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CONTEXT
The goal is to implement the instruction duplication technique as a countermeasure against Fault
Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the

security overhead thanks to the flexibility and code transformations opportunities offered by compilers

WORKFLOW The user identifies the portions of the program to protect
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T Instructions cannot be duplicated at the middle-end due to the SSA form
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%add %add = mul, %a _<|Code Elimination pass
LLVM bytecode %add2 = add %Zmul, 7%a —

We only select instructions that are suitable for duplication
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Instruction @ Q
Selection » we separately match: a followed by /
Instead

Instead of generating vregl, vreg2 I

Back-end

e Generation of 3-address instructions:
We generate vreg3, vregl, vreg2 /

Registers are allocated in favor of duplication

The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible

When the liveness intervals (L) of registers are disjoint: L(vreg3) | N {L(vregl) . L(vreg2); =@

Register
Allocation

vreg3, vregl, vreg2 e . ro, ro, ril X

We introduce a constraint: \ / /

$dst + $src @ . ro, rl, r2

Instructions are duplicated before scheduling

ro, rl, r2 Duplication ro, rl, r2 | r5, [r3, #4]
Instruction r\5, [ r\3, #4] > P@, r‘l, r2 Scheduling R P@, rl, r2
ScheC Before duplication r5, [r3, #4] r5, [r3, #4]
r5, [r3, #4] ro, rl, r2
Code Before scheduling After scheduling

Emission

Comparison with assembly approach

Instruction Transformation Duplication AES 8-bit NIST on ARM Cortex-M3

ro, ro, r2 rx, ro rx, ro Unprotected Protected Overhead
Assembly ro, rx, r2 rx, ro @ 8541 cycles | 17311 cycles| x 2.03

approach ro, rx, r2
ro, rx, r2
Our ro, rl, r2 ro, rl, r2
approach ro, rl, r2 @
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B Using code annotation for more flexibility when defining the code 1] Barenghi et al. Countermeasures against fault attacks on software implemented AES
regions to protect 2] Moro et al. Electromagnetic Fault Injection : Towards a Fault Model on a 32-bit Microcontroller

B Automatic identification of the most vulnerable parts of the program

. . . . LEGEND
B compiler-based implementation of the masking countermeasure
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