N

HAL

open science

Compiler-based Countermeasure Against Fault Attacks

Thierno Barry, Damien Couroussé, Bruno Robisson

» To cite this version:

Thierno Barry, Damien Couroussé, Bruno Robisson. Compiler-based Countermeasure Against Fault
Attacks. Workshop on Cryptographic Hardware and Embedded Systems, Sep 2015, Saint-Malo,

France. . emse-01232664

HAL Id: emse-01232664
https://hal-emse.ccsd.cnrs.fr/emse-01232664
Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-emse.ccsd.cnrs.fr/emse-01232664
https://hal.archives-ouvertes.fr

FROM RESEARCH Il ND USTR

‘Compiler-based Countermeasure Against Fault Attacks
ceate Cch

Thierno Barry* Damien Couroussé* Bruno Robisson**
*Univ. Grenoble Alpes, F-38000 Grenoble, France

- - CEA, LIST, Minatec Campus, F-38054 Grenoble, France
l&tl & l I ’ t **CEA-Tech DPACA, Gardanne, France
firstname.lasthame@cea.fr
CONTEXT
The goal is to implement the instruction duplication technique as a countermeasure against Fault
Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the

security overhead thanks to the flexibility and code transformations opportunities offered by compilers

WORKFLOW The user identifies the portions of the program to protect

g Source @ to secure_ (“fault”)

*é Code Foo(> b){

O The user has a full control over parts of the code to protect

a *b + a;

}

C source code

@)
QO
-
(@]

T Instructions cannot be duplicated at the middle-end due to the SSA form
G) v
- [LLVM } smul = %a. %b Attempted %mul = %a, %b Unused and will be
e bytecode ’ duplication 5 C—
S %add = %mul, %a >~ %mul2 = mul %a, %b — removed by the Dead
%add %add = mul, %a _<|Code Elimination pass
LLVM bytecode %add2 = add %Zmul, 7%a —

We only select instructions that are suitable for duplication

llc Q destination sources
By default ¢ \ '/ \ .
o ° @ Y . multiply and accumulate: a, a, bismatched K

Instruction @ Q
Selection » we separately match: a followed by /
Instead

Instead of generating vregl, vreg2 I

Back-end

e Generation of 3-address instructions:
We generate vreg3, vregl, vreg2 /

Registers are allocated in favor of duplication

The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible

When the liveness intervals (L) of registers are disjoint: L(vreg3) | N {L(vregl) . L(vreg2); =@

Register
Allocation

vreg3, vregl, vreg2 e . ro, ro, ril X

We introduce a constraint: \ / /

$dst + $src @ . ro, rl, r2

Instructions are duplicated before scheduling

ro, rl, r2 Duplication ro, rl, r2 | r5, [r3, #4]
Instruction r\5, [r\3, #4] > P@, r‘l, r2 Scheduling R P@, rl, r2
ScheC Before duplication r5, [r3, #4] r5, [r3, #4]
r5, [r3, #4] ro, rl, r2
Code Before scheduling After scheduling

Emission

Comparison with assembly approach

Instruction Transformation Duplication AES 8-bit NIST on ARM Cortex-M3

ro, ro, r2 rx, ro rx, ro Unprotected Protected Overhead
Assembly ro, rx, r2 rx, ro @ 8541 cycles | 17311 cycles| x 2.03

approach ro, rx, r2
ro, rx, r2
Our ro, rl, r2 ro, rl, r2
approach ro, rl, r2 @
FUTURE WORK & REFERENCES
FUTURE WORK REFERENCES
B Using code annotation for more flexibility when defining the code 1] Barenghi et al. Countermeasures against fault attacks on software implemented AES
regions to protect 2] Moro et al. Electromagnetic Fault Injection : Towards a Fault Model on a 32-bit Microcontroller

B Automatic identification of the most vulnerable parts of the program

. . . . LEGEND
B compiler-based implementation of the masking countermeasure

-ENIQ\SIJHCL)J} J Duplicable
NATEC

x Not duplicable

JoNIL
.

CEA LIST

