow

Context

The user identifies the portions of the program to protect.

Instructions cannot be duplicated at the middle-end due to the SSA form

We only select instructions that are suitable for duplication

Registers are allocated in favor of duplication

The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible.

When the liveness intervals (L) of registers are disjoint: \(\{\text{L(vreg3)}\} \cap \{\text{L(vreg1)} \cdot \text{L(vreg2)}\} = \emptyset \)

We introduce a constraint: \($dst \neq $src \)

Instruction duplication before scheduling

Before duplication

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Transformation</th>
<th>Duplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>add (r0, r1, r2)</td>
<td>mov (rx, r0) add (r0, rx, r2)</td>
<td>mov (rx, r0) add (r0, rx, r2)</td>
</tr>
<tr>
<td>str (r5, [r3, #4])</td>
<td>str (r5, [r3, #4])</td>
<td>str (r5, [r3, #4])</td>
</tr>
</tbody>
</table>

After scheduling

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Transformation</th>
<th>Duplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>add (r0, r1, r2)</td>
<td>add (r0, r1, r2)</td>
<td>add (r0, r1, r2)</td>
</tr>
<tr>
<td>str (r5, [r3, #4])</td>
<td>add (r0, r1, r2)</td>
<td>add (r0, r1, r2)</td>
</tr>
</tbody>
</table>

Comparison with assembly approach

AES 8-bit NIST on ARM Cortex-M3

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Transformation</th>
<th>Duplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>add (r0, r0, r2)</td>
<td>mov (rx, r0) add (r0, rx, r2)</td>
<td>mov (rx, r0) add (r0, rx, r2)</td>
</tr>
</tbody>
</table>

References

[1] Barenghi et al. Countermeasures against fault attacks on software implemented AES

Legend

\[\checkmark \] Duplicable \[\times \] Not duplicable