&

 Compiler-based Countermeasure Against Fault AttacksCONTEXT The goal is to implement the instruction duplication technique as a countermeasure against Fault Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the security overhead thanks to the flexibility and code transformations opportunities offered by compilers %mul, %a %add2 = add %mul, %a Unused and will be removed by the Dead Code Elimination pass We only select instructions that are suitable for duplication + * a a b multiply and accumulate: mla a, a, b is matched we separately match: a mul followed by add When the liveness intervals (L) of registers are disjoint: {L(vreg3) } ∩ {L(vreg1) . L(vreg2)} = ∅ add r0, r0, r1 add r0, r1, r2 We introduce a constraint: $𝑑𝑠𝑡 ≠ $𝑠𝑟𝑐 ≠ Registers are allocated in favor of duplication The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible approach FUTURE WORK & REFERENCES Using code annotation for more flexibility when defining the code regions to protect Automatic identification of the most vulnerable parts of the program compiler-based implementation of the masking countermeasure [1] Barenghi et al. Countermeasures against fault attacks on software implemented AES [2] Moro et al. Electromagnetic Fault Injection : Towards a Fault Model on a 32-bit Microcontroller Damien Couroussé* Bruno Robisson** *Univ. Grenoble Alpes, F-38000 Grenoble, France CEA, LIST, Minatec Campus, F-38054 Grenoble, France **CEA-Tech DPACA, Gardanne, France firstname.lastname@cea.fr sources destination llc AES 8-bit NIST on ARM Cortex-M3 Unprotected Protected Overhead 8541 cycles 17311 cycles × 2.03